
BEST CONSTANTS FOR LIPSCHITZ EMBEDDINGS OF
METRIC SPACES INTO c0

N. J. KALTON AND G. LANCIEN

Abstract. We answer a question of Aharoni by showing that every
separable metric space can be Lipschitz 2-embedded into c0 and this
result is sharp; this improves earlier estimates of Aharoni, Assouad and
Pelant. We use our methods to examine the best constant for Lipschitz
embeddings of the classical `p−spaces into c0 and give other applications.
We prove that if a Banach space embeds almost isometrically into c0,
then it embeds linearly almost isometrically into c0. We also study
Lipschitz embeddings into c+

0 .

1. Introduction

In 1974, Aharoni [1] proved that every separable metric space (M, d) is

Lipschitz isomorphic to a subset of the Banach space c0. Thus, for some

constant K, there is a map f : M → c0 which satisfies the inequality

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ Kd(x, y) x, y ∈ M.

Aharoni proved this result with K = 6 + ε where ε > 0, so that every

separable metric space (6 + ε)-embeds into c0. He also noted that if one

takes M to be the Banach space `1 one cannot have K < 2. In fact the

map defined by Aharoni took values in the positive cone c+
0 of c0. Later

Assouad [3] refined Aharoni’s result by showing that every separable metric

space (3 + ε)-embeds into c+
0 (see [6] p. 176ff). A further improvement was

obtained by Pelant in 1994 [16] who showed that every separable metric

space 3-embeds into c+
0 and that this result is sharp in the sense that `1

cannot be λ-embedded into c+
0 with λ < 3 (see also [2] for the lower bound).

These results leave open the question of the best constant for Lipschitz

embeddings into c0. Note that c0 can only be 2-embedded into c+
0 . The

main result of this paper is that every separable metric space 2-embeds into

c0 and this is sharp by Aharoni’s remark above. To prove this result, for

1 < λ ≤ 2 we establish a criterion Π(λ) which is sufficient to imply that

a separable metric space λ-embeds into c0 (and the converse statement is

almost true). This criterion enables us to establish sharp results concerning

the embedding of `p-spaces into c0: thus `p 21/p-embeds into c0 if 1 ≤ p < ∞
and the constant is best possible. Using a previous work of the first author
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and D. Werner [12], we also show that a Banach space which embeds almost

isometrically into c0 embeds linearly almost isometrically into c0.

The same techniques can be applied to embeddings into c+
0 . Here we

show that `p (2p + 1)1/p-embeds into c+
0 and `+

p 31/p-embeds into c+
0 and in

each case the result is best possible.

We conclude the paper by proving that every separable ultrametric space

embeds isometrically into c+
0 and the infinite branching tree embeds isomet-

rically into c0.

2. Lipschitz embeddings into c0

Let (M, d) be a metric space and let A and B be non-empty subsets of

M.

We define

δ(A, B) = inf
a∈A,b∈B

d(a, b)

and

D(A, B) = sup
a∈A,b∈B

d(a, b).

In this paper all metric balls are closed with strictly positive radii.

If f : (M1, d1) → (M2, d2) is a Lipschitz map between metric spaces we

write Lip(f) for the Lipschitz constant of f , i.e. the least constant K such

that d2(f(x), f(y)) ≤ Kd1(x, y) for x, y ∈ M1.

Lemma 2.1. Let (M, d) be a metric space and suppose that A, B and C are

non-empty subsets of M. Then for ε > 0, there exists a Lipschitz function

f : M → R with Lip(f) ≤ 1 such that

(i) |f(x)| ≤ ε x ∈ C

and

(ii) |f(x)−f(y)| = θ = min
(
δ(A, B), δ(A, C)+δ(B, C)+2ε

)
x ∈ A, y ∈ B.

Proof. Let us augment M by adding an extra point 0; let M∗ = M ∪ {0}.
We define:

d∗(x, y) =


min

(
d(x, y), d(x, C) + d(y, C) + 2ε

)
x, y ∈ M

d(x, C) + ε x ∈ M, y = 0

d(y, C) + ε x = 0, y ∈ M

0 x = y = 0.

One can easily check that d∗ is a metric on M∗. We can pick s, t in R such

that:

−(δ(B, C) + ε) ≤ s ≤ 0 ≤ t ≤ δ(A, C) + ε and t− s = θ.

Then we define g : A ∪ B ∪ {0} → R by g = t on A, g = s on B and

g(0) = 0. This function is 1-Lipschitz for d∗ and can be extended into a
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1-Lipschitz function f ∗ on (M∗, d∗). Let f be the restriction of f ∗ to M .

Then f satisfies the conditions of the Lemma. �

For λ > 1, we say that a metric space (M, d) has property Π(λ) if given

any µ > λ there exists ν > µ such that if B1 and B2 are two metric balls

of radii r1, r2 respectively then there are finitely many sets (Uj)
N
j=1, (Vj)

N
j=1

such that:

λδ(Uj, Vj) ≥ ν(r1 + r2) 1 ≤ j ≤ N

and

{(x, y) ∈ B1 ×B2 : d(x, y) > µ(r1 + r2)} ⊂
N⋃

j=1

(Uj × Vj).

In this definition the sets Uj, Vj are allowed to be repeated. It is clearly

possible, without loss of generality, to assume they are closed. We can also

(altering the value of ν) assume that they are open.

Lemma 2.2. Every metric space has property Π(2).

Proof. For µ > 2, let

U = B1 ∩ {x : ∃y ∈ B2, d(x, y) > µ(r1 + r2)}

and

V = B2 ∩ {y : ∃x ∈ B1, d(x, y) > µ(r1 + r2)}.

Then

{(x, y) ∈ B1 ×B2 : d(x, y) > µ(r1 + r2)} ⊂ U × V.

Suppose x ∈ U, y ∈ V. Let us assume, without loss of generality, that

r1 ≤ r2. Then there exists x′ ∈ U with d(x′, y) > µ(r1 + r2). Hence

d(x, y) > µ(r1 + r2)− d(x, x′) ≥ µ(r1 + r2)− 2r1 ≥ (µ− 1)(r1 + r2).

Therefore we can take ν = 2µ− 2 > µ. �

We say that a metric space is locally compact (respectively, locally finite)

if all its metric balls are relatively compact (respectively, finite). Note that

we do not use the terminology “locally compact” in the usual way. The

metric spaces with relatively compact metric balls are often called proper

metric spaces.

Lemma 2.3. Let λ > 1. Then every locally compact metric space has

property Π(λ).

Proof. Let µ > λ > 1 and B1, B2 be two balls of a locally compact metric

space (M, d), with respective radii r1 and r2. Pick ν such that µ < ν < λµ.

We denote ∆ = {(x, y) ∈ B1 × B2 : d(x, y) > µ(r1 + r2)}. Let ε > 0. Since
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M is locally compact, there are finitely many points (xj, yj)
N
j=1 in ∆ such

that

∆ ⊂
N⋃

j=1

(Uj × Vj), where Uj = B(xj, ε) and Vj = B(yj, ε).

Then, for all 1 ≤ j ≤ N , λδ(Uj, Vj) > λµ(r1 + r2) − 2λε > ν(r1 + r2), if ε

was chosen small enough, namely ε < (2λ)−1(λµ− ν)(r1 + r2). �

Proposition 2.4. Let λ0 ≥ 1. If a metric space (M, d) λ0-embeds into c0

then it has property Π(λ) for every λ > λ0.

