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Abstract. We introduce mountain-pass type arguments in the context of
orbital instability for Klein-Gordon equations. Our aim is to illustrate on
two examples how these arguments can be useful to simplify proofs and
derive new results of orbital stability/instability. For a power-type nonlin-
earity, we prove that the ground states of the associated stationary equation
are minimizers of the functional action on a wide variety of constraints. For
a general nonlinearity, we extend to the dimension N = 2 the classical in-
stability result for stationary solutions of nonlinear Klein-Gordon equations
proved in 1985 by Shatah in dimension N > 3.

1. Introduction

The aim of the present paper is to show how recent methods and results
concerning the variational characterizations of the ground states for elliptic
equations of the form

(1) −∆ϕ = g(ϕ), ϕ ∈ H1(RN ; C)

can be used to study the orbital stability/instability of the standing waves
of various nonlinear equations such as Schrödinger equations, Klein-Gordon
equations, generalized Boussinesq equations, etc. Our work is motivated by
recent developments (see for instance [10, 17, 18, 19, 23, 24]) of the techniques
introduced by Berestycki and Cazenave [2] to prove the instability of standing
waves for nonlinear evolution equations. We present our approach on two
examples involving nonlinear Klein-Gordon equations of the form

(2) utt −∆u + ρu = f(u)

where ρ > 0, u : R × RN 7→ C and f : (0, +∞) 7→ R is extended to C by
setting f(z) = f(|z|)z/|z| for z ∈ C \ {0} and f(0) = 0.
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A standing wave of (2) is a solution of the form eiωtϕω(x) for ω ∈ R and
ϕω ∈ H1(RN ; C). Thus ϕω satisfies

(3) −∆ϕω + (ρ− ω2)ϕω − f(ϕω) = 0.

Clearly, (3) is of the form (1). From now on we write H1(RN) for H1(RN ; C).
The least energy level m is defined by

(4) m := inf{S(v)
∣∣v ∈ H1(RN) \ {0}, v is a solution of (1)}

where S : H1(RN) 7→ R is the natural functional (often called action) corre-
sponding to (1)

S(v) :=
1

2
‖∇v‖2

2 −
∫

RN

G(v)dx,

with G(s) :=
∫ |s|

0
g(t)dt. A solution ϕ ∈ H1(RN) of (1) is said to be a ground

state, or least energy solution, if

S(ϕ) = m.

The study of the existence for solutions of (1) goes back to the work of Strauss
[27] (see also [12]). The most general result in that direction is due to Berestycki
and Lions [5] for N = 1 and N > 3 and Berestycki, Gallouet and Kavian [3]
for N = 2.

The assumptions of [3, 5] when N > 2 are :

(g0) g is continuous and odd,

(g1) if N > 3, −∞ < lim inf
s→0

g(s)

s
6 lim sup

s→0

g(s)

s
< 0,

if N = 2, −∞ < lim
s→0

g(s)

s
:= −ρ < 0,

(g2) if N > 3, lim
s→+∞

g(s)

s
N+2
N−2

= 0,

if N = 2, ∀α > 0 ∃Cα > 0 such that |g(s)| 6 Cαeαs2 ∀s > 0.
(g3) there exists ξ0 > 0 such that G(ξ0) > 0.

It is known that the assumptions (g0)-(g3) are almost optimal to insure the
existence of a solution of (1) (see [5, Section 2.2]). In [3, 5] it is proved that for
N > 2 and under (g0)-(g3) there exists a positive radial least energy solution
ϕ of (1) when the infimum in (4) is taken over the solutions belonging to
H1(RN , R). Moreover it is easily deduce from the proofs in [3, 5] that this ϕ
is still a least energy solution of (1) when the infimum is, as in (4), taken over
the set of all complex valued solutions. See [11] for a proof of this statement
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along with a description of the ground states as being of the form U = eiθŨ
where θ ∈ R and Ũ is a real positive ground state solution of (1).

In dimension N = 1, the assumptions in [5] are

(h0) g is locally Lipschitz continuous and g(0) = 0,
(h1) there exists η0 > 0 such that

G(s) < 0 for all s ∈ (0, η0), G(η0) = 0, g(η0) > 0

and it is proved in [5] that under (h0) the condition (h1) is necessary and
sufficient to guarantee the existence of a unique (up to translation) real positive
solution of (1). Here also, it can be shown (see [11]) that the least energy levels
coincide for complex and real valued solutions of (1).

Since the pioneer works [2, 9], it is known that the stability/instability of the
standing waves is closely linked to additional variational characterizations that
the associated ground states enjoy. Recently, in [14] for N > 2 and in [15] for
N = 1, Jeanjean and Tanaka showed that, under the conditions (g0)-(g3) for
N > 2 and basically (h0)-(h1) for N = 1, the functional S admits a mountain
pass geometry. Precisely they show that setting

(5) Γ := {γ ∈ C([0, 1], H1(RN)), γ(0) = 0, S(γ(1)) < 0}

one has Γ 6= ∅ and

(6) c := inf
γ∈Γ

max
t∈[0,1]

S(γ(t)) > 0.

