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Abstract
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functions of H1(R, C), but not on all H1(R, C), and study its orbital
stability.
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1 Introduction
This work deals with the following stationary problem,

−D2φ+ ωφ− γδ(x)φ = |φ|p−1φ, φ ∈ H1(R,C), (1)

where ω > 0, γ ∈ R, D = d/dx, p > 1 and δ is the Dirac measure at the
origin.

This problem arises in the study of standing wave solutions

uω(t, x) = eiωtφω(x),

for the nonlinear Schrödinger equation with a delta function

i∂tu+D2u+ γδ(x)u = −|u|p−1u. (2)

Here u is a complex-valued function of (t, x) ∈ R × R, ∂t = ∂/∂t. In order
for uω(t, x) to satisfy (2), φω(x) must be a solution of (1).

These last years equation (2) appeared in several physical models. The
Dirac measure is used to model an impurity, or defect, localized at the origin
(see, for example, [13, 17, 22] and the references therein). These models typ-
ically deal with the interaction between a travelling wave and the defect and
studying if the ground state solutions of (2) are orbitally stable or unstable
is often a key preliminary step. A main purpose of this paper is to derive
some mathematically rigourous results on this issue.

Theorem 3.7.1 of [6] gives the following result for any p > 1 and γ ∈ R.

Proposition 1 For any u0 ∈ H1(R,C), there exist T = T (u0) > 0 and a
unique solution u(·) ∈ C([0, T ), H1(R,C)) of (2) with u(0) = u0 such that
either T = ∞ or T < ∞ and limt→T ‖Du‖2 = ∞. Moreover, the energy E
and the charge Q are conserved :

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ),

where

E(v) =
1

2
‖Dv‖2

2 −
γ

2

∫
R
δ(x)|v(x)|2dx− 1

p+ 1
‖v‖p+1

p+1, Q(v) =
1

2
‖v‖2

2.

Remark 2 From the uniqueness result of Proposition 1 it follows that if an
initial data u0 is even the solution u(t) is also even.
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Here, as elsewhere, H1(R,C) is equipped with the real inner product
and ‖ · ‖p denotes the Lp(R,C) norm for p > 1. Also for simplicity we set
H1 = H1(R,C).

Remark 3 If 1 < p < 5, the Cauchy problem in H1 associated to (2) is glob-
ally well posed. From Proposition 1 this can be proved using the conservation
laws and the Gagliardo-Nirenberg inequality (see [6] for such results).

In [13] Goodman, Holmes and Weinstein study the strong interactions
between solitons, namely nonlinear bound states associated with the unper-
turbed, γ = 0, equation (2) and the defect created by the Dirac measure.
They are led to consider the orbital stability of the solution of (1) given, for
2
√
ω > |γ|, by

φω(x) =

{
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
|x|+ tanh−1

(
γ

2
√
ω

))} 1
p−1

. (3)

This solution is the unique positive solution of (1), as we shall see in Section
3. It is constructed from the corresponding solution with γ = 0 on each side
of the defect. At x = 0 one seeks to satisfy the continuity and the jump
condition in the first derivative, Du(0+) − Du(0−) = −γu(0). Actually
in [13] only the case γ > 0, namely of a delta-well defect, with p = 3 is
considered.

The orbital stability when γ = 0 has been extensively studied (see the
classical papers [4, 7, 14, 30]). In particular, Cazenave and Lions [7] proved
that eiωtφω(x) is stable for any ω > 0 if p < 5. On the other hand, it was
shown that eiωtφω(x) is unstable for any ω > 0 if p ≥ 5 (see Berestycki and
Cazenave [4] for p > 5, and Weinstein [30] for p = 5).

In [13] the authors claimed that φω(x) is orbitally stable in the case
γ > 0 and p = 3. Their argument is based on a variational characterization
of φω(x) and the use of bifurcation theory in the spirit of Rose and Weinstein
[25] but no details are given. They also mention that, as ω →∞, φω(x) looks
more and more like the solitary wave corresponding to the case γ = 0 with
ω = 1. Subsequently in [12] the orbital stability of φω(x) was studied for any
1 < p < ∞ and γ > 0 and it was shown, in particular, that φω(x) is stable
when γ > 0 and p = 5. This is in sharp contrast with the case γ = 0 and
p = 5 and indicate that one should be cautious with heuristic arguments to
deduce informations on the case γ 6= 0 from the case γ = 0.