Proof. Suppose µ > λ. Let B1, B2 be metric balls of radii r1, r2 and centers

a1, a2. Let ∆ = {(x, y) ∈ B1 × B2 : d(x, y) > µ(r1 + r2)}. Let f : M → c0

be an embedding such that

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ λ0d(x, y) x, y ∈ M.

Suppose f(x) = (fi(x))∞i=1. Then there exists n so that

|fi(a1)− fi(a2)| < (µ− λ)(r1 + r2) i ≥ n + 1.

Thus if (x, y) ∈ ∆ we have

|fi(x)− fi(y)| < (µ− λ)(r1 + r2) + λ0r1 + λ0r2 < d(x, y), i ≥ n + 1.

Hence

d(x, y) ≤ max
1≤i≤n

|fi(x)− fi(y)| (x, y) ∈ ∆.

Choose ε > 0 so that λ(µ − ε) > λ0µ. By a compactness argument we can

find coverings (Wk)
m
k=1 of B1 and (W ′

k)
m′

k=1 of B2 such that we have

|fi(x)− fi(x
′)| ≤ 1

2
ε(r1 + r2) x, x′ ∈ Wk, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

and

|fi(x)− fi(x
′)| ≤ 1

2
ε(r1 + r2) x, x′ ∈ W ′

k, 1 ≤ i ≤ n, 1 ≤ k ≤ m′.

Let

S = {(k, k′) 1 ≤ k ≤ m, 1 ≤ k′ ≤ m′ : Wk ×W ′
k′ ∩∆ 6= ∅}

and then we define (Uj)
N
j=1, (Vj)

N
j=1 in such a way that (Uj × Vj)

N
j=1 is an

enumeration of (Wk ×Wk′)(k,k′)∈S . Clearly ∆ ⊂ ∪N
j=1Uj × Vj. Now suppose

x ∈ Uj, y ∈ Vj. Then there exist x′ ∈ Uj, y′ ∈ Vj so that d(x′, y′) >

µ(r1+r2). Thus there exists i, 1 ≤ i ≤ n so that |fi(x
′)−fi(y

′)| > µ(r1+r2).

However

|fi(x)− fi(y)| ≥ |fi(x
′)− fi(y

′)| − ε(r1 + r2) > (µ− ε)(r1 + r2).

Hence

δ(Uj, Vj) ≥
(µ− ε)

λ0

(r1 + r2).

Thus we can take ν = λλ−1
0 (µ− ε) > µ. �
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We next observe that the definition of Π(λ) implies a formally stronger

conclusion.

Lemma 2.5. Let (M, d) be a metric space with property Π(λ). Then for

every µ > λ there is a constant ν > µ so that if B1 and B2 are two

metric balls of radii r1, r2 respectively then there are finitely many sets

(Uj)
N
j=1, (Vj)

N
j=1 such that if (x, y) ∈ B1 × B2 and d(x, y) > µ(r1 + r2) then

there exists 1 ≤ j ≤ N so that x ∈ Uj, y ∈ Vj and:

λµδ(Uj, Vj) ≥ νd(x, y).

Proof. By the definition of Π(λ) there exists ν ′ > λ so that if B1 and B2

are two metric balls of radii r1, r2 respectively then there are finitely many

sets (Uj)
N
j=1, (Vj)

N
j=1 such that:

λδ(Uj, Vj) ≥ ν ′(r1 + r2) 1 ≤ j ≤ N

and

{(x, y) ∈ B1 ×B2 : d(x, y) > µ(r1 + r2)} ⊂
N⋃

j=1

(Uj × Vj).

Suppose µ < ν < ν ′ and let ε > 0 be chosen so that (1 + ε)ν = ν ′. Let

B1, B2 be a pair of metric balls of radii r1, r2 > 0. Let D = D(B1, B2) and

let m be the greatest integer such that (1 + ε)mµ(r1 + r2) ≤ D. We define

B
(k)
1 for 0 ≤ k ≤ m to be the ball with the same center as B1 and radius

(1 + ε)kr1; similarly B
(k)
2 for 0 ≤ k ≤ m is the ball with the same center

as B2 and radius (1 + ε)kr2. For each 0 ≤ k ≤ m we may determine sets

Ukl, Vkl for 1 ≤ l ≤ Nk so that

λδ(Ukl, Vkl) ≥ ν ′(1 + ε)k(r1 + r2)

and

{(x, y) ∈ B
(k)
1 ×B

(k)
2 : d(x, y) > µ(1 + ε)k(r1 + r2)} ⊂

Nk⋃
l=1

(Ukl × Vkl).

Now if x ∈ B1, y ∈ B2 with d(x, y) > µ(r1 + r2) we may choose 0 ≤ k ≤ m

so that

(1 + ε)kµ(r1 + r2) < d(x, y) ≤ (1 + ε)k+1µ(r1 + r2).

Then for a suitable 1 ≤ l ≤ Nk we have x ∈ Ukl, y ∈ Vkl and

λµδ(Ukl, Vkl) ≥ ν ′(1 + ε)kµ(r1 + r2) ≥
ν ′

1 + ε
d(x, y) = νd(x, y).

Relabeling the sets (Ukl, Vkl)l≤Nk, 0≤k≤m gives the conclusion. �

Lemma 2.6. Suppose (M, d) has property Π(λ). Suppose 0 < α < β. Let

F, G be finite subsets of M and let ∆(F, G, α, β) be the set of (x, y) ∈ M×M

such that

λ(d(x, G) + d(y, G)) + α ≤ d(x, y) < λ(d(x, F ) + d(y, F )) + β.
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Then there is a finite set F = F(F, G, α, β) of functions f : M → R with

Lip(f) ≤ λ such that

|f(x)| ≤ λβ x ∈ F

and

d(x, y) < max
f∈F

|f(x)− f(y)| (x, y) ∈ ∆(F, G, α, β).

Proof. Let R be the diameter of G. Then for (x, y) ∈ ∆(F, G, α, β) we have

λ(d(x, y)−R) + α ≤ d(x, y)

so that

(λ− 1)d(x, y) < λR.

Hence

d(x, G) + d(y, G) <
R

λ− 1
.

We next let

µ = λ +
(λ− 1)α

2R
and choose ν = ν(µ) according to the conclusion of Lemma 2.5.

We now fix ε > 0 so that 4µε < α.

Let E = {x : d(x, G) < (λ − 1)−1R}. Since E is metrically bounded and

F ∪ G is finite we can partition E into finitely many subsets (E1, . . . , Em)

so that for each z ∈ F ∪G we have:

|d(x, z)− d(x′, z)| ≤ ε x, x′ ∈ Ej, 1 ≤ j ≤ m.

Since G is finite, for each j there exist zj ∈ G and rj ≥ 0 so that

inf
x∈Ej

d(x, zj) = inf
x∈Ej

d(x, G) = rj.

Thus Ej is contained in a ball Bj centered at zj with radius rj + ε.

Now for each pair (j, k) we can find finitely many pairs of sets (Ujkl, Vjkl)
Njk

l=1

such that for every (x, y) ∈ Ej × Ek with d(x, y) > µ(rj + rk + 2ε) there

exists 1 ≤ l ≤ Njk with x ∈ Ujkl, y ∈ Vjkl and

λµδ(Ujkl, Vjkl) ≥ νd(x, y).

We may as well assume that Ujkl ⊂ Ej and Vjkl ⊂ Ek.