Furthermore, they proved that

c = m,

namely that the mountain pass value gives the least energy level. In fact, the
results of [14, 15] are proved within the space H1(RN , R) but it is straightfor-
ward to show, see Lemma 16, that this equality also holds in H1(RN).

In this paper, we will show, by studying two specific problems, how the
ideas and methods developed in [14, 15] can be implemented in the context of
instability by blow-up for nonlinear Klein-Gordon equations.

First, working with a nonlinearity of power type (f(s) = |s|p−1s) we find a
set of constraints on which the ground states are minimizers of S. In particular,
this gives an alternative, much simpler proof of results in [18, 23, 24] concerning
the derivation of an additional variational characterization of the ground states.
Precisely, we prove
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Theorem 1. Let α, β ∈ R be such that

(7)

{
β < 0, α(p− 1)− 2β > 0 and 2α− β(N − 2) > 0

or β > 0, α(p− 1)− 2β > 0 and 2α− βN > 0.

Let ω ∈ (−1, 1) and ϕω ∈ H1(RN) be a ground state solution of

−∆ϕω + (1− ω2)ϕω − |ϕω|p−1ϕω = 0

where 1 < p < 2? − 1 (2? = +∞ if N = 1 or 2, 2? = 2N
N−2

if N > 3). Then

S(ϕω) = min{S(v)
∣∣v ∈ H1(RN) \ {0}, Kα,β(v) = 0}

where

S(v) :=
1

2
‖∇v‖2

2 +
1− ω2

2
‖v‖2

2 −
1

p + 1
‖v‖p+1

p+1.

Kα,β(v) := 2α−β(N−2)
2

‖∇v‖2
2 + (2α−βN)(1−ω2)

2
‖v‖2

2 −
α(p+1)−βN

p+1
‖v‖p+1

p+1.

The functional Kα,β is based on the rescaling vλ( · ) := λαv(λβ · ) for
v ∈ H1(RN), precisely, Kα,β(v) = ∂

∂λ
S(vλ)|λ=1. The main idea of the proof

of Theorem 1 is to use rescaled functions to construct for any v ∈ H1(RN)
such that Kα,β(v) = 0 a path in Γ attaining its maximum at v.

It is also of interest to consider a limit case of Theorem 1.

Theorem 2. Let α, β ∈ R be such that

(8)

{
β < 0, α(p− 1)− 2β > 0 and 2α− β(N − 2) = 0

or β > 0, α(p− 1)− 2β > 0 and 2α− βN = 0.

Let ω ∈ (−1, 1) and ϕω be a ground state solution of

−∆ϕω + (1− ω2)ϕω − |ϕω|p−1ϕω = 0.

Then
S(ϕω) = min{S(v)

∣∣v ∈ H1(RN) \ {0}, Kα,β(v) = 0}.

Remark 1. Looking to the proofs of Theorems 1 and 2 one see that our
Theorems remain unchanged when (1 − ω2) is replaced by any m > 0. We
choose however to present our results in the setting of [18, 23, 24].

For (α, β) = (N
2
, 1), Theorem 2 gives a simpler proof of a variational char-

acterization of the ground state proved by Berestycki and Cazenave [2] for
1 + 4

N
< p < 1 + 4

N−2
and by Nawa [20, Proposition 2.5] for p = 1 + 4

N
.

This characterization is at the heart of the classical result of Berestycki and
Cazenave [2] dealing with the instability of the ground states of nonlinear
Schrödinger equations.
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For our second direction of application we consider the instability of the
stationary solutions of

(9) utt −∆u = g(u).

In 1985, Shatah established in [25] that under the conditions (g0)-(g3) the ra-
dial ground states solutions associated with the standing waves corresponding
to ω = 0 are unstable when N > 3. Under stronger hypothesis, but in any
dimension and for non necessary radial solutions, Berestycki and Cazenave [2]
had previously proved that these ground states are unstable by blow up in
finite time. In [25], instability may occur by blow up in infinite time, in the
sense that the H1(RN)-norm of a solution starting close to a ground state goes
to infinity when t → +∞. Here, we show that the same result hold when
N = 2.

To ensure the local well-posedness of the Cauchy problem of (9) in dimension
N = 2, we require a hypothesis slighty stronger than (g2)

(g2’) ∀α > 0 ∃Cα > 0 such that |g(s)−g(t)| 6 Cα(eαs2
+eαt2)|s−t| ∀s, t > 0.

