Well-posedness
for some LWR models on a junction

Boris Andreianov1,
in collaboration with
Guiseppe M. Coclite2 and Carlotta Donadello3

1Laboratoire de Mathématiques et Physique Théorique
Université de Tours, France
2Dipartimento di Matematica, Università di Bari, Italia
3Laboratoire de Mathématiques de Besançon
Université de Franche-Comté, France

ANalysis and COntrol on NETworks: trends and perspectives
Padua, March 9-11, 2016
Statement of the problem

We consider a junction where m incoming and n outgoing roads meet.

- Incoming roads: $x \in \Omega_i = \mathbb{R}_-, i = 1, \ldots, m$;
- Outgoing roads: $x \in \Omega_j = \mathbb{R}_+, j = m + 1, \ldots, m + n$;
- The junction is located at $x = 0$.
Statement of the problem

On each road the evolution of traffic is described by

$$\partial_t \rho_h + \partial_x f_h(\rho_h) = 0, \quad h = 1, \ldots, m + n,$$

- ρ_h density of vehicles, $[0, R]$-valued for all h
- f_h bell-shaped, non linearly non degenerate, Lipschitz fluxes

$$\forall h \quad f_h(0) = 0 = f_h(R)$$

Moreover, we postulate conservativity at the junction:

$$\sum_{i=1}^{m} f_i(\rho_i(t, 0^-)) = \sum_{j=m+1}^{m+n} f_j(\rho_j(t, 0^+)).$$
Statement of the problem

On each road the evolution of traffic is described by

\[\partial_t \rho_h + \partial_x f_h(\rho_h) = 0, \quad h = 1, \ldots, m + n, \]

- \(\rho_h \) density of vehicles, \([0, R]\)-valued for all \(h \)
- \(f_h \) bell-shaped, non linearly non degenerate, Lipschitz fluxes
 \[\forall h \quad f_h(0) = 0 = f_h(R) \]

Moreover, we postulate conservativity at the junction:

\[\sum_{i=1}^{m} f_i(\rho_i(t, 0^-)) = \sum_{j=m+1}^{m+n} f_j(\rho_j(t, 0^+)). \]
Fix $\bar{\rho}_0 = (\rho_0^1, \ldots, \rho_0^{m+n})$ s.t. $\rho_0^h \in L^\infty(\Omega_h, [0, R])$, $\forall h \in \{1, \ldots, m+n\}$. We call “solution” a $(m+n)$-uple $\bar{\rho} = (\rho_1, \ldots, \rho_{m+n})$ s.t.

- $\forall h \rho_h$ is a Kruzhkov entropy solution in $\mathbb{R}_+ \times \{\Omega_h \setminus \partial\Omega_h\}$. Namely $\forall k \in [0, R]$ and $\forall \xi \in C^1_c(\mathbb{R}_+ \times \Omega_h)$, $\xi \geq 0$

$$\int_{\mathbb{R}_+} \int_{\Omega_h} |\rho_h - k|\xi_t + q_h(\rho_h, k)\xi_x \, dx \, dt \geq 0$$

(with $q_h(\rho_h, k) = \text{sign}(\rho_h - k)(f_h(\rho_h) - f_h(k))$ the Kruzhkov entropy flux)

Idea: k is an obvious solution...
the above inequalities are “Kato inequalities” between ρ_h and k

- conservation at the junction holds.

There is no hope to prove well-posedness for “solutions”.

Analogy:
junction coupling conditions (JCC) play the role of boundary conditions (BC). Imposing mere conservativity condition as JCC leaves the Cauchy problem underdetermined! [A. ESAIM Proc.’15].
Fix $\vec{\rho}_0 = (\rho_0^1, \ldots, \rho_0^{m+n})$ s.t. $\rho_0^h \in L^\infty(\Omega_h, [0, R])$, $\forall h \in \{1, \ldots, m + n\}$.

We call “solution” a $(m + n)$-uple $\vec{\rho} = (\rho_1, \ldots, \rho_{m+n})$ s.t.

- $\forall h$ ρ_h is a Kruzhkov entropy solution in $\mathbb{R}^+ \times \{\Omega_h \setminus \partial\Omega_h\}$.

 Namely $\forall k \in [0, R]$ and $\forall \xi \in C^1_c(\mathbb{R}^+ \times \Omega_h)$, $\xi \geq 0$

$$\int_{\mathbb{R}^+} \int_{\Omega_h} |\rho_h - k| \xi_t + q_h(\rho_h, k)\xi_x \, dx \, dt \geq 0$$

(with $q_h(\rho_h, k) = \text{sign}(\rho_h - k)(f_h(\rho_h) - f_h(k))$ the Kruzhkov entropy flux)

Idea: k is an obvious solution...

the above inequalities are “Kato inequalities” between ρ_h and k

- conservation at the junction holds.

There is no hope to prove well-posedness for “solutions”.

Analogy:

junction coupling conditions (JCC) play the role of boundary conditions (BC). Imposing mere conservativity condition as JCC leaves the Cauchy problem underdetermined! [A. ESAIM Proc.’15].
Many different approaches to single out “suitable” solutions

For the Riemann problem at the junction (road-wise constant initial conditions):

- [Holden, Risebro SIMA’95] maximize a concave “entropy” function at the junction;
- [Coclite, Piccoli SIMA’02], [Coclite, Garavello, Piccoli SIMA’05] traffic distribution matrix + optimization;
- [Lebacque ’96], [Lebacque, Khoshyaran ’02] Supply-Demand model;
- ...

We prove well-posedness for solutions to the Cauchy problem which are limits of vanishing viscosity (VV) approximations.

Essential ingredient: intrinsic characterization of VV limits (a notion of solution, expressed e.g. via some “entropy inequalities”)

VV limits obey rather artificial JCC... but the study is instructive!
Many different approaches to single out “suitable” solutions

For the Riemann problem at the junction (road-wise constant initial conditions):

- [Holden, Risebro SIMA’95] maximize a concave “entropy” function at the junction;
- [Coclite, Piccoli SIMA’02], [Coclite, Garavello, Piccoli SIMA’05] traffic distribution matrix + optimization;
- [Lebacque ’96], [Lebacque, Khoshyaran ’02] Supply-Demand model;
- ...

We prove well-posedness for solutions to the Cauchy problem which are limits of vanishing viscosity (VV) approximations.