The notions of stability and instability are defined as follows.
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Definition 4 For η > 0, let

Uη(φω) :=

{
v ∈ H1 : inf

θ∈R
‖v − eiθφω‖H1 < η

}
.

We say that a standing wave solution eiωtφω(x) of (2) is stable in H1 if for
any ε > 0 there exists η > 0 such that for any u0 ∈ Uη(φω), the solution
u(t) of (2) with u(0) = u0 satisfies u(t) ∈ Uε(φω) for any t ≥ 0. Otherwise,
eiωtφω(x) is said to be unstable in H1.

In [12], the authors proved the following.

Proposition 5 Let γ > 0 and ω > γ2/4.

(i) Let 1 < p ≤ 5. Then eiωtφω(x) is stable in H1 for any ω ∈ (γ2/4,∞).

(ii) Let p > 5. Then there exists a ω1 = ω1(p, γ) > 0 such that eiωtφω(x)
is stable in H1 for any ω ∈ (γ2/4, ω1), and unstable in H1 for any
ω ∈ (ω1,∞). Here ω1 is defined as follows:

p− 5

p− 1
J(ω1) =

γ

2
√
ω1

(
1− γ2

4ω1

)−(p−3)/(p−1)

,

J(ω1) =

∫ ∞

A(ω1,γ)

sech4/(p−1)ydy, A(ω1, γ) = tanh−1

(
γ

2
√
ω1

)
.

The proof of Proposition 5 in [12] borrows ingredients from [27, 28]. It
does not require any investigations of the spectrum of the linearized operator
around eiωtφω(x). The standard spectral requirements (as formulated in [14])
are replaced by the fact that φω(x) can be characterized as a minimizer of
some constrained functionals. To give a full proof of Proposition 5 along
these lines is quite long and actually only a sketch of proof is provided in
[12]. In Remark 33 we give an, alternative, complete proof of Proposition 5.

Definition 6 For γ ∈ R and ω > γ2/4, we define on H1 the following
functionals of class C2 :

Sω(v) = E(v) + ωQ(v)

=
1

2
‖Dv‖2

2 +
ω

2
‖v‖2

2 −
γ

2

∫
R
δ(x)|v(x)|2dx− 1

p+ 1
‖v‖p+1

p+1

=
1

2
‖Dv‖2

2 +
ω

2
‖v‖2

2 −
γ

2
|v(0)|2 − 1

p+ 1
‖v‖p+1

p+1,

Iω(v) = ‖Dv‖2
2 + ω‖v‖2

2 − γ

∫
R
δ(x)|v(x)|2dx− ‖v‖p+1

p+1

= ‖Dv‖2
2 + ω‖v‖2

2 − γ|v(0)|2 − ‖v‖p+1
p+1.
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We consider the set of minimizers for the minimization problem

d(ω) = inf{Sω(v) : v ∈ H1 \ {0}, Iω(v) = 0}. (4)

Remark 7 The set {v ∈ H1\{0}, Iω(v) = 0} is called the natural constraint
(sometimes also the Nehari manifold) associated to Sω. Since S ′ω(v)v = Iω(v)
for any v ∈ H1, it clearly contains all the nontrivial critical points of Sω. It
is standard to show that a minimizer of d(ω) corresponds to a solution of (1)
(see [31] as a reference on this subject).

Remark 8 In [12], for γ > 0 and ω > γ2/4, it is proved that d(ω) is reached
by a positive, even function. Also it is claimed that (1) has a unique positive
even solution. This implies, by uniqueness, that this minimizer is φω(x). This
variational characterization of φω(x) is essential in the proof of Proposition
5. Here, for any γ ∈ R \ {0} and ω > γ2/4, we indeed prove that φω(x)
is the unique nonnegative non trivial solution of (1), see Lemma 26. As a
consequence we obtain that the set of solutions of (1)

{v ∈ H1 \ {0} : −D2v + ωv − γδv = |v|p−1v}

is given by {eiθφω : θ ∈ R}.

