Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS

Accueil > Pages web personnelles > Chouly Franz

Chouly Franz

par Chouly Franz - publié le , mis à jour le

Maître de conférences - HDR
Laboratoire de Mathématiques de Besançon (LMB) UMR CNRS 6623
Institut Supérieur d’Ingénieurs de Franche-Comté (ISIFC)
Université de Franche-Comté, 16 route de Gray,
25030 Besançon cedex, France

Tel : (33/0) 3 81 66 63 28.
Fax : (33/0) 3 81 66 66 23.
Email :

Curriculum Vitae

Scientific interests

My research is focused on numerical analysis and scientific computing, with emphasis on finite element methods and boundary/interface conditions such as it occurs in fluid-structure interaction and contact/friction. It encompasses both theoretical aspects (proofs of stability and optimal convergence) and applied aspects (multi-disciplinary projects and industrial / biomedical applications).

Main applications fields are solid/fluid mechanics and biomechanics. For instance :

  • Computational contact mechanics applied to tyre simulation. It involves an industrial partnership with Michelin France, materialized by the PhD of Rabii Mlika, with CIFRE funding, co-supervised with Y. Renard (INSA Lyon) and in collaboration with J.F. Deldon and P. Hauret (Centre de Technologie Michelin).
  • A posteriori error estimation for soft-tissue biomechanics (within the framework of the CNRS multi-disciplinary project Defi Infinity "MEFASIM" granted for 2017). It involves as well an industrial partnership with TexiSense and a multi-disciplinary collaboration between mathematics, computational mechanics, biomechanics and computer science.

An overview of my research on Nitsche’s method for contact and friction is available here.


  1. Contributions au traitement des conditions limites et d’interface dans le cadre de la Méthode des Eléments Finis.
    F. Chouly. Habilitation à Diriger des Recherches de l’U.F.C. , Besançon, France. 12/2013.
  2. Modélisation physique des voies aériennes supérieures pour le Syndrome d’Apnées Obstructives du Sommeil.
    F. Chouly. Thèse de Doctorat de l’I.N.P.G. , Grenoble, France. 12/2005.

Post-doctoral supervision

  • Huu Phuoc Bui (2017-) Goal oriented a posteriori error estimation for hyperelastic contractile models applied to clinical biomechanics. Grant from AMIES and partnership with Marek Bucki (TexiSense, Grenoble).

PhD students

  • Raphaël Bulle. Université du Luxembourg (2017-). Efficient error-controlled multi-level Monte-Carlo methods for stochastic elasticity problems. Co-advisors : Jack Hale, Stéphane Bordas.
  • Rabii Mlika. INSA Lyon (2015-2018). Nitsche method for frictional contact and self-contact : mathematical and numerical study. Co-advisor : Yves Renard.
  • Michel Duprez. Université de Franche-Comté (2012-2015). Controllability of some parabolic systems. Co-advisor : Farid Ammar Khodja.
    webpage / document
  • Nicolas Hermant. Grenoble-INP (2011-2014). Observation, modeling and simulation of the vibrations of a vocal folds replica with application to pathological configurations. Co-advisors : Xavier Pelorson, Fabrice Silva.
    webpage / document

Preprints / submitted articles or notes

  1. Skew-symmetric Nitsche’s formulation in isogeometric analysis : Dirichlet and symmetry conditions, patch coupling and frictionless contact.
    Q. Hu, F. Chouly, G. Cheng & S.P.A. Bordas. Submitted.
  2. Quantifying discretization errors for soft-tissue simulation in computer assisted surgery : a preliminary study.
    S.P.A. Bordas, M. Bucki, F. Chouly, M. Duprez, V. Llleras, C. Lobos, A. Lozinski, P.-Y. Rohan & S. Tomar. Submitted.
  3. A stabilised finite element method for a time-dependent problem solved using a fictitious domain method.
    G.R. Barrenechea, F. Chouly & C. Gonzalez. Submitted.
  4. Computational fluid dynamics in the upper airway : comparison between different models and experimental data for a simplified geometry with major obstruction.
    F.E. Heravi, M.A. Nazari, F. Chouly, P. Perrier & Y. Payan. Submitted.

