Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS

Accueil > Activités > Séminaires > Séminaire doctorant > Archives des séminaires 2013-2014

Vortices growth of a periodic Ginzburg-Landau model for type-II superconductors

Peng Zhang (Université Paris Est Marne la Vallée)

par Dalet Aude - publié le

In this talk, we will focus on the two-dimensional Ginzburg-Landau model with periodic boundary conditions for type-II superconductors. This talk would be divided into three parts :

I :Introduction to the Ginzburg-Landau model. We will introduce the physical background of the Ginzburg-Landau model for type-II superconductors, and explain why we are interested in periodic case.

II :Some interesting known results. In this part we will introduce some related interesting results, especially the results of the periodic case.

III:Some results about vortices growth of the periodic Ginzburg-Landau model. We will convert this problem to the study of the renormalized energy W. By using the \Gamma convergence we can connect the two dimension model with the one dimension model, and then get the vortices growth of the renormalized energy W, at last the the vortices growth of the periodic Ginzburg-Landau model.