Essential ingredient: intrinsic characterization of VV limits (a notion of solution, expressed e.g. via some “entropy inequalities”)

VV limits obey rather artificial JCC... but the study is instructive!
Fix $\varepsilon > 0$. Consider convection-ε-diffusion + JunctionCouplingCondition:

$$\begin{cases}
\rho_{h,t}^\varepsilon + f_h(\rho_h^\varepsilon)x = \varepsilon \rho_{h,xx}^\varepsilon, \\
\sum_{i=1}^m \left(f_i(\rho_i^\varepsilon(t,0)) - \varepsilon \rho_{i,x}^\varepsilon(t,0) \right) = \sum_{j=m+1}^{m+n} \left(f_j(\rho_j^\varepsilon(t,0)) - \varepsilon \rho_{j,x}^\varepsilon(t,0) \right), \\
\rho_h^\varepsilon(t,0) = \rho_h'(t,0), \\
\rho_h^\varepsilon(0,x) = \rho_h^0(x),
\end{cases}$$

where the approximated initial conditions $\tilde{\rho}_0,\varepsilon$ satisfy

$$\rho_h^0,\varepsilon \in W^{2,1}(\Omega_h) \cap C^\infty(\Omega_h), \quad [0, R] \text{-valued},$$

$$\rho_h^0,\varepsilon \longrightarrow \rho_h^0, \quad \text{a.e. and in } L^p(\Omega_h), \quad 1 \leq p < \infty, \quad \text{as } \varepsilon \rightarrow 0,$$

$$\|\rho_h^0,\varepsilon\|_{L^1(\Omega_h)} \leq \|\rho_h^0\|_{L^1(\Omega_h)}, \quad \|(\rho_h^0,\varepsilon)_x\|_{L^1(\Omega_h)} \leq TV(\rho_h^0),$$

$$\varepsilon\|(\rho_h^0,\varepsilon)_{xx}\|_{L^1(\Omega_h)} \leq C_0,$$

with $C_0 > 0$ independent from $\varepsilon, \ h$.
Coclite and Garavello, 2010

Theory of semigroups ⇒ ∀ε > 0 there exists a unique ρ^ε s.t.

ρ^ε_h ∈ C([0, ∞); L^2(Ω_h)) ∩ L^1_{loc}((0, ∞); W^{2,1}(Ω_h)), h ∈ {1, . . . , m + n},

0 ≤ ρ^ε_h ≤ R, \sum_{h=1}^{m+n} ||ρ^ε_h(t, ·)||_{L^1(Ω_h)} ≤ \sum_{h=1}^{m+n} ||ρ^0_h||_{L^1(Ω_h)}, ∀t ≥ 0,

+ additional a priori estimates like ||√ερ^ε_x||_{L^2} ≤ C.

Compensated compactness ⇒ existence of a sequence {ε_ℓ}_ℓ∈N,

ε_ℓ → 0 and a solution ̄ρ of the inviscid Cauchy problem such that

∀h ρ^ε_ℓ_h → ρ_h, a.e. and in L^p_{loc}(R_+ × Ω_h), 1 ≤ p < ∞. (1)

Uniqueness of VV solutions for the inviscid problem?
It is proved [Coclite, Garavello SIMA’10] in the case m = n, f_h ≡ f
based on comparison with the obvious solution ̄k = (k, . . . , k).

“Local objective”: extend these results to general junctions
“Global objective”: better understand solvers for different JCC
Coclite and Garavello, 2010

Theory of semigroups ⇒ \(\forall \varepsilon > 0 \) there exists a unique \(\rho^\varepsilon \) s.t.

\[
\rho^\varepsilon_h \in C([0, \infty); L^2(\Omega_h)) \cap L^1_{loc}((0, \infty); W^{2,1}(\Omega_h)), \quad h \in \{1, \ldots, m + n\},
\]

\[
0 \leq \rho^\varepsilon_h \leq R, \quad \sum_{h=1}^{m+n} \|\rho^\varepsilon_h(t, \cdot)\|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \|\rho^0_h\|_{L^1(\Omega_h)}, \quad \forall t \geq 0,
\]

+ additional a priori estimates like \(\|\sqrt{\varepsilon \rho^\varepsilon_x}\|_{L^2} \leq C. \)

Compensated compactness ⇒ existence of a sequence \(\{\varepsilon_\ell\}_{\ell \in \mathbb{N}} \), \(\varepsilon_\ell \to 0 \) and a solution \(\bar{\rho} \) of the inviscid Cauchy problem such that

\[
\forall h \quad \rho^\varepsilon_\ell \to \rho_h, \quad \text{a.e. and in } L^p_{loc}(\mathbb{R}_+ \times \Omega_h), \ 1 \leq p < \infty. \quad (1)
\]

Uniqueness of VV solutions for the inviscid problem?

It is proved [Coclite, Garavello SIMA’10] in the case \(m = n \), \(f_h \equiv f \) based on comparison with the obvious solution \(\vec{k} = (k, \ldots, k) \).

“Local objective”: extend these results to general junctions

“Global objective”: better understand solvers for different JCC
Monotonicity of the VV solver

Not only the viscous problem of Coclite-Garavello is well posed. The key property, independent of ε, can be expressed as:

(i) monotonicity (order-preservation) of the solver:
\[\bar{\rho}_0 \geq \hat{\rho}_0 \text{ (componentwise)} \Rightarrow \forall t > 0 \quad \bar{\rho}^\varepsilon(t, \cdot) \geq \hat{\rho}^\varepsilon(t, \cdot); \]

(ii) L^1-contractivity of the solver:
\[\sum_{h=1}^{m+n} \| \rho_h^\varepsilon(t, \cdot) - \hat{\rho}_h^\varepsilon(t, \cdot) \|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \| \rho_{h,\varepsilon} - \hat{\rho}_{h,\varepsilon} \|_{L^1(\Omega_h)}; \]

(iii) Kato inequality: for all test function $\xi \in D((0, +\infty) \times \mathbb{R})$, $\xi \geq 0$
\[- \int_{\mathbb{R}^+} \int_{\Omega_h} \left(|\rho_h^\varepsilon - \hat{\rho}_h^\varepsilon| \xi_t + q_h(\rho_h^\varepsilon, \hat{\rho}_h^\varepsilon) \xi_x + \varepsilon |\rho_h^\varepsilon - \hat{\rho}_h^\varepsilon| x \xi_x \right) \leq 0, \]

Links: (iii) \Rightarrow (ii) (with $\xi \sim 1_{[0,t]}$); (ii) \Leftrightarrow (i) (Crandall-Tartar lemma)

These properties are inherited by VV admissible solutions.

Kato inequality guarantees uniqueness of VV solutions, provides their intrinsic characterization.
Monotonicity of the VV solver

Not only the viscous problem of Coclite-Garavello is well posed. The key property, independent of ε, can be expressed as:

(i) monotonicity (order-preservation) of the solver:
$$\tilde{\rho}_0 \geq \hat{\rho}_0 \text{ (componentwise)} \Rightarrow \forall t > 0 \tilde{\rho}^\varepsilon(t, \cdot) \geq \hat{\rho}^\varepsilon(t, \cdot);$$

(ii) L^1-contractivity of the solver:
$$\sum_{h=1}^{m+n} \|\rho^\varepsilon_h(t, \cdot) - \hat{\rho}^\varepsilon_h(t, \cdot)\|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \|\rho_0^h,\varepsilon - \hat{\rho}_0^h,\varepsilon\|_{L^1(\Omega_h)};$$

(iii) Kato inequality: for all test function $\xi \in \mathcal{D}((0, +\infty) \times \mathbb{R})$, $\xi \geq 0$
$$-\int_{\mathbb{R}_+} \int_{\Omega_h} (|\rho^\varepsilon_h - \hat{\rho}^\varepsilon_h|\xi_t + q_h(\rho^\varepsilon_h, \hat{\rho}^\varepsilon_h)\xi_x + \varepsilon|\rho^\varepsilon_h - \hat{\rho}^\varepsilon_h|_x\xi_x) \leq 0,$$

Links: (iii) \Rightarrow (ii) (with $\xi \sim 1_{[0,t]}$); (ii) \Leftrightarrow (i) (Crandall-Tartar lemma)

These properties are inherited by VV admissible solutions.