International Journals

  1. An unbiased Nitsche’s approximation of the frictional contact between two elastic structures.
    F. Chouly, R. Mlika & Y. Renard. Numer. Math. To appear.
  2. Numerical study of the vibrations of an elastic container filled with an inviscid fluid.
    N. Hermant, F. Chouly, F. Silva & P. Luizard. ZAMM Z. Angew. Math. Mech. To appear.
  3. Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method.
    F. Chouly, M. Fabre, P. Hild, J. Pousin & Y. Renard. IMA J. Numer. Anal. To appear.
  4. A clustering package for nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Models.
    M. Bruneau, T. Mottet, S. Moulin, M. Kerbiriou, F. Chouly, S. Chrétien & C. Guyeux. Comput. Biol. Med. Vol. 93, pp 66-74, 2018.
  5. An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact.
    R. Mlika, Y. Renard & F. Chouly. Comput. Methods Appl. Mech. Engrg. Vol. 325, pp. 265-288, 2017.
  6. Partial null controllability of parabolic linear systems.
    F. Ammar Khodja, F. Chouly & M. Duprez. Math. Control Relat. Fields. Vol. 6, pp.185-216, 2016.
  7. A time-parallel framework for coupling finite element and lattice Boltzmann methods.
    M. Astorino, F. Chouly & A. Quarteroni. Appl. Math. Res. Express. AMRX. Vol. 2016, pp. 24-67, 2016.
  8. A Nitsche finite element method for dynamic contact : 2. Stability of the schemes and numerical experiments.
    F. Chouly, P. Hild & Y. Renard. ESAIM : Math. Model. Numer. Anal. Vol. 49, pp. 503-528, 2015.
  9. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes.
    F. Chouly, P. Hild & Y. Renard. ESAIM : Math. Model. Numer. Anal. Vol. 49, pp. 481-502, 2015.
  10. Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity : theory and numerical experiments.
    F. Chouly, P. Hild & Y. Renard. Math. Comp. Vol. 84, pp. 1089-1112, 2015.
  11. An adaptation of Nitsche’s method to the Tresca friction problem.
    F. Chouly. J. Math. Anal. Appl. Vol. 411 , pp. 329-339 , 2014.
  12. A Nitsche-based method for unilateral contact problems : numerical analysis.
    F. Chouly & P. Hild. SIAM J. Numer. Anal. Vol. 51, Num. 2, pp. 1295–1307, 2013.
  13. On convergence of the penalty method for unilateral contact problems.
    F. Chouly & P. Hild. Appl. Num. Math. Vol. 65, pp. 27-40, 2013.
  14. A local projection stabilized method for fictitious domains.
    G.-R. Barrenechea & F. Chouly. Appl. Math. Lett. Vol. 25, Num. 12, pp. 2071-2076, 2012.
  15. Comparison of computations of asymptotic flow models in a constricted channel.
    F. Chouly & P.-Y. Lagrée. Appl. Math. Model. Vol. 36, Num. 12, pp. 6061–6071, 2012.
  16. A Nitsche-based domain decomposition method for hypersingular integral equations.
    F. Chouly & N. Heuer. Numer. Math. Vol. 121, Num. 4, pp. 705-729, 2012.
  17. Robin based semi-implicit coupling in fluid-structure interaction : stability analysis and numerics.
    M. Astorino, F. Chouly & M.-A. Fernández. SIAM J. Sci. Comput., Vol. 31, Num. 6, pp. 4041-4065, 2009.
  18. A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations.
    G.-R. Barrenechea & F. Chouly. ZAMM Z. Angew. Math. Mech., Vol. 89, Num. 1, pp. 54-68, 2009.
  19. Modelling the human pharyngeal airway : validation of numerical simulations using in-vitro experiments.
    F. Chouly, A. Van Hirtum, P.-Y. Lagrée, X. Pelorson & Y. Payan. Med. Biol. Eng. Comput., Vol. 47, pp. 49-58, 2009.
  20. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid-structure interaction.
    F. Chouly, A. Van Hirtum, P.-Y. Lagrée, X. Pelorson & Y. Payan. J. Fluid. Struct. , Vol. 24, pp. 250-269, 2008.

