Accueil > Activités > Séminaires > Séminaire doctorant > Archives des séminaires 2020-2021

Non divisible point on two-parameters family of elliptic curves

publié le

Vendredi 23 octobre 2020
Valentin Petit
(Université de Franche-Comté)

This work is focused on a family of two-parameters elliptic curves. The family considered is a generalization of the Washington’s family. For a point to be among the generator(s) of an elliptic curve, it must be non divisible. In this presentation, we exhibit a point on the curve for which this requirement is satisfied.
More precisly, let n \in \mathbb{N}^{*} and t \in \mathbb{Z}_{\neq 0}, we consider the elliptic curve E : y^2=x^3+tx^2-n^2(t+3n^2)x+n^6 defined over  \mathbb{Q}. The element (0,n^3) is a point of E(\mathbb{Q}) of infinite order for all n \in \mathbb{N}^{*}, \ t \in \mathbb{Z}_{\neq 0}. Under mild conditions, we proved that this point is not divisible on E(\mathbb{Q}).