Kato inequality \{ guarantees uniqueness of VV solutions provides their intrinsic characterization
Monotonicity of the \(VV \) solver

Not only the viscous problem of Coclite-Garavello is well posed. The key property, independent of \(\varepsilon \), can be expressed as:

(i) monotonicity (order-preservation) of the solver:
\[
\tilde{\rho}_0 \geq \hat{\rho}_0 \text{ (componentwise)} \Rightarrow \forall t > 0 \tilde{\rho}^\varepsilon(t, \cdot) \geq \hat{\rho}^\varepsilon(t, \cdot);
\]

(ii) \(L^1 \)-contractivity of the solver:
\[
\sum_{h=1}^{m+n} \| \rho_h^\varepsilon(t, \cdot) - \hat{\rho}_h^\varepsilon(t, \cdot) \|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \| \rho_{h,\varepsilon}^0 - \hat{\rho}_{h,\varepsilon}^0 \|_{L^1(\Omega_h)};
\]

(iii) Kato inequality: for all test function \(\xi \in D\left((0, +\infty) \times \mathbb{R}\right) \), \(\xi \geq 0 \)
\[
- \int_{\mathbb{R}^+} \int_{\Omega_h} (|\rho_h^\varepsilon - \hat{\rho}_h^\varepsilon| \xi_t + q_h(\rho_h^\varepsilon, \hat{\rho}_h^\varepsilon) \xi_x + \varepsilon |\rho_h^\varepsilon - \hat{\rho}_h^\varepsilon|_x \xi_x) \leq 0,
\]

Links: (iii) \(\Rightarrow \) (ii) (with \(\xi \sim 1_{[0,t]} \)); (ii) \(\Leftrightarrow \) (i) (Crandall-Tartar lemma)

These properties are inherited by VV admissible solutions.

Kato inequality \{ guarantees uniqueness of VV solutions provides their intrinsic characterization
Monotonicity of the Riemann solver at junction

At least heuristically, \(JCC \iff \text{Riemann solver at junction} \).
Different solution semigroups for LWR on networks originate from different Riemann solvers at junction (Garavello, Piccoli, . . .)

Byproduct of our analysis:

a subclass of these semigroups shares key features of \(VV \) solutions

Required property: monotonicity of the junction Riemann solver
(larger data on a road lead to larger solutions on the whole network)

General principle:

monotone, Lipschitz Riemann solver at junction
\(\implies \) an intrinsic notion of solution + well-posedness.

Notion of solution and uniqueness:
mimic tools developed for discontinuous-flux scalar conservation laws
[A., Karlsen, Risebro ARMA’11]: admissibility germ, adapted entropies

Construction of solutions:
approximations, e.g. by the Godunov finite volume scheme
Monotonicity of the Riemann solver at junction

At least heuristically, $JCC \iff$ Riemann solver at junction. Different solution semigroups for LWR on networks originate from different Riemann solvers at junction (Garavello, Piccoli, . . .)

Byproduct of our analysis:

a subclass of these semigroups shares key features of VV solutions

Required property: monotonicity of the junction Riemann solver (larger data on a road lead to larger solutions on the whole network)

General principle:

monotone, Lipschitz Riemann solver at junction \implies an intrinsic notion of solution + well-posedness.

Notion of solution and uniqueness:
mimic tools developed for discontinuous-flux scalar conservation laws [A., Karlsen, Risebro ARMA’11]: admissibility germ, adapted entropies

Construction of solutions:
approximations, e.g. by the Godunov finite volume scheme
Monotonicity of the Riemann solver at junction

At least heuristically, \(JCC \iff \text{Riemann solver at junction.} \)
Different solution semigroups for LWR on networks originate from different Riemann solvers at junction (Garavello, Piccoli,

Byproduct of our analysis:

a subclass of these semigroups shares key features of \(VV \) solutions

Required property: monotonicity of the junction Riemann solver
(larger data on a road lead to larger solutions on the whole network)

General principle:

monotone, Lipschitz Riemann solver at junction
\[\implies \text{an intrinsic notion of solution + well-posedness.} \]

Notion of solution and uniqueness:
mimic tools developed for discontinuous-flux scalar conservation laws
[A., Karlsen, Risebro ARMA’11]: admissibility germ, adapted entropies

Construction of solutions:
approximations, e.g. by the Godunov finite volume scheme
Consider the Riemann problem for pure SCL:

\[
\begin{aligned}
 u_t + f(u)_x &= 0, \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R} \\
 u_0(x) &= \begin{cases}
 a, & \text{if } x < 0, \\
 b, & \text{if } x > 0.
 \end{cases}
\end{aligned}
\]

Denote by \(\mathcal{R}[a, b] \) its Kruzhkov entropy solution.
The **Godunov flux is the function** \((a, b) \mapsto f(\mathcal{R}[a, b])|_{x=0\pm} \).

Analytically

\[
 G(a, b) = \begin{cases}
 \min_{s \in [a, b]} f(s) & \text{if } a \leq b, \\
 \max_{s \in [b, a]} f(s) & \text{if } a \geq b.
 \end{cases}
\]

Key properties of the Godunov flux:
- **Consistency:** for all \(a \in [0, R] \), \(G(a, a) = f(a) \);
- **Monotonicity and Lipschitz continuity:**
 \(\exists L > 0 : \forall (a, b) \in [0, R]^2 \) there holds
 \[
 0 \leq \partial_a G(a, b) \leq L, \quad -L \leq \partial_b G(a, b) \leq 0.
 \]
Consider the Riemann problem for pure SCL:

\[
\begin{aligned}
&u_t + f(u)_x = 0, \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R} \\
u_0(x) = \begin{cases}
 a, & \text{if } x < 0, \\
 b, & \text{if } x > 0.
\end{cases}
\end{aligned}
\]

Denote by $\mathcal{R}[a, b]$ its Kruzhkov entropy solution. The Godunov flux is the function $(a, b) \mapsto f(\mathcal{R}[a, b])|_{x=0\pm}$.

