Accueil > Pages web personnelles > Donadello Carlotta

Donadello Carlotta

par Donadello Carlotta - publié le , mis à jour le

Maître de conférences
Équipe de recherche : équations aux dérivées partielles

Curriculum vitae

Email : carlotta dot donadello at univ-fcomte dot fr
Phone : (+33) 3 81 66 63 29
Mailing address :
Bureau 409B (bâtiment Métrologie)
Laboratoire de Mathématiques
Université de Franche-Comté
16 route de Gray
25030 Besançon Cedex

Research interests :

Hyperbolic conservations laws : theoretical and numerical analysis, control and applications to traffic modeling and population dynamics.


Articles on international journals with pair review
• G.M. Coclite, C. Donadello, T.N.T. Nguyen. An hyperbolic-parabolic predator-prey model involving a vole population structured in age. Joural of Math. Anal. and Appl. 502, no. 1 (2021).
• B. Andreianov, C. Donadello, M. D. Rosini. Entropy solutions for a two-phase transition model for vehicular traffic with metastable phase and time depending point constraint on the density flow. Nonlinear Differ. Equ. Appl. 28, 32 (2021).
• C. Donadello, T. N. T. N’Guyen, U. Razafison. On the mathematical modeling of vole populations spatial dynamics via transport equations on a graph. (2020) Appl. Math. Comput. 396 : 125885.
• G. M. Coclite, C. Donadello. Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Netw. Heterog. Media, 15 (2020) no. 2, pp. 197-213.
• G. M. Coclite, C. Donadello, T. N. T. N’Guyen. A PDE model for the spatial dynamics of a voles population structured in age. Nonlinear Anal., 196 (2020), article number 111805.
• E. Dal Santo, C. Donadello, S. F. Pellegrino, M. D. Rosini. Representation of capacity drop at a road merge via point constraints in a first order traffic model. ESAIM Math. Model. Numer. Anal., 53 (2019) no. 1, pp. 1-34.
• M. Benyahia, C. Donadello, N. Dymski, M. D. Rosini. An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic. Nonlinear Differ. Equ. Appl., 25 (2018) no. 5, article number 48.
• B. Andreianov, C. Donadello, U. Razafison, M. D. Rosini. Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux. J. Math. Pures Appl., 116 (2018) no. 9, pp. 309-346.
• B. Andreianov, G. M. Coclite, C. Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. DCDS A, 37 (2017) no. 11, 5913-5942.
• B. Andreianov, C. Donadello, A. Marson. On the attainable set for a scalar nonconvex conservation law. SIAM J. Control Optim., 55 (2017) no. 4, 2235–2270.
• B. Andreianov, C. Donadello, U. Razafison, M. D. Rosini, J. Y. Rolland. Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), no. 1, 29–47.
• B. Andreianov, C. Donadello, U. Razafison, M. D. Rosini. Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local constraints on the flux and modeling of crowd dynamics at the bottlenecks. ESAIM Math. Model. Numer. Anal., 50 (2016) no. 5, 1269—1287.
• B. Andreianov, C. Donadello, M. D. Rosini. A second-order model for vehicular traffics with local point constraints on the flow. Math. Models Methods Appl. Sci. 26, 751 (2016).
• B. Andreianov, C. Donadello, U. Razafison, M. D. Rosini, Riemann problems with non–local point constraints and capacity drop, Math. Biosci. Eng., 2 (2015) 259-278, doi:10.3934/mbe.2015.12.259
• B. Andreianov, C. Donadello, S. S. Ghoshal, U. Razafison, On the attainable set for a class of triangular systems of conservation laws. Journal Ev. Eq. (2015) doi:10.1007/s00028-014-0267-x
• B. Andreianov, C. Donadello, M. D. Rosini, Crowd dynamics and conservation laws with non-local constraints and capacity drop, M3AS Math. Models Meth. Appl. Sci. 24, (2014), 2685-2722.
• G. Crippa, C. Donadello, L. V. Spinolo, Initial-boundary value problems for continuity equations with BV coefficients, J. Math. Pures Appl. 102, (2014), 79—98.
• A. Bressan, C. Donadello,On the convergence of Viscous Approximations after Shock Interactions. Discr. and Cont. Dynam. Syst, 23 (2009), 29-48.
• A. Bressan, C. Donadello, On the formation of scalar viscous shocks. Int. J. Dyn. Syst. and Diff. Eq. 1 (2007), 1-11.
• C. Donadello, A. Marson, Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14 (2007), 569-592.
• B. Andreianov, C. Donadello, U. Razafison, M. D. Rosini. One-dimensional conservation laws with nonlocal point constraints on the flux. Crowd dynamics. Vol. 1, Model. Simul. Sci. Eng. Technol., pp. 103–135, Birkhäuser/Springer, (2018).
Note aux Comptes Rendus
• C. Donadello, V. Perrollaz. Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions. C. R. Math. Acad. Sci. Paris, 357 (2019), no. 3, pp. 263-271.
Conference proceedings
• G. Crippa, C. Donadello, L. V. Spinolo. A note on the initial-boundary value problem for continuity equations with rough coefficients, AIMS series in Appl. Math. Vol.8, pp. 957—966 (2014).
• C. Donadello, On the vanishing viscosity approximation in the vectorial case. “Hyperbolic Problems : Theory, Numerics and Applications” Proceedings of Symposia in Applied Mathematics 67 (2009), 547-556.
• G.M. Coclite, N. De Nitti, C. Donadello, F. Peru. Inverse design and Boundary controllability for the chromatography system. hal-04164795 (2023)