With this hypothesis our nonlinearity is subcritical for the Moser-Trudinger
inequality. For the study of the Cauchy problem in the critical case, we refer
to the papers [13, 22]. With our subcritical nonlinearity, it is not hard to see
that the proof of [8, Theorem 6.2.2 and Proposition 6.2.3] can be adapted to
the case N = 2 to get

Proposition 2. Let N = 2 and assume (g0), (g1) and (g2′). Then for all
(u0, v0) ∈ H1(R2) × L2(R2) there exist 0 < T 6 +∞ and a unique fonction
u : [0, T )× R2 → C solution of (9) with initial data (u0, v0) such that

u ∈ C([0, T ), H1(R2)) ∩ C1([0, T ), L2(R2)) ∩ C2([0, T ), H−1(R2)),

E(u(t), ut(t)) = E(u0, v0) for all t ∈ [0, T ) ( energy equality),

if T < +∞, then lim
t→T

(‖u(t)‖H1(R2) + ‖ut(t)‖2) = +∞ (blow-up alternative).

Here, the energy functional E is defined for u ∈ H1(R2) and v ∈ L2(R2) by

E(u, v) :=
1

2
‖v‖2

2 +
1

2
‖∇u‖2

2 −
∫

R2

G(u)dx.

Remark 3. ¿From the uniqueness result of Proposition 2 it follows that if
an initial data (u0, v0) belongs to H1

rad(R2) × L2
rad(R2) then (u(t), ut(t)) also

belongs to H1
rad(R2)× L2

rad(R2) for all t ∈ [0, T ).
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In what follows, as above, we write H1
rad(RN) (resp. L2

rad(RN)) for the space
of radial functions of H1(RN) (resp. L2(RN)).

Our third main result is the following

Theorem 3. Assume N = 2, (g0)-(g3) and (g2’). Let ϕ be a radial ground
state of (1). Then ϕ viewed as a stationary solution of (9) is strongly unstable.
Namely for all ε > 0 there exist uε ∈ H1(R2), Tε ∈ (0, +∞] and (tn) ⊂ (0, Tε)
such that ‖ϕ − uε‖H1(R2) < ε and limtn→Tε ‖u(tn)‖H1(R2) = +∞, where u(t) is
a solution of (9) with initial data (uε, 0).

It is still an open question to describe what happen in dimension N = 1.
Indeed, the use of the radial compactness lemma of Strauss (see Lemma 6)
restricts our proof to dimensions N > 2. A partial answer is given by the
work of Berestycki and Cazenave : for nonlinearities satisfying some additional
assumptions (see [2, (H.3)]), the stationary solutions are unstable.

We do hope that the methods developed in this paper will find other areas
of applications. In that direction, we mention the work [16] in which the
variational characterization c = m derived from [14, 15] is essential to get
an alternative, more general proof of the classical result of Berestycki and
Cazenave [2] on the instability by blow-up for nonlinear Schrödinger equations.

This paper is organized as follows. In Section 2 we prove Theorem 1 and
Theorem 2. In Section 3 we prove Theorem 3. The proof that the results of
[14, 15] extend to the complex case is given in the Appendix.

Acknowledgments. The authors wish to thank Masahito Ohta and Groz-
dena Todorova for the interest they have taken in this work and for fruitful
discussions. They are grateful to Mariana Hărăguş for fruitful discussions.
They also wish to thank the referee for usefull comments.

2. Variational characterizations of the ground states

In this section, we consider (3) with a power type nonlinearity :

(10) −∆ϕω + (1− ω2)ϕω − |ϕω|p−1ϕω = 0

where 1 < p < 1+4/(N−2) and |ω| < 1. For this nonlinearity it is known (see
[7, Section 8.1] and the references therein) that there exists a unique positive
radial ground state ϕω ∈ H1(RN , R) of (10) and that all ground states are of
the form eiθϕω(· − y) for some fixed θ ∈ R and y ∈ RN . The standing waves
eiωtϕω are solutions of the nonlinear Klein-Gordon equation

(11) utt −∆u + u = |u|p−1u
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and the natural functional associated with (10) becomes

S(v) :=
1

2
‖∇v‖2

2 +
1− ω2

2
‖v‖2

2 −
1

p + 1
‖v‖p+1

p+1.

Various results of instability for the standing waves of (11) were recently
proved in [18, 23, 24]. For instance, it was proved in [23] that for any
1 < p < 1 + 4/(N − 2) the standing wave associated with a ground state
of (10) is strongly unstable by blow up if ω2 6 (p− 1)/(p− 3) and N > 3. In
[24], a result of strong instability was showed for the optimal range of para-
meter ω in dimension N > 2 (namely |ω| < ωc, where ωc was determined in
[26]). In both cases, it is central in the proofs that the ground states can be
characterized as minimizers on constraints having all the form

Kα,β := {v ∈ H1(RN) \ {0}
∣∣Kα,β(v) = 0}

for some α, β ∈ R. Recall that the functional Kα,β is defined for v ∈ H1(RN)
by

Kα,β(v) := ∂
∂λ

S(λαv(λβ · ))|λ=1

= 2α−β(N−2)
2

‖∇v‖2
2 + (2α−βN)(1−ω2)

2
‖v‖2

2 −
α(p+1)−βN

p+1
‖v‖p+1

p+1.