Then we apply Lemma 2.1 to construct Lipschitz functions fjkl : M → R
where 1 ≤ j, k ≤ m, 1 ≤ l ≤ Njk such that Lip(fjkl) ≤ λ,

|fjkl(x)| ≤ λβ x ∈ F

and

|fjkl(x)− fjkl(y)| ≥ λθjkl x ∈ Ujkl, y ∈ Vjkl

where

θjkl = min
(
δ(Ujkl, Vjkl), δ(Ujkl, F ) + δ(Vjkl, F ) + 2β

)
.
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Now let us suppose (x, y) ∈ ∆(F, G, α, β). Then there exists (j, k) so that

x ∈ Ej, y ∈ Ek. Note that

d(x, y) ≥ λ(d(x, G) + d(y, G)) + α

≥ λ(rj + rk) + α

= µ(rj + rk + 2ε) + α− 2µε− (µ− λ)(rj + rk)

≥ µ(rj + rk + 2ε) + α− 2µε− (µ− λ)(λ− 1)−1R

> µ(rj + rk + 2ε).

Thus there exists 1 ≤ l ≤ Njk so that x ∈ Ujkl, y ∈ Vjkl and

λδ(Ujkl, Vjkl) ≥
ν

µ
d(x, y) > d(x, y).

On the other hand, ε < α/2 < β/2. So

λ(δ(Ujkl, F ) + δ(Vjkl, F ) + 2β) ≥ λ(d(x, F ) + d(y, F ) + 2β − 2ε)

> λ(d(x, F ) + d(y, F ) + β)

> d(x, y) + (λ− 1)β.

Hence

|fjkl(x)− fjkl(y)| ≥ λθjkl > d(x, y).

Thus we can take for F the collection of all functions fjkl for 1 ≤ j, k ≤ m

and 1 ≤ l ≤ Njk. �

We now state our main result.

Theorem 2.7. If a separable metric space (M, d) has property Π(λ) for

λ > 1, then there is a Lipschitz embedding f : M → c0 with

d(x, y) < ‖f(x)− f(y)‖ ≤ λd(x, y) x, y ∈ M, x 6= y.

Proof. Let (un)∞n=1 be a countable dense set of distinct points of M.

Denote Fk = {u1, . . . , uk} for n ≥ 1. Let (εn)∞n=1 be a strictly decreasing

sequence with limn→∞ εn = 0.

Using Lemma 2.6 we can find an increasing sequence of integers (nk)
∞
k=0

(with n0 = 0) and a sequence (fj)
∞
j=1 of Lipschitz functions fj : M → R

with Lip(fj) ≤ λ so that

|fj(x)| ≤ λεk x ∈ Fk, nk−1 < j ≤ nk

and if

(2.1) λ(d(x, Fk+1)+d(y, Fk+1))+εk+1 ≤ d(x, y) < λ(d(x, Fk)+d(y, Fk))+εk

then

max
nk−1<j≤nk

|fj(x)− fj(y)| > d(x, y).
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Define the map f : M → `∞ by f(x) = (fj(x))∞j=1. Then Lip(f) ≤ λ and

since f maps each uj into c0, f(M) ⊂ c0. Furthermore if x 6= y the sequence

σk = λ(d(x, Fk) + d(y, Fk)) + εk

is decreasing with σ1 > d(x, y) and limk→∞ σk = 0. Hence there is exactly

one choice of k so that (2.1) holds and thus ‖f(x)− f(y)‖ > d(x, y). �

As a corollary, we obtain the following improvement of Aharoni’s theorem.

Theorem 2.8. For every separable metric space (M, d) there is a Lipschitz

embedding f : M → c0 so that

d(x, y) < ‖f(x)− f(y)‖ ≤ 2d(x, y) x, y ∈ M, x 6= y.

Proof. Combine Lemma 2.2 and Theorem 2.7. �

Remark. It follows from Proposition 3 in Aharoni’s original paper [1] that

the above statement is optimal.

Theorem 2.9. For every locally compact metric space (M, d) and every

λ > 1, (M, d) λ-embeds into c0. This result is best possible.

Proof. The existence of the embedding follows immediately from the com-

bination of Lemma 2.3 and Theorem 2.7. The optimality of the statement

follows from Proposition 3.2 in [16], where J. Pelant proved that [0, 1]N

equipped with the distance d((xn), (yn)) =
∑

2−n|xn − yn| cannot be iso-

metrically embedded into c0.

To complete the picture we shall now give a locally finite counterexample.

Let (en)∞n=0 be the canonical basis of `1 and consider the following locally

finite metric subspace of `1: M = {0, e0} ∪ {nen, e0 + nen; n ≥ 1}. Assume

that f = (fk)
∞
k=1 is an isometry from M into c0 such that f(0) = 0. Then

for all n 6= m in N, there exists k = kn,m ≥ 1 such that

|fk(e0 + nen)− fk(mem)| = 1 + n + m.

Since fk(0) = 0, we obtain that there is ε = εn,m ∈ {−1, 1} such that

fk(e0 + nen) = ε(1 + n) and fk(mem) = −εm. Therefore fk(e0) = ε and

fk(nen) = εn.

Since f(e0) ∈ c0, there exists an integer K such that for all positive integers

n 6= m, kn,m ≤ K. Hence, if α(k, n) is the signum of fk(nen), we have that

there exists k ≤ K so that α(k, n) 6= α(k,m), whenever 1 ≤ n < m. But on

the other hand, there is clearly an infinite subset A of N such that for every

k ≤ K and every n, m ∈ A, α(k, n) = α(k,m). This is a contradiction. �
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3. Embeddings of classical Banach spaces

In this section we will consider the best constants for embedding certain

classical Banach spaces into c0. We start by establishing a lower bound

condition, using the Borsuk-Ulam theorem.

Proposition 3.1. Suppose X is a Banach space and that f : X → c0 is a

Lipschitz embedding with constant λ0. Then for any u ∈ X with ‖u‖ = 1

and any infinite-dimensional subspace Y of X we have

inf
y∈Y
‖y‖=1

‖u + y‖ ≤ λ0.

Proof. It follows from Lemma 2.4 that X has property Π(λ) for any λ > λ0.

Let us consider B1 = −u + BX and B2 = u + BX , where BX denotes the

closed unit ball of X. Suppose µ > λ0 and select µ > λ > λ0. Then, for

some ν > µ, we can find finitely many sets (Uj, Vj)
N
j=1 (which we can assume

to be closed) verifying:

λδ(Uj, Vj) ≥ 2ν

and

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > 2µ} ⊂
N⋃

j=1

(Uj × Vj).

Now let E be any subspace of X of dimension greater than N and let

Aj = {e ∈ E : ‖e‖ = 1, (−u + e, u− e) ∈ Uj × Vj}.

Thus the sets Aj are all closed subsets of the unit sphere SE of E. Assume

that for any e ∈ SE, ‖u − e‖ > µ. Then A1 ∪ · · · ∪ AN = SE. We now

use a classical corollary of the Borsuk-Ulam theorem which is in fact due to

Lyusternik and Shnirelman [13] and predates Borsuk’s work (see [14] p. 23).

This gives the existence of e in SE and k ≤ N such that e and −e belong

to Ak, i.e. −u± e ∈ Uk and u± e ∈ Vk. This implies that δ(Uk, Vk) ≤ 2 and

hence λ ≥ ν > µ which is a contradiction. Thus there exists e ∈ SE with

‖u− e‖ ≤ µ.

