Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS
UFC
CNRS


Accueil > Activités > Séminaires > Analyse Numérique et Calcul Scientifique

Séminaire d’Analyse Numérique et Calcul Scientifique

par alozinski - publié le , mis à jour le

Le séminaire a lieu le jeudi, à 11h, en salle 316 du bâtiment de
Métrologie (plan d’accès).

Vous trouverez ci-dessous le planning du séminaire
d’Analyse Numérique et Calcul Scientifique pour l’année universitaire en cours.

Pour contacter le responsable (Alexei Lozinski) :
alexei.lozinski@univ-fcomte.fr.

Exposés à venir :

  • Jeudi 25 janvier 2018 à 11h : Guillaume Drouet (EDF)
    Une méthode de contact locale de type mortar, des équations aux applications industrielles.
    La méthode des éléments finis est souvent utilisée pour approcher les problèmes de contact. De tels problèmes montrent une condition aux limites non-linéaire, ce qui nécessite que la solution U soit négative sur une partie de la frontière du domaine Ω. Cette non-linéarité conduit à une formulation faible écrite comme une inégalité variationnelle qui admet une solution unique. La régularité de la solution présente des limites quelle que soit la régularité des données. Une conséquence est que seules les méthodes par éléments finis d’ordre un et d’ordre deux sont intéressantes.
    Dans ce travail nous nous intéressons aux problèmes de contact de deux corps dont les maillages respectifs ne coïncident pas sur l’interface de contact en utilisant des éléments finis d’ordre un et deux en 2D et 3D. Dans ce cas, il est maintenant connu que les conditions de contact locales de type noeud-segment ne sont pas satisfaisantes par rapport à des approches plus globales inspirées de la méthode de décomposition de domaine mortar adaptée aux problèmes de contact. Mais, ces approches plus globales sont la plupart du temps compliquées à mettre en œuvre de manière générique dans un logiciel industriel FEM. Le but de ce travail est de définir une méthode locale facile à implémenter qui soit aussi efficace que les approches mortar standards, la méthode Local Average Contact (LAC).
    Cette approche gère localement la contrainte de contact en moyenne sur les mailles d’un macro-maillage bien définie indépendamment de la dimension spatiale et du degré et du type des éléments finis. La méthode LAC peut être vue comme une méthode de Lagrange dans laquelle le multiplicateur représentant la pression de contact est constant par morceaux indépendamment du degré (un ou deux) des éléments finis choisis pour les déplacements. Cette méthode satisfait alors la condition inf-sup grâce à la définition du macro-maillage. Dans ce travail, nous montrons que la méthode fournit des résultats de convergence optimaux dans la norme énergétique dans le cas général de mailles non-compatibles et combine donc les avantages de la localité tout en étant aussi efficace que l’approche mortar standard. La localité est un point clé pour implémenter efficacement de manière générique sur tous les éléments la méthode sur le logiciel FEM ciblé. Nous présentons plusieurs expériences numériques, académiques et industrielles, les résultats sont obtenus avec la mise en œuvre de la méthode dans la version officielle du code open-source FEM code_aster.
  • Jeudi 1 février 2018 à 11h : Olga Gorynina (LMB)
    A posteriori error estimates for the wave equation
  • Jeudi 15 mars 2018, à 11h : Fabien Vergnet (Université Paris-Sud)
    Titre à venir
  • Jeudi 19 octobre 2017, à 11h : Samuel Dubuis (EPFL)
    Reporté sine die
    An adaptive algorithm for the time dependent transport equation with anisotropic finite elements and the Crank-Nicolson scheme

    The time dependent transport equation is solved with stabilized continuous, piecewise linear finite elements and the Crank-Nicolson scheme [1]. Finite elements with large aspect ratio are advocated in order to account for boundary layers. The error due to space discretization has already been studied in [2]. Here, the error due to the use of the Crank-Nicolson scheme is taken into account. Anisotropic a priori and a posteriori error estimates are proved. The a posteriori upper bound is obtained using a quadratic reconstruction in time as in [3].
    The quality of the error estimator is first validated on non adapted meshes and constant time steps. An adaptive algorithm in space and time is then proposed, with goal to build a sequence of anisotropic meshes and time steps, so that the final error is close to a preset tolerance. Numerical results on adapted, anisotropic meshes and
    time steps show the efficiency of the method.

    [1] E. Burman, Consistent SUPG-method for transient transport problems : Stability
    and convergences, Comput. Methods Appl. Mech. Engrg., 199 (2010).
    [2] Y. Bourgault and M. Picasso, Anisotropic error estimates and space adaptivity for a semidiscrete finite element approximation of the transient transport equation SIAM J. Sci. Comput., 35 (2013).
    [3] A. Lozinski, M.Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method : application to a parabolic problem, SIAM J. Sci. Comput., 31 (2009).

Exposés passés :

  • Jeudi 9 novembre 2017 : Christian Klein (Institut de Mathématiques de Bourgogne)
    Multi-domain spectral methods for Green’s functions for the Maxwell equations in matter

    We present a multi-domain spectral approach for the Maxwell equations in matter with a Sommerfeld radiation condition at infinity. The situation to be studied is a conductor in a matter distribution. We concentrate here on an axisymmetric situation where the boundaries of conductor and matter are formed by spherical shells. For the time dependence, a mode analysis is used, i.e., after a Fourier transformation in time the frequency is treated as a parameter in the equations. The Maxwell equations for this situation are formulated in spherical coordinates, the matter is characterized by a diecletric function.
    In the numerical approach, the angular dependence is treated via a Chebychev collocation method in physical space. The axis is singular in this setting, thus no boundary conditions are needed there. For the radial dependence we introduce three domains, the first inside the conductor, the second between conductor and the boundary of the matter, the third in vacuum. Each of these domains in the radial coordinate is mapped to the interval [-1,1], in the last one we use $1/\rho$ as a coordinate thus compactifying the outer domain. This compactification allows the treatment of infinity as a point on the grid. In each domain we use a Chebychev collocation method in coefficient space. The Sommerfeld condition is imposed by writing the fields as an outgoing wave times a function and solving only for the latter. This allows for an exact implementation of the Sommerfeld condition at infinity which is a singular point of the equation. At the domain boundaries, the usual boundary conditions for the Maxwell equations are imposed via a tau method.

Agenda

iCal