For example, it is proved in [23] that the ground states are minimizer of S on
Kα,β for (α, β) = (1, 0) and (α, β) = (0,−1/N) (see [23, (2.1)]) whereas in [24],
the values of (α, β) considered are (α, β) = (N/2, 1) if p > 1 + 4/N (see [24,
(2.11)]) and (α, β) = (2/(p− 1), 1) if p < 1 + 4/N (see [24, (2.18)]). Recently,
Liu, Ohta and Todorova [18] extended the approach of [23] to the dimensions
N = 1, 2. Once more, a main feature of their proof is to minimize S on Kα,β,
but this time with

α =
(p− 1)− (p + 3)ω2

2(p− 1)ω2
, β = −1.

In [18, 23, 24], the proofs that the ground states are minimizers of S on
Kα,β follow similar schemes. First, one has to show the convergence of a
minimizing sequence to some function solving a Lagrange equation. After
that, the difficulty is to get rid of the Lagrange multiplier. For each choice of
(α, β), long computations are involved to prove that the Lagrange multiplier
is 0 and to conclude that the obtained function is in fact a solution of (10).

Our proof of Theorem 1 relies on the following lemma. We recall that Γ is
defined in (5).
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Lemma 4. Let α, β ∈ R satisfy (7). Then for all v ∈ Kα,β we can construct
a path γ in Γ such that

max
t∈[0,1]

S(γ(t)) = S(v).

Proof. Let v ∈ Kα,β. For all λ ∈ (0, +∞) we define vλ ∈ H1(RN) by
vλ( · ) := λαv(λβ · ). The idea is to construct the path such that γ(t) = vCt for
some C > 0.

The first thing to check is that we can extend γ at 0 by continuity. Namely,
we must show that under (7) we have limλ→0 ‖vλ‖H1(RN ) = 0. This is immediate
if we remark that

‖vλ‖2
H1(RN ) = λ2α−β(N−2)‖∇v‖2

2 + λ2α−βN‖v‖2
2,

and that (7) implies

2α− β(N − 2) > 0 and 2α− βN > 0.

The next step is to prove that λ → S(vλ) increases for λ ∈ (0, 1), attains its
maximum at λ = 1 and decreases toward −∞ on (1, +∞). We have

S(vλ) =
λ2α−β(N−2)

2
‖∇v‖2

2 +
(1− ω2)λ2α−βN

2
‖v‖2

2 −
λ(p+1)α−βN

p + 1
‖v‖p+1

p+1

and from easy computations it comes

λ−(2α−βN−1) ∂

∂λ
S(vλ) = λ2β 2α− β(N − 2)

2
‖∇v‖2

2 +
(2α− βN)(1− ω2)

2
‖v‖2

2

−λα(p−1)α(p + 1)− βN

p + 1
‖v‖p+1

p+1.

Therefore, if α and β satisfy

(12)

{
β 6= 0 and α(p− 1) > 2β

or β = 0 and α(p− 1) > 0

then 
∂
∂λ

S(vλ) > 0 for λ ∈ (0, 1),
∂
∂λ

S(vλ) < 0 for λ ∈ (1, +∞),
limλ→+∞ S(vλ) = −∞.

Since α > 0 when β = 0 in (7) it is clear that (12) hold under (7).

Finally, choosing C large enough to have S(vC) < 0 and defining
γ : [0, 1] 7→ H1(RN) by

γ(0) := 0 and γ(t) := vtC
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we have a path satisfying the conclusion of the lemma. �

Proof of Theorem 1. Let ϕω be a least energy solution of (10) for |ω| < 1.
From Lemma 16 we know that

c = m

where m is the least energy level and c the mountain pass value (see (4) and
(6) for the definitions of m and c). Since ϕω is a solution of (10), ϕω ∈ C1 and
ϕω, ∇ϕω are exponentially decaying at infinity (see, for example, [7, Theorem
8.1.1]); in particular, x.∇ϕω ∈ H1(RN), and

Kα,β(ϕω) =
∂

∂λ
S(λαϕω(λβ · ))

∣∣
λ=1

= 〈S ′(ϕω), αϕω + βx.∇ϕω〉 = 0.

Thus ϕω ∈ Kα,β and

(13) min{S(v)
∣∣v ∈ Kα,β} 6 S(ϕω) = c.

Conversely, it follows from Lemma 4 that

(14) c 6 min{S(v)
∣∣v ∈ Kα,β}.