Conference Proceedings (in books, with peer-review)

  1. Nitsche-based finite element method for contact with Coulomb friction.
    F. Chouly, P. Hild, V. Lleras, & Y. Renard. Lect. Notes Comput. Sci. Eng. To appear.
    Proceedings of the European Conference on Numerical Mathematics and Advanced Applications ENUMATH 2017. Editor : Jan Martin Nordbotten.
  2. An overview of recent results on Nitsche’s method for contact problems.
    F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin & Y. Renard. Lect. Notes Comput. Sci. Eng. To appear.
    Proceedings of the UCL Workshop 2016 on Geometrically Unfitted Finite Element Methods and Applications. Editors : Stéphane Bordas, Erik Burman, Mats G. Larson and Maxim Olshanskii.
  3. Simulation of the retroglossal fluid-structure interaction during Obstructive Sleep Apnea.
    F. Chouly, A. Van Hirtum, P.-Y. Lagrée, J.-R. Paoli, X. Pelorson & Y. Payan. Lect. Notes Comput. Sci. Vol. 4072, pp. 48-57, 2006.
    Proceedings of the Third International Symposium ISBMS 2006 on Biomedical Simulation. Editors : Matthias Harders and Gábor Székely.

Notes in CRAS

  1. Parareal multi-model numerical zoom for parabolic multiscale problems.
    F. Chouly & A. Lozinski. C. R. Math. Vol. 352, Num. 6, pp. 535-540, 2014.
  2. An added-mass free semi-implicit coupling scheme for fluid-structure interaction.
    M. Astorino, F. Chouly & M.-A. Fernández. C. R. Math. Vol. 347, Num. 1-2, pp. 99-104, 2009.

Book chapter

  1. When a fluid-structure interaction keeps you awake : a physical approach to Obstructive Sleep Apnea.
    A. Van Hirtum, F. Chouly, P.-Y. Lagrée, J.-R. Paoli, Y. Payan & X. Pelorson. Chapter 2 of "Progress in Sleep Apnea Research", pp. 41-76, 2007. Editor : Robert T. Ferber. Nova Science Publishers. ISBN 1-60021-652-8.

Lecture notes

  1. Sur la prise en compte de quelques conditions aux limites avec la méthode des éléments finis.
    F. Chouly. CEL (Cours en ligne) cel-01564693.

National/international conferences (selection)

  1. Generalized local B-bar method for locking phenomenon in Reissner-Mindlin shell and skew-symmetric Nitsche method for boundary conditions imposing and patch coupling in IGA.
    Q. Hu, F. Chouly, A. Zilian, G. Cheng & S.P.A. Bordas. 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, 2017.
  2. Hydro-elastic finite element model of a vocal fold replica.
    N. Hermant, X. Pelorson, P. Luizard, F. Chouly & F. Silva. 22nd International Congress on Sound and Vibration, ICSV, 2015.
  3. Modèle éléments finis d’un pli vocal artificiel avec couplage hydro-élastique.
    N. Hermant, F. Silva, F. Chouly & X. Pelorson. 12ème Congrès Français d’Acoustique, CFA 2014, pp. 1821-1827 [N°000323], 2014.
  4. Evaluating soft tissue simulation in maxillofacial surgery using pre and post-operative CT scan.
    M. Chabanas, C. Marécaux, F. Chouly, F. Boutault & Y. Payan. 18th International Conference on Computer Assisted Radiology and Surgery, CARS 2004, ICS, Vol. 1268, pp. 419-424, 2004.
  5. In-vitro study of pharyngeal pressure losses at the origin of obstructive sleep apnea.
    A. Van Hirtum, F. Chouly, A. Teulé, Y. Payan & X. Pelorson. 25th Annual International Conference of the IEEE Engineering In Medicine And Biology Society, pp. 371-374. 2003.