Since this is true for every finite-dimensional subspace E of dimension

greater than N and every µ > λ0 the conclusion follows. �

Theorem 3.2. Suppose 1 ≤ p < ∞. Then there is a Lipschitz embedding

of `p into c0 with constant 21/p, and this constant is best possible.

Proof. The fact that `p does not λ-embed into c0 when λ < 21/p follows

immediately from Proposition 3.1. So we only need to show that `p verifies

condition Π(21/p).

Let B1 and B2 be balls with centers a1, a2 and radii r1, r2. Suppose µ >

21/p. Then µ < 21/p(µp− 1)1/p. We pick ν such that µ < ν < 21/p(µp− 1)1/p
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and we fix ε > 0 so that

21/p
(
µp(r1 + r2)

p − (r1 + r2 + 2ε)p
)1/p − 21+1/pε > ν(r1 + r2).

We first select N ∈ N so that
∞∑

k=N+1

|a1(k)|p,
∞∑

k=N+1

|a2(k)|p < εp.

Let E be the linear span of {e1, . . . , eN} where (ej)
∞
j=1 is the canonical

basis of `p. Let P the canonical projection of `p onto E, Q = I − P and

R = max(‖a1‖ + r1, ‖a2‖ + r2). Then we partition RBE into finitely many

sets A1, . . . , Am with diam Aj < ε.

Now, set Uj = {x ∈ B1 : Px ∈ Aj}, Vj = {x ∈ B2 : Px ∈ Aj} and

S = {(j, k) ∃(x, y) ∈ Uj × Vk : ‖x− y‖ > µ(r1 + r2)}.

Thus we have

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > µ(r1 + r2)} ⊂
⋃

(j,k)∈S

Uj × Vk.

It remains to estimate δ(Uj, Vk) for (j, k) ∈ S. Suppose u ∈ Uj, v ∈ Vk and

that x ∈ Uj, y ∈ Vk are such that ‖x− y‖ > µ(r1 + r2). Then

‖u− v‖ ≥ ‖Pu− Pv‖ ≥ ‖Px− Py‖ − 2ε.

On the other hand

r1 ≥ ‖x− a1‖ ≥ ‖Qx−Qa1‖ ≥ ‖Qx‖ − ε

and

r2 ≥ ‖y − a2‖ ≥ ‖Qy −Qa2‖ ≥ ‖Qy‖ − ε.

Thus

‖Qx−Qy‖ ≤ r1 + r2 + 2ε.

Now

µp(r1 + r2)
p < ‖Px− Py‖p + ‖Qx−Qy‖p ≤ ‖Px− Py‖p + (r1 + r2 + 2ε)p.

Hence

‖Px− Py‖p > µp(r1 + r2)
p − (r1 + r2 + 2ε)p

and thus

21/pδ(Uj, Vk) ≥ 21/p
(
µp(r1 + r2)

p − (r1 + r2 + 2ε)p
)1/p − 21+1/pε > ν(r1 + r2).

�

We now give a second lower bound condition in place of Proposition 3.1.

We do not know whether the conclusion can be improved replacing λ3
0 by

λ0. If X has a 1-unconditional basis, λ3
0 can be improved to λ2

0.
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Proposition 3.3. If X is a separable Banach space and f : X → c0 is

a Lipschitz embedding with constant λ0 then if ‖x‖ = 1 and (xn)∞n=1 is a

normalized weakly null sequence in X we have:

(3.2) lim sup
n→∞

‖x + xn‖ ≤ λ3
0.

Proof. We assume that ‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ λ0‖x− y‖ for x, y ∈ X.

Let U be a non-principal ultrafilter on the natural numbers N. We start by

proving that if x ∈ X and (yn)∞n=1, (zn)∞n=1 are two weakly null sequences

with limn∈U ‖yn‖ ≤ ‖x‖ and limn∈U ‖zn‖ ≤ ‖x‖ then

(3.3) λ−1
0 lim

n∈U
‖2x+yn+zn‖ ≤ lim

m∈U
lim
n∈U

‖2x+ym+zn‖ ≤ λ0 lim
n∈U

‖2x+yn+zn‖.

It suffices to show this under the condition limn∈U ‖yn‖ = α, limn∈U ‖zn‖ = β

where α, β ≤ 1 and ‖x‖ = 1. Fix any ε > 0. Let f(x) = (fj(x))∞j=1. Then

for some N we have

|fj(x)− fj(−x)| < ε j > N.

Thus

|fj(x + ym)− fj(−x− zn)| ≤ λ0(‖ym‖+ ‖zn‖) + ε j > N.

Hence

lim
m∈U

lim
n∈U

max
j>N

|fj(x + ym)− fj(−x− zn)| ≤ λ0(α + β) + ε.

and

lim
n∈U

max
j>N

|fj(x + yn)− fj(−x− zn)| ≤ λ0(α + β) + ε.

Let σj = limn∈U fj(x + yn) and τj = limn∈U fj(−x− zn). Then

lim
n∈U

|fj(x + yn)− fj(−x− zn)| = |σj − τj|

and

lim
m∈U

lim
n∈U

|fj(x + ym)− fj(−x− zn)| = |σj − τj|.

Thus

lim
n∈U

‖2x + yn + zn‖ ≤ lim
n∈U

‖f(x + yn)− f(−x− zn)‖

≤ max( max
1≤j≤N

|σj − τj|, λ0(α + β) + ε)

≤ max(λ0 lim
m∈U

lim
n∈U

‖2x + ym + zn‖, λ0(α + β) + ε).

Noting that ε > 0 is arbitrary and that

α + β ≤ 2 ≤ lim
m∈U

lim
n∈U

‖2x + ym + zn‖

we obtain that

lim
n∈U

‖2x + yn + zn‖ ≤ λ0 lim
m∈U

lim
n∈U

‖2x + ym + zn‖.

The other inequality in (3.3) is similar.
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Now choose xn = yn = −zn in (3.3). We obtain

lim
m∈U

lim
n∈U

‖2x + xm − xn‖ ≤ 2λ0‖x‖

provided (xn)∞n=1 is weakly null and limn∈U ‖xn‖ ≤ ‖x‖. Hence

lim
m∈U

‖x + 1
2
xm‖ ≤ λ0‖x‖.

This inequality can be iterated to show that

lim
m∈U

lim
n∈U

‖x + 1
2
xm + 1

2
xn‖ ≤ λ2

0‖x‖.

Now assume ‖x‖ = 1 and (xn)∞n=1 is a normalized weakly null sequence.

Then

lim
n∈U

‖x + xn‖ =
1

2
lim
n∈U

‖2x + xn + xn‖

≤ 1

2
λ0 lim

m∈U
lim
n∈U

‖2x + xm + xn‖

≤ λ3
0.

�

Theorem 3.4. Let X be a separable Banach space.

(i) If X isometrically embeds into c0, then X is linearly isometric to a closed

subspace of c0.

(ii) If, for every ε > 0, X Lipschitz embeds into c0 with constant at most

1 + ε, then, for every ε > 0 there is a closed subspace Yε of c0 with Banach-

Mazur distance dBM(X, Yε) < 1 + ε.

Proof. (i) is a direct consequence of the result of [8] that if a separable

Banach space is isometric to a subset of a Banach space Z then it is also

linearly isometric to a subspace of Z.