Analytically

\[
G(a, b) = \begin{cases}
 \min_{s \in [a, b]} f(s) & \text{if } a \leq b, \\
 \max_{s \in [b, a]} f(s) & \text{if } a \geq b.
\end{cases}
\]

Key properties of the Godunov flux:

- **Consistency**: for all $a \in [0, R]$, $G(a, a) = f(a)$;

- **Monotonicity and Lipschitz continuity**:
 \[\exists L > 0 : \forall (a, b) \in [0, R]^2 \text{ there holds} \]
 \[
 0 \leq \partial_a G(a, b) \leq L, \quad -L \leq \partial_b G(a, b) \leq 0.
 \]
Consider the initial and boundary value problem

\[
\begin{cases}
 u_t + f(u)_x = 0, & \text{for } t > 0, \ x < 0 \\
 u(t, 0^-) \approx u_b(t), \\
 u(0, x) = u_0(x),
\end{cases}
\]

\(u\) is an entropy solution for the IBVP if

1. \(u\) is a Kruzhkov entropy solution in the interior of \(\mathbb{R}_+ \times \mathbb{R}_-\),
2. \(u\) satisfies the boundary condition in the (BLN) sense

for a.e. \(t > 0 \) \(\forall k \in \text{conv}\{u(t, 0^-), u_b(t)\} \)

\[q(u(t, 0^-), k) \equiv \text{sign}(u(t, 0^-) - k) \ (f(u(t, 0^-)) - f(k)) \geq 0 \quad (\ast)\]

A reformulation of BLN:

\(u\) satisfies BLN (\(\ast\)) \(\iff\) \(f(u(t, 0^-)) = G(u(t, 0^-), u_b(t)).\)

(known since [Dubois, LeFloch JDE’88])
The junction as a family of IBVPs

Fix $\tilde{\rho}_0 = (\rho_0^1, \ldots, \rho_0^{m+n})$ s.t. $\rho_0^h \in L^\infty(\Omega_h, [0, R]), \forall h \in \{1, \ldots, m + n\}$. We look for $\tilde{\rho} = (\rho_1, \ldots, \rho_{m+n})$ s.t. $\forall h, \rho_h \in L^\infty(\mathbb{R}_+ \times \Omega_h, [0, R])$ is an entropy solution of

$$\begin{cases}
\rho_{h,t} + f_h(\rho_h)_x = 0, & \text{on } \mathbb{R}_+ \times \Omega_h, \\
\rho_h(t, 0) \approx v_h(t), & \text{on } \mathbb{R}_+, \\
\rho_h(0, x) = \rho_0^h(x), & \text{on } \Omega_h,
\end{cases}$$

where $\tilde{v} = (v_1, \ldots, v_{m+n}) : \mathbb{R}_+ \to [0, R]^{m+n}$ is to be chosen

- depending on the JCC one wants to express,
- in particular, ensuring conservation at the junction.

The case of VV limits: require that ν_h be the same on all roads

[A., Cancès JHDE’15], [A., Mitrović AnnIHP’15]:
motivations in the “discontinuous-flux” case $m = n = 1$.

[A., Cancès CompGS’13, JHDE’15]:
examples of different admissibility criteria (e.g. vanishing capillarity).
The junction as a family of IBVPs

Fix $\vec{\rho}_0 = (\rho_0^1, \ldots, \rho_0^{m+n})$ s.t. $\rho_0^h \in L^\infty(\Omega_h, [0, R])$, $\forall h \in \{1, \ldots, m+n\}$. We look for $\vec{\rho} = (\rho_1, \ldots, \rho_{m+n})$ s.t.
$\forall h$, $\rho_h \in L^\infty(\mathbb{R}_+ \times \Omega_h, [0, R])$ is an entropy solution of

$$
\begin{cases}
\rho_{h,t} + f_h(\rho_h)_x = 0, & \text{on } \mathbb{R}_+ \times \Omega_h, \\
\rho_h(t, 0) \approx v_h(t), & \text{on } \mathbb{R}_+, \\
\rho_h(0, x) = \rho_0^h(x), & \text{on } \Omega_h,
\end{cases}
$$

where $\vec{v} = (v_1, \ldots, v_{m+n}) : \mathbb{R}_+ \rightarrow [0, R]^{m+n}$ is to be chosen
- depending on the JCC one wants to express,
- in particular, ensuring conservation at the junction.

The case of VV limits: require that v_h be the same on all roads

[A., Cancès JHDE’15], [A., Mitrović AnnIHP’15]: motivations in the “discontinuous-flux” case $m = n = 1$.
[A., Cancès CompGS’13, JHDE’15]: examples of different admissibility criteria (e.g. vanishing capillarity).
Admissibility at the junction

Continuity of ρ at the junction - up to boundary layers! - is desired.

Definition I (Formalized from heuristics of the model)

Given $\vec{\rho}_0$ i.c., we say that $\vec{\rho} = (\rho_1, \ldots, \rho_{m+n})$ is an admissible solution for the Cauchy problem on the network, if $\exists p$ in $L^\infty(\mathbb{R}_+, [0, R])$ s.t.

- each component ρ_h is entropy solution for the IBVP
 \[
 \begin{aligned}
 \rho_{h,t} + f_h(\rho_h) x &= 0, & \text{on } \mathbb{R}_+ \times \Omega_h, \\
 \rho_h(t,0) &\approx p(t), & \text{on } \mathbb{R}_+, \\
 \rho_h(0, x) &= \rho_0^h(x), & \text{on } \Omega_h,
 \end{aligned}
 \]
 (this includes the "density-at-junction" condition $\forall h \ \nu_h(t) = p(t)$)

- and "flux-at-junction" condition (conservativity) holds, i.e.
 \[
 \sum_{i=1}^{m} G_i(\rho_i(t, 0^-), p(t)) = \sum_{j=m+1}^{m+n} G_j(p(t), \rho_j(t, 0^+)), \quad \text{for a.e. } t.
 \]

Drawback: with this definition

- uniqueness is not obvious...
- existence is not obvious.
Admissibility at the junction

Continuity of ρ at the junction - up to boundary layers! - is desired.

Definition I (Formalized from heuristics of the model)

Given $\vec{\rho}_0$ i.c., we say that $\vec{\rho} = (\rho_1, \ldots, \rho_{m+n})$ is an admissible solution for the Cauchy problem on the network, if $\exists p$ in $L^\infty(\mathbb{R}_+, [0, R])$ s.t.

- each component ρ_h is entropy solution for the IBVP
 \[
 \begin{cases}
 \rho_{h,t} + f_h(\rho_h)_x = 0, & \text{on } \mathbb{R}_+ \times \Omega_h, \\
 \rho_h(t,0) \approx p(t), & \text{on } \mathbb{R}_+, \\
 \rho_h(0,x) = \rho_0^h(x), & \text{on } \Omega_h,
 \end{cases}
 \]

 (this includes the “density-at-junction” condition $\forall h \ v_h(t) = p(t)$)

- and “flux-at-junction” condition (conservativity) holds, i.e.
 \[
 \sum_{i=1}^m G_i(\rho_i(t,0^-), p(t)) = \sum_{j=m+1}^{m+n} G_j(p(t), \rho_j(t,0^+)), \quad \text{for a.e. } t.
 \]

Drawback: with this definition uniqueness is not obvious... existence is not obvious.
Admissibility at the junction

Continuity of ρ at the junction - up to boundary layers! - is desired.

