Résumé : Let $N$ be a von Neumann algebra equipped with
a normal semi-finite faithful trace (nsf trace in short) and let $T\colon N
\to N$ be a contraction. We say that $T$ is absolutely dilatable
if there exist another von Neumann algebra $N’$
equipped with a nsf trace, a $w^*$-continuous trace preserving unital
$*$-homomorphim $J\colon N\to N’$ and a trace preserving $*$-automomorphim $U\colon N’\to N’$ such that $T^k=\E U^k J$ for all integer $k\geq 0$, where $\E\colon N’\to N$ is the conditional expectation associated with $J$.
Given a $\sigma$-finite measure space $(\Sigma,\mu)$,
we will look at self-adjoint, unital, positive measurable bounded Schur multiplier on $B(L^2(\Sigma))$ and we will prove that there are absolutely dilatable. After that, we will remove the self-adjoint property and see what is happen. Then we characterize bounded Schur multipliers $\varphi\in L^\infty(\Sigma^2)$
such that the Schur multiplication operator $M_\varphi\colon B(L^2(\Sigma))\to B(L^2(\Sigma))$ is absolutely dilatable.
Lieu : Salle 324-2 B bis (3ème étage) - Laboratoire de Mathématiques de Besançon (LmB), Campus de la Bouloie, bâtiment Métrologie B, Université de Franche-Comté, 16 route de Gray, 25030 Besançon
Lieu : LmB, salle 324-2B