To combine (13) and (14) finishes the proof. �

We now turn to the proof of Theorem 2. It follows the same lines as for
Theorem 1 : find a path reaching its maximum on the constraint Kα,β and use
the equality c = m. The main difference is in the way we construct the path
: we still want to use the rescaled functions vλ, but their H1(RN)−norm does
not any more converge to 0 as λ → 0. This difficulty is overcome by gluing to
{vλ}λ>λ0 a path linking 0 to vλ0 for λ0 suitably chosen. The lemma is

Lemma 5. Let α, β ∈ R satisfy (8). Then for all v ∈ Kα,β we can construct
a path γ in Γ such that

max
t∈[0,1]

S(γ(t)) = S(v).

Proof. Let v ∈ Kα,β and vλ0(·) := λα
0 v(λβ

0 · ) for some λ0 ∈ (0, 1) whose value
will be fixed later. Let C > 0 be such that S(vC) < 0 and consider the curves

Λ1 := {vλ

∣∣λ ∈ [λ0, C]},
Λ2 := {tvλ0

∣∣t ∈ [0, 1]}.

To get a path as desired, we will glue the two curves Λ1 and Λ2. It is clear
that as in the proof of Lemma 4, S attained its maximum on Λ1 at v. Thus
the only thing we have to check is that t 7→ S(tvλ0) is increasing on [0, 1].
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We have

∂

∂t
S(tvλ0) = t(‖∇vλ0‖2

2 + (1− ω2)‖vλ0‖2
2 − tp−1‖vλ0‖

p+1
p+1).

If β > 0 and α = βN/2 (see (8)), then λ0 → ‖vλ0‖2 is constant. If β < 0 and
α = β(N − 2)/2 then λ0 → ‖∇vλ0‖2 is constant. Moreover, we have in any
case

lim
λ0→0

‖vλ0‖
p+1
p+1 = 0.

Therefore, if λ0 ∈ (0, 1) is small enough we have

∂

∂t
S(tvλ0) > 0 for t ∈ (0, 1).

To define γ : [0, 1] 7→ H1(RN) by{
γ(t) = Ct

λ0
vλ0 for t ∈ [0, λ0

C
)

γ(t) = vCt for t ∈ [λ0

C
, 1]

gives us the desired path. �

Proof of Theorem 2. The proof is identical to the proof of Theorem 1 with
Lemma 4 replaced by Lemma 5. �

3. Orbital instability for a generalized nonlinear
Klein-Gordon equation

In this section, we consider the nonlinear Klein-Gordon equation with a
general nonlinearity

(15) utt −∆u = g(u).

In [25], Shatah proved that for N > 3, under (g0)-(g3), the radial ground
states solutions of

(16) −∆ϕ = g(ϕ), u ∈ H1(RN)

viewed as stationary solutions of (15) are unstable in the sense of Theorem 3.

The restriction to N > 3 has its origin in, at least, two reasons.

First, one needs to control the decay in |x| of u(t, x) uniformly in t. This
appears in the proof of Lemma 14. For this control, the following compactness
lemma due to Strauss [27] is used.
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Lemma 6. Let N > 2 and v ∈ H1
rad(RN). Then

|v(x)| 6 C|x|
1−N

2 ‖u‖H1(RN ) a.e.

with C independent of x and u. In particular, the following injection is compact

H1
rad(RN) ↪→ Lq(RN) for 2 < q < 2?,

where 2? = 2N
N−2

if N > 3 and 2? = +∞ if N = 2.

Actually, to use this lemma only N > 2 is necessary.

A second reason for the restriction N > 3 in [25] is found in the use of a
constraint based on Pohozaev identity to derive a variational characterization
of the ground states, to define an invariant set, and, most important, to choose
suitable initial data close to the ground states. Thanks to our approach, we
arrive on this second point to require only N > 2.

Our proof will make use of the following variational characterization of the
ground states.

Lemma 7. Let ϕ ∈ H1(R2) be a ground state of (16). Then

(17) S(ϕ) = m = min
v∈P

S(v)

where
P := {v ∈ H1(R2) \ {0}

∣∣P (v) = 0}

with P (v) :=

∫
R2

G(v)dx for v ∈ H1(R2).

This lemma was proved in [3] when v ∈ H1(R2, R). It can trivially be
extended to v ∈ H1(R2, C), see [11].

Remark 8. The functional P is related to the so-called Pohozaev identity (see
[5, Proposition 1], [27]): for N > 1, any solution v ∈ H1(RN) of (16) satisfies

N − 2

2
‖∇v‖2

2 −N

∫
RN

G(v)dx = 0.

A main feature of the dimension N = 2 is that we lose the control on the
L2(RN)−norm of ∇v.

Remark 9. For N > 3, Shatah also showed that the radial ground states are
minimizers of S among all non trivial functions satisfying Pohozaev identity
(see [25, Proposition 1.5]). His method consists in proving that the minimiza-
tion problem has a solution and then to eliminate the Lagrange multiplier.
In fact, as it is done in [14, Lemma 3.1], a shorter proof can be performed



12 LOUIS JEANJEAN AND STEFAN LE COZ

by simply establishing a correspondence with a minimization problem already
solved in [5].