(ii) Here we observe first that if X contains a subspace isomorphic to

`1 then, for any ε > 0, it contains a subspace Zε with the Banach-Mazur

distance dBM(Zε, `1) ≤ 1 + ε by James’ distortion theorem [10]. Assume

now that X can be λ−embedded into c0. Thus we have that for any ε >

0, `1 can be λ(1 + ε)−embedded into c0. Then it follows from Aharoni’s

counterexample in [1] that λ ≥ 2.

Suppose now that X does not contain any isomorphic copy of `1. If ‖x‖ = 1

and (xn)∞n=1 is any normalized weakly null sequence we have by Proposition

3.3 that

lim
n→∞

‖x + xn‖ = 1.

The conclusion then follows from [12] Theorem 3.5. �
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Remark. The modulus of asymptotic smoothness of a Banach space X has

been defined in [15] as follows. If τ > 0,

ρX(τ) = sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

‖x + τy‖ − 1.

The space X is said to be asymptotically uniformly flat if ρX(τ) = 0 for

some τ > 0. Clearly, this is closely related to equation (3.2). It is shown in

[9] and [11] that a uniformly flat Banach space is isomorphic to a subspace

of c0. This property, or rather its dual version, is used in [9] to show that

a Banach space which is Lipschitz isomorphic to a subspace of c0 is linearly

isomorphic to a subspace of c0.

4. Embeddings into c+
0 .

In this section and the following we complete the already thorough study

of Lipschitz embeddings into c+
0 made by Pelant in [16].

Lemma 4.1. Let (M, d) be a metric space and suppose that A, B and C are

non-empty subsets of M. Then for ε > 0, there exists a Lipschitz function

f : M → R+ with Lip(f) ≤ 1 such that

(i) f(x) ≤ ε x ∈ C

and

(ii) |f(x)− f(y)| ≥ θ = min
(
δ(A, B), max(δ(A, C), δ(B, C)) + ε

)
x ∈ A, y ∈ B.

Proof. Assume that δ(A, C) ≥ δ(B, C). Then θ = min(δ(A, B), δ(A, C)+ε).

Let us define:

f(x) = max(θ − d(x, A), 0) x ∈ M.

Then f(x) = θ for x ∈ A. If x ∈ B, θ − d(x, A) ≤ θ − δ(A, B) ≤ 0 so that

f(x) = 0. Finally if x ∈ C we have θ − d(x, A) ≤ θ − δ(A, C) ≤ ε, so that

f(x) ≤ ε. �

We may now introduce a condition analogous to Π(λ). We say that (M, d)

has property Π+(λ), where λ > 1, if:

(i) Whenever µ > λ there exists ν > µ so that if B1 and B2 are two metric

balls of the same radius r, there is a finite number of sets (Uj)
N
j=1 and (Vj)

N
j=1

so that

λδ(Uj, Vj) ≥ νr

and

{(x, y) ∈ B1 ×B2 : d(x, y) > µr} ⊂
N⋃

j=1

(Uj × Vj),

and

(ii) If 1 < λ ≤ 2, there exists 1 < θ < λ and a function ϕ : M → [0,∞) so
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that

(4.4) |ϕ(x)− ϕ(y)| ≤ d(x, y) ≤ θ max(ϕ(x), ϕ(y)) x, y ∈ M.

Let us note here that condition (ii) is not required when λ > 2 since fixing

any a ∈ X the function ϕ(x) = d(x, a) satisfies (4.4) with θ = 2.

We can repeat the same program for property Π+(λ).

Lemma 4.2. Every metric space has property Π+(3).

Proof. For µ > 3, let

U = B1 ∩ {x : ∃y ∈ B2, d(x, y) > µr}

and

V = B2 ∩ {y : ∃x ∈ B1, d(x, y) > µr}.

Then

{(x, y) ∈ B1 ×B2 : d(x, y) > µr} ⊂ U × V.

Suppose x ∈ U, y ∈ V. Then there exists x′ ∈ U with d(x′, y) > µr. Hence

d(x, y) > µr − d(x, x′) ≥ (µ− 2)r.

Therefore we can take ν = 3µ− 6 > µ. �

Lemma 4.3. Let λ > 2. Then every locally compact metric space has

property Π+(λ).

The proof is immediate. Let us mention that a locally compact metric

space satisfies condition (i) for every λ > 1.

We also have

Lemma 4.4. If λ > 1, then any compact metric space has property Π+(λ).

Proof. Let (K, d) be a compact metric space. We only have to prove condi-

tion (ii). For ε > 0, pick a finite ε-net F of K and define

ϕε(x) = max
z∈F

(d(x, z)).

For a given λ > 1, ϕε fulfills condition (ii) of Π+(λ) if ε is small enough. �

Proposition 4.5. Suppose λ0 ≥ 1 and M is a metric space which Lipschitz

embeds into c+
0 with constant λ0. Then M has property Π+(λ) for all λ > λ0.

Proof. We first consider (i) of the definition of Π+(λ). Suppose µ > λ > λ0.

Let B1, B2 be metric balls of radii r > 0 and centers a1, a2.

Let ∆ = {(x, y) ∈ B1 × B2 : d(x, y) > µr} and f : M → c+
0 be an

embedding such that

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ λ0d(x, y) x, y ∈ M.
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Suppose f(x) = (fi(x))∞i=1. Then there exists n so that

fi(a1), fi(a2) < (µ− λ)r i ≥ n + 1.

Thus if (x, y) ∈ ∆ we have

|fi(x)−fi(y)| ≤ max(fi(x), fi(y)) < (µ−λ)r +λ0r < d(x, y), i ≥ n+1.

Hence

d(x, y) ≤ max
1≤i≤n

|fi(x)− fi(y)| (x, y) ∈ ∆.

Choose ε > 0 so that λ(µ − ε) > λ0µ. By a compactness argument we can

find coverings (Wk)
m
k=1 of B1 and (W ′

k)
m′

k=1 of B2 such that:

|fi(x)− fi(x
′)| ≤ 1

2
εr x, x′ ∈ Wk, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

and

|fi(x)− fi(x
′)| ≤ 1

2
εr x, x′ ∈ W ′

k, 1 ≤ i ≤ n, 1 ≤ k ≤ m′.

Let

S = {(k, k′) 1 ≤ k ≤ m, 1 ≤ k′ ≤ m′ : Wk ×W ′
k′ ∩∆ 6= ∅}

and define (Uj)
N
j=1, (Vj)

N
j=1 in such a way that (Uj×Vj)

N
j=1 is an enumeration

of (Wk ×Wk′)(k,k′)∈S . Then ∆ ⊂ ∪N
j=1Uj × Vj and the same calculations as

in the proof of Proposition 2.4 give that

λδ(Uj, Vj) ≥ νr with ν = λλ−1
0 (µ− ε) > µ.

If λ ≤ 2 we also must consider (ii). Here we define ϕ(x) = λ−1
0 ‖f(x)‖

where f : M → c+
0 is as above. Then ϕ satisfies (4.4) with θ = λ0. Indeed,

|ϕ(x)− ϕ(y)| ≤ λ−1
0 ‖f(x)− f(y)‖ ≤ d(x, y)

and

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ max(‖f(x)‖, ‖f(y)‖) ≤ λ0 max(ϕ(x), ϕ(y)).

�

Next, in place of Lemma 2.5 we have

Lemma 4.6. Let λ > 1 and (M, d) be a metric space with property Π+(λ).