Definition I (Formalized from heuristics of the model)

Given $\vec{\rho}_0$ i.c., we say that $\vec{\rho} = (\rho_1, \ldots, \rho_{m+n})$ is an admissible solution for the Cauchy problem on the network, if $\exists p$ in $L^\infty(\mathbb{R}_+,[0,R])$ s.t.

- each component ρ_h is entropy solution for the IBVP

 \[
 \begin{cases}
 \rho_{h,t} + f_h(\rho_h)x = 0, & \text{on } \mathbb{R}_+ \times \Omega_h, \\
 \rho_h(t,0) \approx p(t), & \text{on } \mathbb{R}_+, \\
 \rho_h(0,x) = \rho^h_0(x), & \text{on } \Omega_h,
 \end{cases}
 \]

 (this includes the “density-at-junction” condition $\forall h \nu_h(t) = p(t)$)

- and “flux-at-junction” condition (conservativity) holds, i.e.

 \[
 \sum_{i=1}^{m} G_i(\rho_i(t,0^-),p(t)) = \sum_{j=m+1}^{m+n} G_j(p(t),\rho_j(t,0^+)), \quad \text{for a.e. } t.
 \]

Drawback: with this definition

- uniqueness is not obvious...
- existence is not obvious.
The vanishing viscosity germ

\[\text{JCC} \Leftrightarrow \text{“Germ”} \sim \{ \text{stationary road-wise constant admissible sol.} \} \]

The germ underlying the above description of admissibility is

\[G_{VV} = \left\{ \tilde{u} = (u_1, \ldots, u_{m+n}) : \exists p \in [0, R] \text{ s.t. :} \right\} \]

\[\sum_{i=1}^{m} G_i(u_i, p) = \sum_{j=m+1}^{m+n} G_j(p, u_j) \]

\[G_i(u_i, p) = f_i(u_i), \quad G_j(p, u_j) = f_j(u_j) \quad \forall i, j \]

Proposition (the Riemann solver \(R_{VV} \) at junction)

Given any \(\tilde{u} = (u_1, \ldots, u_{m+n}) \in [0, R]^{m+n} \) the corresponding Riemann problem at the junction has an admissible solution \(\tilde{\rho} = R_{VV}[\tilde{u}] \).

The vector of traces \(\tilde{\gamma} \tilde{\rho} = (\rho_1(0^-), \ldots, \rho_{m+n}(0^+)) \) belongs to \(G_{VV} \).

Idea of proof: given Riemann data \(\tilde{u} \), construct \(p \)

(the common boundary-value in the def. of admissibility) by solving

\[\text{find } p_{\tilde{u}} \text{ s.t. } \sum_{i=1}^{m} G_i(u_i, p_{\tilde{u}}) = \sum_{j=m+1}^{m+n} G_j(p_{\tilde{u}}, u_j) \]
The vanishing viscosity germ

\[\text{JCC} \iff \text{“Germ” } \sim \{ \text{stationary road-wise constant admissible sol.} \} \]

The germ underlying the above description of admissibility is

\[\mathcal{G}_{VV} = \left\{ \tilde{u} = (u_1, \ldots, u_{m+n}) : \exists p \in [0, R] \text{ s.t.} \right. \]
\[\sum_{i=1}^{m} G_i(u_i, p) = \sum_{j=m+1}^{m+n} G_j(p, u_j) \]
\[G_i(u_i, p) = f_i(u_i), \quad G_j(p, u_j) = f_j(u_j) \quad \forall i, j \right\} . \]

Proposition (the Riemann solver \(\mathcal{R}_{VV} \) at junction)

Given any \(\tilde{u} = (u_1, \ldots, u_{m+n}) \in [0, R]^{m+n} \) the corresponding Riemann problem at the junction has an admissible solution \(\bar{\rho} = \mathcal{R}_{VV}[\tilde{u}] \).

The vector of traces \(\bar{\gamma}\rho = (\rho_1(0^-), \ldots, \rho_{m+n}(0^+)) \) belongs to \(\mathcal{G}_{VV} \).

Idea of proof: given Riemann data \(\tilde{u} \), construct \(p \) (the common boundary-value in the def. of admissibility) by solving

\[\text{find } p_{\tilde{u}} \text{ s.t. } \sum_{i=1}^{m} G_i(u_i, p_{\tilde{u}}) = \sum_{j=m+1}^{m+n} G_j(p_{\tilde{u}}, u_j) \]
The vanishing viscosity germ

JCC \Leftrightarrow “Germ” \sim \{ stationary road-wise constant admissible sol. \}

The germ underlying the above description of admissibility is

$$G_{VV} = \left\{ \vec{u} = (u_1, \ldots, u_{m+n}) : \exists p \in [0, R] \text{ s.t. :} \right\}
\begin{align*}
&\sum_{i=1}^{m} G_i(u_i, p) = \sum_{j=m+1}^{m+n} G_j(p, u_j) \\
&G_i(u_i, p) = f_i(u_i), \quad G_j(p, u_j) = f_j(u_j) \quad \forall i, j
\end{align*}$$

Proposition (the Riemann solver R_{VV} at junction)

Given any $\vec{u} = (u_1, \ldots, u_{m+n}) \in [0, R]^{m+n}$ the corresponding Riemann problem at the junction has an admissible solution $\vec{\rho} = R_{VV}[\vec{u}]$. The vector of traces $\vec{\gamma}\vec{\rho} = (\rho_1(0^-), \ldots, \rho_{m+n}(0^+))$ belongs to G_{VV}.

Idea of proof: given Riemann data \vec{u}, construct p
(the common boundary-value in the def. of admissibility) by solving

$$\text{find } p_{\vec{u}} \text{ s.t. } \sum_{i=1}^{m} G_i(u_i, p_{\vec{u}}) = \sum_{j=m+1}^{m+n} G_j(p_{\vec{u}}, u_j)$$
Example

Consider a junction consisting of two incoming and one outgoing roads.

\[f_1(x) = -x^2 + 1, \quad f_2(x) = -2x^2 + 2, \quad f_3(x) = -3x^2 + 3. \]

Given the initial condition \((\rho_0^1 = -\sqrt{1/2}, \rho_0^2 = 1/4, \rho_0^3 = \sqrt{1/6})\) one can trace \(p \mapsto G_i(\rho_0^i, p), \quad i = 1, 2, \quad p \mapsto G_3(p, \rho_0^3)\)

For all \(p \in [-\sqrt{1/6}, 0]\),

\[\sum_{i=1}^{2} G_i(\rho_0^i, p) = G_3(p, \rho_0^3) = 2.5. \]

The fluxes \(G_{1,2}(\rho_0^i, p), \quad G_3(p, \rho_0^3)\) are independent of \(p \in [-\sqrt{1/6}, 0]\).