The scheme of the proof is the following : first, define a set
I ⊂ H1

rad(R2) × L2
rad(R2) such that any solution of (15) with initial data in I

stays in I for all time and blows up, then prove that the ground states can be
approximated by functions in I.

Let I be defined by

I := {u ∈ H1
rad(R2) \ {0}, v ∈ L2

rad(R2)
∣∣E(u, v) < m, P (u) > 0}.

We begin by proving an equivalence between two variational problems.

Lemma 10. We have

m = min
v∈P

S(v) = min{T (v)
∣∣v ∈ H1(R2) \ {0}, P (v) > 0},

where T (v) :=
1

2
‖∇v‖2

2.

Proof. Let v ∈ H1(R2). If v ∈ P, then v satisfies T (v) = S(v) and thanks
to Lemma 7, T (v) > m. Suppose that P (v) > 0. For λ > 0, define
vλ( · ) := λv(λ · ). We claim that there exists λ0 < 1 such that P (vλ0) = 0.
Indeed, by (g1)-(g2), for all α > 0 there exists Cα > 0 such that for s > 0

g(s) 6
−ρs

2
+ 2sαCαeαs2

.

We recall that ρ > 0 is given in (g1) by lims→0 g(s)s−1 = −ρ. Therefore, for
s > 0 we have

G(s) 6
−ρs2

4
+ Cα(eαs2 − 1)

and

(18)

∫
R2

G(vλ) 6
−ρ‖vλ‖2

2

4
+ Cα

∫
R2

(eαv2
λ − 1)dx.

We remark that ‖vλ‖2
2 = ‖v‖2

2 and∫
R2

(eαv2
λ − 1)dx = λ−2

∫
R2

(eαλ2v2 − 1)dx.

For λ < 1 we have

λ−2(eαλ2v2(x) − 1) < eαv2(x) − 1 for all x ∈ R2,
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and by Moser-Trudinger inequality (see [1, Theorem 8.25]) there exists α > 0

such that (eαv2 − 1) ∈ L1(R2). Hence, Lebesgue’s Theorem gives∫
R2

(eαv2
λ − 1)dx → 0 when λ → 0.

Coming back to (18) this means that∫
R2

G(vλ) < 0 for λ > 0 small enough,

and by continuity of P this proves the claim.

Now, we have

inf
u∈P

S(u) 6 S(vλ0) = T (vλ0) = λ2
0T (v) < T (v),

and the lemma is proved. �

Next we prove that the set I is invariant under the flow of (15).

Lemma 11. Let (u0, v0) ∈ I, 0 < T 6 +∞ and u(t) a solution of (15) on
[0, T ) with initial data (u0, v0). Then (u(t), ut(t)) ∈ I for all t ∈ [0, T ).

Proof. Assume by contradiction that there exists t1 ∈ (0, T ) such that
P (u(t)) 6 0. By continuity of u, this implies that there exists t0 ∈ (0, t1)
such that P (u(t0)) = 0. Note that u(t0) 6= 0 by unicity in Proposition 2. Now,
recall that

S(u(t0)) 6 E(u(t0), ut(t0)).

By the energy equality, this implies that

S(u(t0)) < m,

which is a contradiction with Lemma 7. �

The following lemma is a key step in the proof.

Lemma 12. Let (u0, v0) ∈ I and u(t) an associated solution of (15) in [0, T ).
Then there exists δ > 0 such that P (u(t)) > δ for all t ∈ [0, T ).

Proof. Indeed, assume by contradiction that there exists a sequence (tn) such
that P (u(tn)) → 0 as n → +∞. Then

T (u(tn)) = S(u(tn)) + P (u(tn))

6 E(u(tn), ut(tn)) + P (u(tn)).
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By the energy equality in Proposition 2 this implies

T (u(tn)) 6 E(u0, v0) + P (u(tn))

and thus

(19) T (u(tn)) < m + P (u(tn))− ν

with ν := m− E(u0, v0) > 0 since (u0, v0) ∈ I. For n large enough we have

0 6 P (u(tn)) < ν/2

and thus (19) gives

T (u(tn)) < m− ν

2
,

which contradicts the result of Lemma 10. �

The proof of Theorem 3 relies on the following proposition.

Proposition 13. Let (u0, v0) ∈ I and u(t) an associated solution of (15) on
[0, T ). Then there exists (tn) ⊂ (0, T ) such that limtn→T ‖u(tn)‖H1(R2) = +∞,

Proposition 13 is obtained with the help of the following lemma.

Lemma 14. Let (u0, v0) ∈ I and u(t) an associated solution of (15) on
[0, +∞). Suppose in addition that u(t) is bounded in H1(R2). Then there
exists ν > 0 such that for all t ∈ [0, +∞)

νt 6 C(1 + ‖ut‖2‖∇u‖2).