Then for every µ > λ there is a constant ν > µ so that if B1 and B2 are

two metric balls of radius r then there are finitely many sets (Uj)
N
j=1, (Vj)

N
j=1

such that if (x, y) ∈ B1 × B2 and d(x, y) > µr then there exists 1 ≤ j ≤ N

so that x ∈ Uj, y ∈ Vj and:

λµδ(Uj, Vj) ≥ νd(x, y).

We omit the proof of this which is very similar to that of Lemma 2.5 and

only uses part (i) of the definition of Π+(λ).

Then we have the following analogue of Lemma 2.6.
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Lemma 4.7. Let λ > 1. Suppose (M, d) has property Π+(λ). Suppose

0 < α < β. Let F, G be finite subsets of M and let ∆+(F, G, α, β) be the set

of (x, y) ∈ M ×M such that

λ max(d(x, G), d(y, G)) + α ≤ d(x, y) < λ max(d(x, F ), d(y, F )) + β.

Then there is a finite set F = F(F, G, α, β) of functions f : M → R+ with

Lip(f) ≤ λ and such that

f(x) ≤ λβ x ∈ F

and

d(x, y) < max
f∈F

|f(x)− f(y)| (x, y) ∈ ∆+(F, G, α, β).

Proof. We first argue that for some constant K we have

d(x, y) ≤ K, x, y ∈ ∆+(F, G, α, β).

If λ > 2 this follows from the fact that

d(x, G) + d(y, G) ≥ d(x, y)−R

where R is the diameter of G. Hence

d(x, y) ≤ K = λ(λ− 2)−1R, x, y ∈ ∆+(F, G, α, β).

In the case 1 < λ ≤ 2 let ϕ, θ be as in the definition of Π+(λ) and satisfy

(4.4). Let K0 = max{ϕ(z) : z ∈ G}. Thus

λd(x, y) ≤ λθ max(ϕ(x), ϕ(y))

≤ λθK0 + λθ max(d(x, G), d(y, G))

≤ λθK0 + θd(x, y) x, y ∈ ∆+(F, G, α, β),

so that

d(x, y) ≤ K =
λθK0

λ− θ
, x, y ∈ ∆+(F, G, α, β).

We next let

µ = λ +
αλ

2K
and choose ν = ν(µ) according to the conclusion of Lemma 4.6. We fix

ε > 0 so that ε < min( α
2µ

, λ−1(λ− 1)β).

Let E = {x : d(x, G) ≤ λ−1K}. Since E is metrically bounded and F ∪G

is finite we can partition E into finitely many subsets (E1, . . . , Em) so that

for each z ∈ F ∪G we have:

|d(x, z)− d(x′, z)| ≤ ε x, x′ ∈ Ej, 1 ≤ j ≤ m.

For each j, we define zj ∈ G and rj, as in the proof of Lemma 2.6, so that

inf
x∈Ej

d(x, zj) = inf
x∈Ej

d(x, G) = rj.
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Note that rj ≤ λ−1K and Ej is contained in a ball Bj centered at zj with

radius rj + ε.

Now for each pair (j, k) we denote Bj,k the ball with center zj and radius

max(rj + ε, rk + ε). By Lemma 4.6, we can find finitely many pairs of

sets (Ũjkl, Ṽjkl)
Njk

l=1 such that for every (x, y) ∈ Bj,k × Bk,j with d(x, y) >

µ(max(rj, rk) + ε) there exists 1 ≤ l ≤ Njk with x ∈ Ũjkl, y ∈ Ṽjkl and

λµδ(Ũjkl, Ṽjkl) ≥ νd(x, y).

Then we set Ujkl = Ũjkl ∩ Ej and Vjkl = Ṽjkl ∩ Ek.

We now apply Lemma 4.1 to construct Lipschitz functions fjkl : M → R+

where 1 ≤ j, k ≤ m, 1 ≤ l ≤ Njk such that Lip(fjkl) ≤ λ,

fjkl(x) ≤ λβ x ∈ F

and

|fjkl(x)− fjkl(y)| ≥ λθjkl x ∈ Ujkl, y ∈ Vjkl

where

θjkl = min
(
δ(Ujkl, Vjkl), max(δ(Ujkl, F ), δ(Vjkl, F )) + β

)
.

Now let us suppose (x, y) ∈ ∆+(F, G, α, β). Then there exists (j, k) so

that x ∈ Ej, y ∈ Ek. It follows from our choice of µ and ε that

d(x, y) ≥ λ max(d(x, G), d(y, G)) + α

≥ λ max(rj, rk) + α > µ(max(rj, rk) + ε).

Thus there exists 1 ≤ l ≤ Njk so that x ∈ Ujkl, y ∈ Vjkl and

λδ(Ujkl, Vjkl) ≥
ν

µ
d(x, y) > d(x, y).

On the other hand, ε < λ−1(λ− 1)β, so

λ max(δ(Ujkl, F ), δ(Vjkl, F )) + β) ≥ λ max(d(x, F ), d(y, F )) + λ(β − ε)

> λ max(d(x, F ), d(y, F )) + β

> d(x, y).

Hence

|fjkl(x)− fjkl(y)| ≥ λθjkl > d(x, y).

Thus we can take for F the collection of all functions fjkl for 1 ≤ j, k ≤
m, 1 ≤ l ≤ Njk. �

Finally our theorem is

Theorem 4.8. Suppose a separable metric space (M, d) has property Π+(λ)

with λ > 1. Then there is a Lipschitz embedding f : M → c+
0 with

d(x, y) < ‖f(x)− f(y)‖ ≤ λd(x, y) x, y ∈ M, x 6= y.
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Proof. We use the notation of the proof of Theorem 2.7. Then we build an

increasing sequence of integers (nk)
∞
k=0 (with n0 = 0) and a sequence (fj)

∞
j=1

of Lipschitz functions fj : M → R+ with Lip(fj) ≤ λ so that

fj(x) ≤ λεk x ∈ Fk, nk−1 < j ≤ nk

and if

(4.5)

λ max(d(x, Fk+1), d(y, Fk+1))+εk+1 ≤ d(x, y) < λ max(d(x, Fk), d(y, Fk))+εk

then

max
nk−1<j≤nk

|fj(x)− fj(y)| > d(x, y).

If x 6= y the sequence

τk = λ max(d(x, Fk), d(y, Fk)) + εk

is decreasing and tends to zero.

If λ > 2, we clearly have τ1 > d(x, y).

Assume 1 < λ ≤ 2. Let ϕ be given by the part (ii) of property Π+(λ). We

choose ε1 > λϕ(u1). Then we have

d(x, y) ≤ λ max(ϕ(x), ϕ(y)) < ε1 + λ max(d(x, u1), d(y, u1)) = τ1.

Hence, in both cases the desired embedding can be defined again by f(x) =

(fj(x))∞j=1. �

As a first corollary, we obtain the two following results due to Pelant

([16]).

Corollary 4.9. (a) For every separable metric space (M, d) there is a Lip-

schitz embedding f : M → c+
0 so that

d(x, y) < ‖f(x)− f(y)‖ ≤ 3d(x, y) x, y ∈ M, x 6= y.

(b) For any compact metric space (K, d) and any λ > 1, (K, d) λ-embeds

into c+
0 .

It is proved in [16] that both of the above statements are optimal. This

was also known to Aharoni [2] for part (a).

We also have.