NB: In practice, \(\rho_{\bar{u}}\) can be found by *regula falsi* method.
Germ-based equivalent definitions of admissibility

A function $\mathbf{\bar{\rho}} = (\rho_1, \ldots, \rho_{m+n})$ is an admissible solution if and only if

Definition II (trace-based: used to prove uniqueness)

- $\forall h \in \{1, \ldots, m + n\}$, ρ_h is a Kruzkhov solution on the road Ω_h;
- traces-in-germ condition holds:

 for a.e. $t \in \mathbb{R}_+$, $\mathbf{\gamma}(t) := (\rho_1(t, 0^-), \ldots, \rho_{m+n}(t, 0^+)) \in G_{VV}$.

cf. [Garavello, Natalini, Piccoli, Terracina ’07]
(admissibility in terms of Riemann solver at junction)

Definition III (integral formulation: used to prove existence)

- $\forall h \in \{1, \ldots, m + n\}$, ρ_h is a Kruzkhov solution on the road Ω_h;
- adapted entropy inequalities hold: $\forall \xi \in \mathcal{D}(\mathbb{R}_+ \times \mathbb{R})$, $\xi \geq 0$

$$\forall \mathbf{k} \in G_{VV}, \sum_{h=1}^{m+n} \left(\int_{\mathbb{R}_+} \int_{\Omega_h} \{|\rho_h - k_h| \xi_t + q_h(\rho_h, k_h) \xi_x\} \, dx \, dt \right) \geq 0.$$

cf. [Baiti, Jenssen’97], [Audusse, Perthame’05]. These are Kato ineq.!
Germ-based equivalent definitions of admissibility

A function $\vec{\rho} = (\rho_1, \ldots, \rho_{m+n})$ is an admissible solution if and only if

Definition II (trace-based: used to prove uniqueness)

- $\forall h \in \{1, \ldots, m+n\}$, ρ_h is a Kruzhkov solution on the road Ω_h;
- traces-in-germ condition holds:

 for a.e. $t \in \mathbb{R}_+$, $\gamma(t) := (\rho_1(t,0^-), \ldots, \rho_{m+n}(t,0^+)) \in \mathcal{G}_{VV}$.

cf. [Garavello, Natalini, Piccoli, Terracina ’07]
(admissibility in terms of Riemann solver at junction)

Definition III (integral formulation: used to prove existence)

- $\forall h \in \{1, \ldots, m+n\}$, ρ_h is a Kruzhkov solution on the road Ω_h;
- adapted entropy inequalities hold: $\forall \xi \in \mathcal{D}(\mathbb{R}_+ \times \mathbb{R})$, $\xi \geq 0$

\[
\forall \vec{k} \in \mathcal{G}_{VV} \quad \sum_{h=1}^{m+n} \left(\int_{\mathbb{R}_+} \int_{\Omega_h} \left| \rho_h - k_h \right| \xi_t + q_h(\rho_h, k_h) \xi_x \, dx \, dt \right) \geq 0.
\]

cf. [Baiti, Jenssen’97],[Audusse, Perthame’05]. These are Kato ineq.!
Crucial properties of G_{VV}

- The germ G_{VV} is “complete”: namely, the Riemann solver R_{VV} is defined for all data.
- The germ G_{VV} is “dissipative”: namely, for all $\vec{k}, \vec{c} \in G_{VV}$
 \[\sum_{i=1}^{m} q_i(k_i, c_i) - \sum_{j=m+1}^{m+n} q_j(k_j, c_j) \geq 0. \] (#)
- The germ G_{VV} is “maximal”: namely, if \vec{k} fulfills (#) for all $\vec{c} \in G_{VV}$, then $\vec{k} \in G_{VV}$.

Lemma (Oleinik-like condition)

G_{VV} is characterized by a “graph above-graph below” condition (cf. [Diehl JHDE’09] in the $n = m = 1$ case) + conservativity condition.

The maximality can be refined: consider

$G^o_{VV} = \{\text{strict “graph above-graph below” condition}\}$.

- The subset G^o_{VV} of G_{VV} is “definite”: namely,

 taking $\vec{c} \in G^o_{VV}$ is enough to deduce from (#) that $\vec{k} \in G_{VV}$.
Crucial properties of G_{VV}

- The germ G_{VV} is “complete”: namely, the Riemann solver R_{VV} is defined for all data.
- The germ G_{VV} is “dissipative”: namely, for all $\vec{k}, \vec{c} \in G_{VV}$

$$
\sum_{i=1}^{m} q_i(k_i, c_i) - \sum_{j=m+1}^{m+n} q_j(k_j, c_j) \geq 0. \quad (#)
$$

- The germ G_{VV} is “maximal”: namely, if \vec{k} fulfills (#) for all $\vec{c} \in G_{VV}$, then $\vec{k} \in G_{VV}$.

Lemma (Oleinik-like condition)

G_{VV} is characterized by a “graph above-graph below” condition (cf. [Diehl JHDE’09] in the $n = m = 1$ case) + conservativity condition.

The maximality can be refined: consider

$G_{VV}^o = \{\text{strict “graph above-graph below” condition}\}.$

- The subset G_{VV}^o of G_{VV} is “definite”: namely,

 taking $\vec{c} \in G_{VV}^o$ is enough to deduce from (#) that $\vec{k} \in G_{VV}$.

Crucial properties of \(\mathcal{G}_{VV} \)

- The germ \(\mathcal{G}_{VV} \) is “complete”: namely, the Riemann solver \(\mathcal{R}_{VV} \) is defined for all data.
- The germ \(\mathcal{G}_{VV} \) is “dissipative”: namely, for all \(\vec{\kappa}, \vec{c} \in \mathcal{G}_{VV} \)

 \[
 \sum_{i=1}^{m} q_i(k_i, c_i) - \sum_{j=m+1}^{m+n} q_j(k_j, c_j) \geq 0. \tag{#}
 \]
- The germ \(\mathcal{G}_{VV} \) is “maximal”: namely, if \(\vec{\kappa} \) fulfills \((\#) \) for all \(\vec{c} \in \mathcal{G}_{VV} \), then \(\vec{\kappa} \in \mathcal{G}_{VV} \).

Lemma (Oleinik-like condition)

\(\mathcal{G}_{VV} \) is characterized by a “graph above-graph below” condition (cf. [Diehl JHDE’09] in the \(n = m = 1 \) case) + conservativity condition.

The maximality can be refined: consider

\(\mathcal{G}_{VV}^o = \{ \text{strict “graph above-graph below” condition} \} \).