Proof. The proof relies on the identity

1

2
‖ut‖2

2 +

∫
R2

G(u)dx = −Re
∂

∂t

∫
R2

ut x.∇ūdx

which is formally obtained by multiplying (15) by x.∇ū. However, it is not
clear that the integral in the right member is well-defined, thus we have to
derive a troncated version of this identity. It is convenient to work in radial
variable (which is possible because initial data in I are radial and this implies
that u(t) is also radial, see Remark 3). Thus (15) becomes

(20) utt −
1

r
u′ − u′′ = g(u)

where the space variable x ∈ R2 is replaced by r ∈ (0, +∞) and the ′ and ′′

stand for the first and second derivative with respect to r. Inspirated by the
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troncature function used in [24], we define for ε > 0

Φε(r) :=


2 if 0 6 r 6 1

2− 2ε ln(r) if 1 < r 6 eε−1

0 if r > eε−1

and Ψε(r) :=
1

r

∫ r

0

sΦε(s)ds. We claim that Φε and Ψε enjoy the following

properties

Ψ′
ε(r) +

1

r
Ψε(r) = Φε(r) for all r > 0,(21)

‖Ψ′
ε −

1

r
Ψε‖∞ < ε.(22)

Indeed, (21) follows simply from a simple computation :

Ψ′
ε +

1

r
Ψε = − 1

r2

∫ r

0

sΦε(s)ds +
rΦε(r)

r
+

1

r2

∫ r

0

sΦε(s)ds = Φε(r).

For (22), we argue as follows. By integration by part, we have

(23) 2rΨε(r) = r2Φε(r)−
∫ r

0

s2Φ′
ε(s)ds.

By (21) we have

(24) Ψ′
ε(r)−

1

r
Ψε(r) = Φε(r)−

2

r
Ψε(r).

Combining (23) and (24) gives

Ψ′
ε(r)−

1

r
Ψε(r) =

1

r2

∫ r

0

s2Φ′
ε(s)ds.

Now,

Φ′
ε(r) :=

{
0 if 0 6 r 6 1 or if r > eε−1

,

−2ε
r

if 1 < r 6 eε−1
.

Thus if 0 < r 6 1, then Ψ′
ε(r)− 1

r
Ψε(r) = 0. If 1 < r 6 eε−1

, then

Ψ′
ε(r)−

1

r
Ψε(r) = − 1

r2

∫ r

1

2εsds = −ε

(
r2 − 1

r2

)
which implies |Ψ′

ε(r)− 1
r
Ψε(r)| 6 ε. Finally, if r > eε−1

, then

Ψ′
ε(r)−

1

r
Ψε(r) = − 1

r2

∫ eε−1

1

2εsds = −ε

(
e2ε−1 − 1

r2

)
which also implies |Ψ′

ε(r)− 1
r
Ψε(r)| 6 ε and finishes the proof of (22).
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We multiply (20) by Ψε(r)ū
′r and integrate over [0, +∞) to get after inter-

grations by parts

(25)

1

2

∫ +∞

0

|ut|2 Φε(r)rdr +
1

2

∫ +∞

0

|u′|2(Ψ′
ε(r)−

1

r
Ψε(r))rdr

+

∫ +∞

0

G(u)Φε(r)rdr = −Re
∂

∂t

∫ +∞

0

utΨε(r)ū
′rdr.

Since u(t) is bounded in H1(R2), by (22) we have, for ε small enough,

(26)

∣∣∣∣12
∫ +∞

0

|u′|2(Ψ′
ε(r)−

1

r
Ψε(r))rdr

∣∣∣∣ < δ

3

where δ is given by Lemma 12. Also, since Φε > 0, we have

(27)
1

2

∫ +∞

0

|ut|2Φε(r)rdr > 0.

By (g1), there exists η such that G(s) 6 0 for 0 6 s 6 η, and by Lemma 6,
there exists M such that

|u(t, r)| 6 η for all r > M and for all t ∈ [0, +∞).

This implies that ∫ +∞

M

G(u)Φε(r)rdr >
∫ +∞

M

G(u)rdr.

Also, we have G(u)Φε(r)r → G(u)rdr as ε → 0 for all r and

‖G(u)Φε(r)‖L∞(1,M) 6 C uniformly in ε and t.

Therefore, by Lebegue’s dominated convergence Theorem, we have∫ M

1

G(u)Φε(r)rdr →
∫ M

1

G(u)rdr when ε → 0.

This implies that for ε small enough, we have

(28)

∫ +∞

0

G(u)Φε(r)rdr >
δ

3
,

where δ is still given by Lemma 12. Combining (25)-(28) gives

δ

3
6 −Re

∂

∂t

∫ +∞

0

utΨε(r)ū
′rdr.