Theorem 4.10. For every locally compact metric space (M, d) and every

λ > 2, (M, d) λ-embeds into c+
0 . This result is optimal.

Proof. The result is obtained by combining Theorem 4.8 and Lemma 4.3.

We only have to show its optimality.

Let D be the set of all finite sequences with values in {0, 1} including the

empty sequence denoted ∅ and let D∗ = D \ {∅}. For s ∈ D, we denote |s|
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its length. Then (es)s∈D is the canonical basis of `1(D). We consider the

following metric subspace of `1(D):

M = {0, e∅} ∪ {|s|es, e∅ + |s|es, s ∈ D∗}.

This is clearly a locally finite metric space. Assume now that there exists

f = (fk)
∞
k=1 : M → c+

0 such that

‖x− y‖1 ≤ ‖f(x)− f(y)‖∞ ≤ 2‖x− y‖1 x, y ∈ M.

There exits K ≥ 1 such that fk(e∅) < 1 and fk(0) < 1 for all k > K. Then,

using the positivity of f , we obtain

|fk(e∅ + nes)− fk(net)| ≤ max
(
fk(e∅ + nes), fk(net)

)
< 1 + 2n k > K, s 6= t, |s| = |t| = n.

On the other hand,

‖f(e∅ + nes)− f(net)‖∞ ≥ 1 + 2n s 6= t, |s| = |t| = n.

Thus, for all s 6= t, |s| = |t| = n, there exists k ≤ K so that

|fk(e∅ + nes)− fk(net)| ≥ 1 + 2n.

Let now C = max(‖f(e∅)‖∞, ‖f(0)‖∞). Then

|fk(e∅ + nes)− fk(net)| ≤ C + 2n k ≤ K, s 6= t, |s| = |t| = n.

Thus, for n large enough and all s 6= t, |s| = |t| = n, there exists k ≤ K

such that either

fk(nes) ≤ C − 1 and fk(e∅ + net) ≥ 1 + 2n

or

fk(nes) ≥ 1 + 2n and fk(e∅ + net) ≤ C − 1.

Therefore: either

fk(nes) ≤ C − 1 and fk(net) ≥ 2n− 1

or

fk(nes) ≥ 1 + 2n and fk(net) ≤ C + 1.

Let us now denote α(k, s) = 1[0,C+1](fk(|s|es)). Then, for n big enough,

we have that for all s 6= t, |s| = |t| = n, there exists k ≤ K so that

α(k, s) 6= α(k, t). This is clearly impossible if n > K. This finishes our

proof.

�
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5. Embeddings of subsets of classical Banach spaces into c+
0 .

Proposition 5.1. Suppose X is a separable Banach space and that f :

X → c+
0 is a Lipschitz embedding with constant λ0. Then for any u ∈ X

with ‖u‖ = 1 and any infinite-dimensional subspace Y of X we have

inf
y∈Y
‖y‖=1

‖u + 2y‖ ≤ λ0.

Proof. The proof is almost identical to that of Proposition 3.1. It follows

from Proposition 4.5 that X has property Π+(λ) for any λ > λ0. We

consider B1 = −u + 2BX and B2 = u + 2BX , where BX denotes the closed

unit ball of X. Suppose µ > λ0 and select µ > λ > λ0. Then, for some

ν > µ, we can find finitely many closed sets (Uj, Vj)
N
j=1 verifying:

λδ(Uj, Vj) ≥ 2ν

and

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > 2µ} ⊂
N⋃

j=1

(Uj × Vj).

Now let E be any subspace of X of dimension greater than N and let

Aj = {e ∈ E : ‖e‖ = 1, (−u + 2e, u− 2e) ∈ Uj × Vj}.

We then conclude the proof as in Proposition 3.1. Assume that for any

e ∈ SE, ‖u + 2e‖ > µ. Then A1 ∪ · · · ∪ AN = SE and so there exists e in

SE and k ≤ N such that e and −e belong to Ak, i.e. −u ± 2e ∈ Uk and

u ± 2e ∈ Vk. This implies that δ(Uk, Vk) ≤ 2, which is a contradiction. So,

there exists e ∈ SE with ‖u + 2e‖ ≤ µ and we conclude as in the proof of

Proposition 3.1. �

Theorem 5.2. Suppose 1 ≤ p < ∞.

(i) There is a Lipschitz embedding of `p into c+
0 with constant (2p + 1)1/p

and this is best possible.

(ii) There is a Lipschitz embedding of `+
p into c+

0 with constant 31/p and this

is best possible.

Proof. Let us prove first that `p has Π+(cp) where cp = (1 + 2p)1/p. The

proof is very similar to that of Theorem 3.2. Let B1 and B2 be balls with

centers a1, a2 and radius r > 0. Suppose µ > cp and µ < ν < cp(µ
p − 2p)1/p.

Fix ε > 0 such that

cp

(
µprp − 2p(r + ε)p

)1/p − 2εcp > νr.

We select N ∈ N so that
∞∑

k=N+1

|a1(k)|p,
∞∑

k=N+1

|a2(k)|p < εp.
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Let E be the linear span of {e1, . . . , eN} where (ej) is the canonical ba-

sis of `p. Let P the canonical projection of `p onto E, Q = I − P and

R = max(‖a1‖, ‖a2‖) + r. Then we partition RBE into finitely many sets

A1, . . . , Am with diam(Aj) < ε.

Now, set Uj = {x ∈ B1 : Px ∈ Aj}, Vj = {x ∈ B2 : Px ∈ Aj} and

S = {(j, k) : ∃(x, y) ∈ Uj × Vk : ‖x− y‖ > µr}.

Thus we have

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > µr} ⊂
⋃

(j,k)∈S

Uj × Vk.

It remains to estimate δ(Uj, Vk) for (j, k) ∈ S. Suppose u ∈ Uj, v ∈ Vk and

that x ∈ Uj, y ∈ Vk are such that ‖x− y‖ > µr. Then

‖u− v‖ ≥ ‖Pu− Pv‖ ≥ ‖Px− Py‖ − 2ε.

On the other hand

r ≥ ‖x− a1‖ ≥ ‖Qx‖ − ε

and

r ≥ ‖y − a2‖ ≥ ‖Qy‖ − ε.

Thus

(5.6) ‖Qx−Qy‖ ≤ 2r + 2ε.

Now

µprp < ‖Px− Py‖p + ‖Qx−Qy‖p ≤ ‖Px− Py‖p + 2p(r + ε)p.

Hence

‖Px− Py‖p > µprp − 2p(r + ε)p,

and so

cpδ(Uj, Vk) ≥ cp

(
µprp − 2p(r + ε)p

)1/p − 2εcp > νr.

Hence `p has Π+(cp).

Next we show that `+
p has property Π+(31/p). To do this we repeat the

argument above. We take µ > 31/p and suppose that µ < ν < 31/p(µp−2)1/p.

Choose ε > 0 so that:

31/p
(
µprp − 2(r + ε)p

)1/p − 2ε31/p > νr.

Next repeat the construction, but working inside the positive cone `+
p . The

only difference is that (5.6) is replaced by

(5.7) ‖Qx−Qy‖ ≤ 21/p max(‖Qx‖, ‖Qy‖) ≤ 21/p(r + ε).

Hence

‖Px− Py‖p > µprp − 2(r + ε)p,
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and so this time

31/pδ(Uj, Vk) ≥ 31/p
(
µprp − 2(r + ε)p

)1/p − 2ε31/p > νr.

