Articles dans des revues avec comité de lecture
[7] Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II : Discretization and numerical results,
X. Antoine, C. Besse, P. Klein.
Numerische Mathematik, 2013, 10.1007/s00211-013-0542-8.
Lien vers la publication, PDF
[6] Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part I : Construction and a priori estimates,
X. Antoine, C. Besse, P. Klein.
M3AS, 10(22), 2012.
Lien vers la publication, PDF
[5] Absorbing boundary conditions for solving N-dimensional stationary Schrödinger equations with unbouned potentials and nonlinearites,
P. Klein, X. Antoine, C. Besse, M. Ehrhardt.
Communication in Computional Physics, 10(5) : 1280-1304, 2011.
Lien vers la publication, PDF
[4] Absorbing boundary conditions for Schrödinger equations with general potentials and nonlinearities,
X. Antoine, C. Besse, P. Klein.
SIAM Journal on Scientific Computing, 33(2) : 1008-1033, 2011.
Lien vers la publication, PDF
[3] Numerical solution of time-dependant nonlinear Schrödinger equation using domaine truncation techniques coupled with relaxation scheme,
X. Antoine, C. Besse, P. Klein.
Laser Physics, 21(8) : 1-12, 2011.
Lien vers la publication, PDF
[2] Open Boundary Conditions and Computational Schemes for Schrödinger Equations with General Potentials and Nonlinearities,
X. Antoine, C. Besse, P. Klein.
Some Problems on Nonlinear Hyperbolic Equations and Applications, The French-Chinese Summer Institute on Applied Mathematics held at Fudan University, Shanghai, September 1-21, 2008. Edited by Ta-Tsien Li, Yue-Jun Peng, Bopeng Rao. Series in Contemporary Applied Mathematics, CAM15, World Scientific, 2010.
Lien vers la publication, PDF
[1] Absorbing Boundary Conditions for the One-Dimensional Schrödinger Equation with an Exterior Repulsive Potential,
X. Antoine, C. Besse, P. Klein.
Journal of Computational Physics, 228(2) : 312-335, 2009.
Lien vers la publication, PDF
Articles soumis et en préparation
Thèse
Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels ou non linéarités.
Thèse, Université Nancy 1, 2010.
PDF sur TEL