We integrate in time to obtain

δt

3
6 −Re

∫ +∞

0

utΨε(r)ū
′rdr + Re

∫ +∞

0

v0Ψε(r)ū0
′rdr
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and by Cauchy-Schwartz inequality we get

δt

3
6 C(1 + ‖ut‖2‖∇u‖2),

which ends the proof. �

Proof. The proof of Proposition 13 is similar to the proof of Theorem 2.3 in
[25]. First, if T < +∞, the assertion of Proposition 13 is just the blow up
alternative in Proposition 2. Thus we suppose T = +∞ and, by contradiction,
(‖u(t)‖H1(RN )) bounded. By Lemma 14, there exists ν > 0 such that

(29) νt 6 C(1 + ‖ut‖2‖∇u‖2).

But, from the energy equality, we have

1

2
‖ut‖2

2 = E(u0, v0)−
1

2
‖∇u‖2

2 +

∫
R2

G(u)dx,

and since u(t) is bounded in H1(R2) this implies that ‖ut(t)‖2 is bounded. By
assumption, ‖∇u(t)‖2 is also bounded, therefore, for t large enough we reach
a contradiction in (29). �

In dimension N > 3, it is easily seen that for λ < 1 the dilatation of a
ground state ϕλ( · ) := ϕ( ·

λ
) gives a sequence of initial data in I converging to

this ground state. This property, combined with the equivalent of Proposition
13, gives immediately the instability of the ground states in [25]. This is not
the case any more in dimension N = 2 where the dilatation ϕλ( · ) := ϕ( ·

λ
)

leaves P and T invariant. To overcome this difficulty, we borrow and adapt an
idea of [6, Proposition 2] which consists in using separately (and successively)
a dilatation and a rescaling to get initial data in I close to the ground states.

Lemma 15. Let ϕ ∈ H1(R2) be a ground state of (16). For all ε > 0 there
exists ϕε such that

‖ϕ− ϕε‖H1(R2) < ε, S(ϕε) < S(ϕ), P (ϕε) > 0.

Proof. For λ, µ > 0 consider ϕλ,µ( · ) := λϕ( ·
µ
). Then

∂

∂λ
S(ϕλ,µ) = λ2‖∇ϕ‖2

2 − µ2

∫
R2

g(λϕ)ϕdx.

To multiply (16) by ϕ and integrate gives us

‖∇ϕ‖2
2 =

∫
R2

g(ϕ)ϕdx.
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Hence, for λ = 1 we get

∂

∂λ
S(ϕλ,µ)

∣∣
λ=1

= (1− µ2)‖∇ϕ‖2
2.

Thus, for all µ > 1, there exists λµ > 0 such that

∂

∂λ
S(ϕλ,µ) < 0 for λ ∈ (1− λµ, 1 + λµ)

and therefore

(30) S(ϕλ,µ) < S(ϕ) for λ ∈ (1, 1 + λµ).

Now,
∂

∂λ
S(ϕλ,µ)

∣∣
λ=1

= µ2

∫
R2

g(ϕ)ϕdx = µ2‖∇ϕ‖2
2 > 0.

Thus, for all µ > 0, there exists Λµ such that

∂

∂λ
P (ϕλ,µ) > 0 for λ ∈ (1− Λµ, 1 + Λµ)

and therefore

(31) P (ϕλ,µ) > 0 for λ ∈ (1, 1 + Λµ).

Finally, from (30)-(31), for λ, µ > 1 close enough to 1 we get the desired
result. �

Proof of Theorem 3. Let ε > 0 and ϕε given in Lemma 15. Then (ϕε, 0) satis-
fies

E(ϕε, 0) = S(ϕε) < m and P (ϕε) > 0,

namely (ϕε, 0) ∈ I. Theorem 3 follows now from Proposition 13. �

4. Appendix

Lemma 16. Let m denote the least energy level defined in (4) and c the moun-
tain pass level defined in (6). Then m = c.

Proof. In [14, Theorem 0.2] for N > 2 and [15, Theorem 1.2] for N = 1 it is
shown that when the class Γ is replaced by

Γ̃ := {γ ∈ C([0, 1], H1(RN , R)), γ(0) = 0, S(γ(1)) < 0}
one has

c̃ := inf
γ∈Γ

max
t∈[0,1]

S(γ(t)) = m̃
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where m̃ is the least energy level among real valued solutions of (1). From
[3, 5, 11] we know that m̃ = m. Also trivially c 6 c̃. Now for each γ ∈ Γ we
observe that setting γ̃(t) = |γ(t)| one has

||∇γ̃(t)||22 6 ||∇γ(t)||22 and

∫
RN

G(γ̃(t))dx =

∫
RN

G(γ(t))dx.

Thus γ̃ ∈ Γ̃ and S(γ̃) 6 S(γ). This show that c̃ 6 c and ends the proof. �
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