For the second half of the condition when 31/p ≤ 2 we note that ϕ(x) = ‖x‖
satisfies (4.4) with θ = 21/p < 31/p.

These calculations combined with Theorem 4.8 show the existence of

the Lipschitz embeddings in parts (i) and (ii). Proposition 5.1 shows the

constant is best possible when in (i). For (ii) let us suppose f : `+
p → c+

0 is

an embedding such that

‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ λ‖x− y‖ x, y ∈ `+
p

where λ < 31/p. Let f(x) = (fj(x))∞j=1. Let ε = (31/p − λ)/2. Then there

exists N such that

max(fj(e1), fj(0)) < ε j ≥ N + 1.

Hence if m,n > 1

|fj(e1+em)−fj(en)| ≤ max(fj(e1+em), fj(en)) ≤ λ+ε < 31/p, j ≥ N +1.

Now we may pass to a subsequence so that the following limits exist:

lim
k→∞

fj(e1 + enk
) = σj, lim

k→∞
fj(enk

) = τj, 1 ≤ j ≤ N.

Clearly

|σj − τj| ≤ λ, 1 ≤ j ≤ N.

Now

lim
k→∞

|fj(e1 + enk
)− fj(enk+1

)| ≤ λ 1 ≤ j ≤ N

and we have a contradiction since ‖e1 + enk
− enk+1

‖ = 31/p > λ. �

6. Spaces embedding isometrically into c0 and c+
0 .

In this final section we study isometric embeddings into c0 and c+
0 . Note

that a separable Banach space isometrically embeds into c0 if and only if it

embeds linearly and isometrically [8].

We recall that a metric space (M, d) is an ultrametric space if

(6.8) d(x, y) ≤ max(d(x, z), d(z, y)) x, y, z ∈ M.

Note that this implies

(6.9) d(x, y) = max(d(x, z), d(z, y)) d(x, z) 6= d(z, y).

Lemma 6.1. Let (M, d) be a separable ultrametric space. Then there is a

countable subset Γ of [0,∞) such that d(x, y) ∈ Γ for all x, y ∈ M.
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Proof. For each fixed x ∈ M let Γx = {d(x, y) : y ∈ M}. Suppose Γx

is uncountable; then for some δ > 0 the set Γx ∩ (δ,∞) is uncountable.

Pick an uncountable set (yi)i∈I in M so that d(x, yi) > δ and the values of

d(x, yi) are distinct for i ∈ I. Then i 6= j we have d(yi, yj) > δ by (6.9).

This contradicts the separability of M.

Thus each Γx is countable. Let D be a countable dense subset of M and

let Γ = ∪x∈DΓx. If y, z ∈ M with y 6= z, pick x ∈ D with d(x, y) < d(x, z).

Then d(y, z) = d(x, z) ∈ Γ by (6.9). �

Theorem 6.2. Every separable ultrametric space embeds isometrically into

c+
0

Proof. Pick Γ as in Lemma 6.1. Let (aj)
∞
j=1 be a countable dense subset of an

ultrametric space M . Let D be the collection of finite sequences (r1, . . . , rn)

with rj ∈ Γ for 1 ≤ j ≤ n. For each (r1, . . . , rn) ∈ D we define a function

fr1,...,rn by

fr1,...,rn(x) =

{
min(r1, . . . , rn) if d(x, aj) = rj, 1 ≤ j ≤ n

0 otherwise.

If x ∈ M let d(x, aj) = sj. Then limn→∞ min(s1, . . . , sn) = 0 and it follows

that f(x) = (fr1,...,rn(x))(r1,...,rn)∈D is a map from M into c+
0 (D).

If x, y ∈ M and fr1,...,rn(x) 6= fr1,...,rn(y) we can assume without loss of

generality that d(x, aj) = rj for 1 ≤ j ≤ n but that for some 1 ≤ k ≤ n we

have d(y, ak) 6= rk. Then, from (6.9) we get

|fr1,...,rn(x)− fr1,...,rn(y)| = min(r1, . . . , rn)

≤ rk ≤ max(d(x, ak), d(y, ak)) = d(x, y).

Thus ‖f(x)− f(y)‖ ≤ d(x, y) for x, y ∈ M.

On the other hand if x 6= y there is a least k so that d(x, ak) 6= d(y, ak).

Assume that d(x, ak) > d(y, ak) and rj = d(x, aj) for 1 ≤ j ≤ k. Then

d(x, y) = rk. On the other hand d(x, y) ≤ rj for 1 ≤ j ≤ k. Hence

d(x, y) = rk = |fr1,...,rk
(x)− fr1,...,rk

(y)|.

Thus f is an isometry. �

As a final example we consider an infinite branching tree T defined as

the set of all ordered subsets (nodes) a = (m1, . . . ,mk) (where m1 < m2 <

. . . < mk) of N (including the empty set). Let |a| = k be the length of a so

that |∅| = 0. If a = (m1, . . . ,mk), b = (n1, . . . , nl) are two nodes we define

a∧ b to be the node (m1, . . . ,mr) where r ≤ min(k, l) is the greatest integer

such that mj = nj for 1 ≤ j ≤ r. We write a ≺ b if b∧a = a. T is a graph if

we define two nodes a, b to be adjacent if ||a| − |b|| = 1 and a ≺ b or b ≺ a.
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The natural graph metric d is thus given by

d(a, b) = |a|+ |b| − 2|a ∧ b|.

Theorem 6.3. The infinite branching tree embeds isometrically into c0.

Proof. For each (a, n) ∈ T × N we define

fa,n(b) =


|b| − |a| a ≺ b, b 6= a, b|a|+1 = n

|a| − |b| a ≺ b, b 6= a, b|a|+1 > n

0 otherwise.

For fixed b we have fa,n(b) 6= 0 only when a ≺ b, a 6= b and n ≤ b|a|+1 and

this is a finite set. Hence f(b) = (fa,n(b))(a,n)∈T ×N defines a map of T into

c0(T × N).

Suppose d(b, b′) = 1 and that |b′| = |b| + 1. Then by examining cases it

is clear that |fa,n(b) − fa,n(b′)| ≤ 1 for all (a, n) ∈ T × N. It follows that

‖f(b)− f(b′)‖ ≤ d(b, b′) for arbitrary b, b′ ∈ T .

If b 6= b′ pick a = b ∧ b′ and assume as we may that either b′ = a ∧ b = a or

b|a|+1 < b′|a|+1. Put n = b|a|+1, then

fa,n(b) = |b| − |a|, fa,n(b′) = |a| − |b′|

so that

|fa,n(b)− fa,n(b′)| = d(b, b′).

Hence f is an isometry. �

Remarks. Since c0 2-embeds into c+
0 , so does T . It follows from the fact

that T contains a copy of Z, that it is again optimal. However, the set of

nodes of the same level of a tree equipped with the geodesic distance, like T ,

is a fundamental example of ultrametric space and therefore, by Theorem

6.2, embeds isometrically into c+
0 .

Let us also mention that we do not know whether the metric spaces c0

and c+
0 are Lipschitz isomorphic.

Extending a work of J. Bourgain [7], F. Baudier recently proved in [4]

that the infinite dyadic tree equipped with the geodesic distance metrically

embeds into a Banach space X if and only if X is not super-reflexive. To-

gether with the second named author, F. Baudier also showed in [5] that

any locally finite metric space metrically embeds into any Banach space

without cotype.
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