- The subset \(\mathcal{G}_{VV}^o \) of \(\mathcal{G}_{VV} \) is “definite”: namely,

 taking \(\vec{c} \in \mathcal{G}_{VV}^o \) is enough to deduce from \((\#) \) that \(\vec{\kappa} \in \mathcal{G}_{VV} \).
Crucial properties of G_{VV}

- The germ G_{VV} is “complete”: namely, the Riemann solver R_{VV} is defined for all data.
- The germ G_{VV} is “dissipative”: namely, for all $\vec{k}, \vec{c} \in G_{VV}$
 \[
 \sum_{i=1}^{m} q_i(k_i, c_i) - \sum_{j=m+1}^{m+n} q_j(k_j, c_j) \geq 0. \quad (#)
 \]
- The germ G_{VV} is “maximal”: namely, if \vec{k} fulfills (#) for all $\vec{c} \in G_{VV}$, then $\vec{k} \in G_{VV}$.

Lemma (Oleinik-like condition)

G_{VV} is characterized by a “graph above-graph below” condition (cf. [Diehl JHDE’09] in the $n = m = 1$ case) + conservativity condition.

The maximality can be refined: consider

$G_{VV}^o = \{\text{strict “graph above-graph below” condition}\}$.

- The subset G_{VV}^o of G_{VV} is “definite”: namely,

 taking $\vec{c} \in G_{VV}^o$ is enough to deduce from (#) that $\vec{k} \in G_{VV}$.
Crucial properties of G_{VV}

- The germ G_{VV} is “complete”: namely, the Riemann solver R_{VV} is defined for all data.
- The germ G_{VV} is “dissipative”: namely, for all $\vec{k}, \vec{c} \in G_{VV}$
 \[
 \sum_{i=1}^{m} q_i(k_i, c_i) - \sum_{j=m+1}^{m+n} q_j(k_j, c_j) \geq 0. \quad (#)
 \]
- The germ G_{VV} is “maximal”: namely, if \vec{k} fulfills (#) for all $\vec{c} \in G_{VV}$, then $\vec{k} \in G_{VV}$.

Lemma (Oleinik-like condition)

G_{VV} is characterized by a “graph above-graph below” condition (cf. [Diehl JHDE’09] in the $n = m = 1$ case) + conservativity condition.

The maximality can be refined: consider

$G_{VV}^o = \{\text{strict “graph above-graph below” condition}\}.$

- The subset G_{VV}^o of G_{VV} is “definite”: namely,
 taking $\vec{c} \in G_{VV}^o$ is enough to deduce from (#) that $\vec{k} \in G_{VV}.$
Theorem (Main result)

There exists an admissible solution for all L^∞ datum. Moreover, such solutions are VV limits.

If $\bar{\rho}$ and $\hat{\rho}$ are admissible solutions corresponding to $\bar{\rho}_0$ and $\hat{\rho}_0$,

$$\sum_{h=1}^{m+n} \|\rho_h(t) - \hat{\rho}_h(t)\|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \|\rho^0_h - \hat{\rho}^0_h\|_{L^1(\Omega_h)}.$$

(L^1-contractivity, monotonicity). Also Kato inequality holds. \implies uniqueness of an admissible solution to Cauchy problem.

Proof of uniqueness: Kruzhkov-per-road (doubling of variables) + existence of junction traces $\gamma\bar{\rho}, \gamma\hat{\rho} \implies$ up-to-junction Kato inequality:

$$- \int_{\mathbb{R}^+} \int_{\Omega_h} \left(|\rho_h - \hat{\rho}_h| \xi_t + q_h(\rho_h, \hat{\rho}_h) \xi_x \right) \leq \text{RHS}[\gamma\bar{\rho}, \gamma\hat{\rho}] \quad \forall \xi \geq 0$$

By Def.II, $\gamma\bar{\rho}, \gamma\hat{\rho} \in G_{VV}$. Then dissipativity (#) \implies RHS[$\gamma\bar{\rho}, \gamma\hat{\rho}] \leq 0.$
Well-posedness in the frame of admissible solutions

Theorem (Main result)

- **There exists an admissible solution** for all L^∞ datum. Moreover, **such solutions are VV limits**.
- If ρ and $\hat{\rho}$ are admissible solutions corresponding to ρ_0 and $\hat{\rho}_0$,

$$\sum_{h=1}^{m+n} \| \rho_h(t) - \hat{\rho}_h(t) \|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \| \rho_0^h - \hat{\rho}_0^h \|_{L^1(\Omega_h)}.$$

(L^1-contractivity, monotonicity). Also **Kato inequality holds**.

\implies **uniqueness of an admissible solution to Cauchy problem**.

Proof of uniqueness: Kruzhkov-per-road (doubling of variables) + existence of junction traces $\gamma\rho, \gamma\hat{\rho}$ \implies up-to-junction Kato inequality:

$$- \int_{\mathbb{R}^+} \int_{\Omega_h} \left(|\rho_h - \hat{\rho}_h| \xi_t + q_h(\rho_h, \hat{\rho}_h) \xi_x \right) \leq \text{RHS}[\gamma\rho, \gamma\hat{\rho}] \quad \forall \xi \geq 0$$

By Def.II, $\gamma\rho, \gamma\hat{\rho} \in G_{VV}$. Then dissipativity (#) \implies \text{RHS}[\gamma\rho, \gamma\hat{\rho}] \leq 0.
Well-posedness in the frame of admissible solutions

Theorem (Main result)
- **There exists an admissible solution** for all L^∞ datum. Moreover, such solutions are VV limits.
- If ρ and $\hat{\rho}$ are admissible solutions corresponding to ρ_0 and $\hat{\rho}_0$,
 \[
 \sum_{h=1}^{m+n} \| \rho_h(t) - \hat{\rho}_h(t) \|_{L^1(\Omega_h)} \leq \sum_{h=1}^{m+n} \| \rho_0^h - \hat{\rho}_0^h \|_{L^1(\Omega_h)}.
 \]
 (L^1-contractivity, monotonicity). Also Kato inequality holds.
 \[\Rightarrow\] uniqueness of an admissible solution to Cauchy problem.

Proof of uniqueness: Kruzhkov-per-road (doubling of variables) + existence of junction traces $\gamma\rho, \gamma\hat{\rho} \Rightarrow$ up-to-junction Kato inequality:

\[
- \int_{\mathbb{R}^+} \int_{\Omega_h} \left(|\rho_h - \hat{\rho}_h| \xi_t + q_h(\rho_h, \hat{\rho}_h) \xi_x \right) \leq RHS[\gamma\rho, \gamma\hat{\rho}] \quad \forall \xi \geq 0
\]

By Def.II, $\gamma\rho, \gamma\hat{\rho} \in G_{VV}$. Then dissipativity ($\#$) \[\Rightarrow\] $RHS[\gamma\rho, \gamma\hat{\rho}] \leq 0$.
Existence of admissible solutions

Proof of existence:

- Recall some of [Coclite, Garavello SIAM’10] results:
 - (subseq. of) VV approximations $\vec{\rho}_\varepsilon$ converges a.e. to a limit $\vec{\rho}$;
 - for all $\varepsilon > 0$, the semigroup of VV approximations is order-preserving / L^1-contractive / fulfills Kato inequality.

- Standard theory: each component ρ_h of $\vec{\rho}$, s.t. $\rho_h^\varepsilon \to \rho_h$, is a Kruzhkov entropy solution in Ω_h.

- All $\vec{k} \in \mathcal{G}_{VV}$ can be obtained as VV limits.

 Tool: explicit construction of viscosity profiles \vec{k}_ε (based upon the Oleinik “graph above-graph below” condition).

- Pass to the limit $\varepsilon \to 0$ in Kato ineq. written for $\vec{\rho}_\varepsilon$ and \vec{k}_ε.
 We get adapted entropy inequalities $\Rightarrow \rho$ fulfills Def. III.

Alternative proof: (for monotone junction Riemann solvers)

- use Godunov numerical scheme to construct solutions
 - Godunov scheme is well-balanced:
 \vec{k} in the germ (stationary solutions) are exact discrete solutions
 - monotonicity of Riemann solver \Rightarrow discrete Kato inequalities

- follow the same steps of passage to the limit.
Existence of admissible solutions

Proof of existence:
- Recall some of [Coclite, Garavello SIAM’10] results:
 - (subseq. of) VV approximations $\vec{\rho}^\varepsilon$ converges a.e. to a limit $\vec{\rho}$;
 - for all $\varepsilon > 0$, the semigroup of VV approximations is order-preserving / L^1-contractive / fulfills Kato inequality.
- Standard theory: each component ρ_h of $\vec{\rho}$, s.t. $\rho_h^\varepsilon \to \rho_h$, is a Kruzhkov entropy solution in Ω_h.
- All $\vec{k} \in \mathcal{G}_{VV}^0$ can be obtained as VV limits.
 Tool: explicit construction of viscosity profiles \vec{k}^ε
 (based upon the Oleinik “graph above-graph below” condition).
- Pass to the limit $\varepsilon \to 0$ in Kato ineq. written for $\vec{\rho}^\varepsilon$ and \vec{k}^ε.
 We get adapted entropy inequalities $\Rightarrow \rho$ fulfills Def. III.

Alternative proof: (for monotone junction Riemann solvers)
- use Godunov numerical scheme to construct solutions
 - Godunov scheme is well-balanced:
 \vec{k} in the germ (stationary solutions) are exact discrete solutions
 - monotonicity of Riemann solver \Rightarrow discrete Kato inequalities
 - follow the same steps of passage to the limit.
Existence of admissible solutions

Proof of existence:

- Recall some of [Coclite, Garavello SIAM’10] results:
 - (subseq. of) VV approximations $\vec{\rho}^\varepsilon$ converges a.e. to a limit $\vec{\rho}$;
 - for all $\varepsilon > 0$, the semigroup of VV approximations is order-preserving / L^1-contractive / fulfills Kato inequality.
- Standard theory: each component ρ_h of $\vec{\rho}$, s.t. $\rho_h^\varepsilon \to \rho_h$, is a Kruzhkov entropy solution in Ω_h.
- All $\vec{k} \in G_{VV}^0$ can be obtained as VV limits.
 - Tool: explicit construction of viscosity profiles \vec{k}^ε (based upon the Oleinik “graph above-graph below” condition).
 - Pass to the limit $\varepsilon \to 0$ in Kato ineq. written for $\vec{\rho}^\varepsilon$ and \vec{k}^ε.
 - We get adapted entropy inequalities $\Rightarrow \rho$ fulfills Def. III.

Alternative proof: (for monotone junction Riemann solvers)

- use Godunov numerical scheme to construct solutions
 - Godunov scheme is well-balanced:
 - \vec{k} in the germ (stationary solutions) are exact discrete solutions
 - monotonicity of Riemann solver \Rightarrow discrete Kato inequalities
 - follow the same steps of passage to the limit.
Existence of admissible solutions

Proof of existence:

- Recall some of [Coclite, Garavello SIAM’10] results:
 - (subseq. of) VV approximations \(\bar{\rho}^\varepsilon \) converges a.e. to a limit \(\bar{\rho} \);
 - for all \(\varepsilon > 0 \), the semigroup of VV approximations is order-preserving / \(L^1 \)-contractive / fulfills Kato inequality.

- Standard theory: each component \(\rho_h \) of \(\bar{\rho} \), s.t. \(\rho_h^\varepsilon \to \rho_h \), is a Kruzhkov entropy solution in \(\Omega_h \).

- All \(\vec{k} \in G_{VV}^o \) can be obtained as VV limits.
 Tool: explicit construction of viscosity profiles \(\vec{k}^\varepsilon \)
 (based upon the Oleinik “graph above-graph below” condition).

- Pass to the limit \(\varepsilon \to 0 \) in Kato ineq. written for \(\bar{\rho}^\varepsilon \) and \(\vec{k}^\varepsilon \).
 We get adapted entropy inequalities \(\Rightarrow \) \(\rho \) fulfills Def. III.

Alternative proof: (for monotone junction Riemann solvers)

- use Godunov numerical scheme to construct solutions
 - Godunov scheme is well-balanced:
 \(\vec{k} \) in the germ (stationary solutions) are exact discrete solutions
 - monotonicity of Riemann solver \(\Rightarrow \) discrete Kato inequalities
- follow the same steps of passage to the limit.
Existence of admissible solutions

Proof of existence:
- Recall some of [Coclite, Garavello SIAM’10] results:
 - (subseq. of) VV approximations $\vec{\rho}^\varepsilon$ converges a.e. to a limit $\vec{\rho}$;
 - for all $\varepsilon > 0$, the semigroup of VV approximations is order-preserving / L^1-contractive / fulfills Kato inequality.
- Standard theory: each component ρ_h of $\vec{\rho}$, s.t. $\rho_h^\varepsilon \rightarrow \rho_h$, is a Kruzhkov entropy solution in Ω_h.
- All $\vec{k} \in G_{VV}^o$ can be obtained as VV limits.
 Tool: explicit construction of viscosity profiles \vec{k}^ε
 (based upon the Oleinik “graph above-graph below” condition).
- Pass to the limit $\varepsilon \rightarrow 0$ in Kato ineq. written for $\vec{\rho}^\varepsilon$ and \vec{k}^ε.
 We get adapted entropy inequalities $\Rightarrow \rho$ fulfills Def. III.

Alternative proof: (for monotone junction Riemann solvers)
- use Godunov numerical scheme to construct solutions
 - Godunov scheme is well-balanced:
 \vec{k} in the germ (stationary solutions) are exact discrete solutions
 - monotonicity of Riemann solver \Rightarrow discrete Kato inequalities
- follow the same steps of passage to the limit.
Grazie!
Thank you for your attention!