The main aim of this paper is to extend the existence and stability results of
[12, 13] by considering also the case γ < 0. Physically this corresponds to a
repulsive (or barrier) defect instead of a well-defect.

In contrast to [12] we derive our stability result using the general approach
to orbital stability laid down in [14]. We shall be more precise later but in
order to satisfy the assumptions of [14] the key point to check is that the
self-adjoint operator L1 defined on L2(R), by

L1v = −D2v + ωv − pφp−1
ω v

with domain

Dom(L1) = {v ∈ H2(R \ {0}) ∩H1(R) : Dv(0+)−Dv(0−) = −γv(0)}

has exactly one negative eigenvalue and its kernel is zero. Here Hm(R),
m = 1, 2, denotes the usual real Hilbert space.

We prove in Lemma 31 (see also Lemma 28) that the kernel is {0}. Now,
if φω(x) could be characterized as a minimizer of Sω on the Nehari manifold,
which is of codimension one, we could deduce that L1 has at most one nega-
tive eigenvalue. However when γ < 0, in contrast to [12], d(ω) is not reached
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anymore (see Remark 14). More globally we did not manage to characterize
φω(x) as a minimizer, even if being a local one would be sufficient, of Sω on
a manifold of codimension one. In that direction we nevertheless show, in
Lemma 32, that φω(x) is a minimizer of Sω on a manifold of codimension two
but this leaves open the possibility that there are two negative eigenvalues.
Because of this difficulty we restrict ourselves to study the orbital stability of
φω(x) within the subspace of even functions. In this subspace we show that
φω(x) has a minimizing character. More precisely let

dr(ω) = inf{Sω(v) : v ∈ H1
r \ {0}, Iω(v) = 0},

where
H1

r := {v ∈ H1 : v(−x) = v(x), x ∈ R}.
Alternatively we can write

dr(ω) =
p− 1

2(p+ 1)
inf{‖v‖p+1

p+1 : v ∈ H1
r \ {0}, Iω(v) = 0}. (5)

First we show

Theorem 1 Let γ < 0. There exists a nonnegative minimizer of dr(ω) for
any ω > γ2/4.

Then, in Lemma 19, we show that a minimizer of dr(ω) is not only a critical
point of Sω restricted to H1

r but also of Sω on all H1. Thus, from our unique-
ness result of nonnegative solutions of (1), we deduce that φω(x) corresponds
to the minimizer obtained in Theorem 1.

Let us point out that in this minimization problem we cannot benefit
from the compact embedding H1

r (Rn) ⊂ Lq(Rn), q > 2 which holds when
n ≥ 2. To obtain a minimizer we use a variational approach which relies on
the decomposition of Palais-Smale sequences associated to Sω. This type of
decomposition was first introduced by P.L. Lions in [21] and is closely linked
to his concentration compactness principle. Roughly speaking we prove that
dr(ω) is strictly below the level of loss of compactness for the Palais-Smale
sequences associated to Sω on H1

r .

Since we now work in H1
r we manage to prove in Lemma 29 that the

restriction of L1 in this subspace has only one negative eigenvalue. Having
established the spectral assumptions of [14] it follows (see Theorem 3 in [14])
that

Proposition 9 Let p > 1, γ ∈ R and ω > γ2/4. Assume that ω 7→ φω is a
C1 mapping. Then
(i) if ∂ω‖φω‖2

2 > 0 at ω = ω0, then eiω0tφω0(x) is stable in H1
r .

(ii) if ∂ω‖φω‖2
2 < 0 at ω = ω0, then eiω0tφω0(x) is unstable in H1.
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We see from the explicit form of (3) that the mapping ω 7→ φω is C1.
Accordingly to establish the stability or instability of φω(x) it suffices to
check the increase or decrease of the L2 norm of φω(x). This is done by the
same type of calculations as in [12] and leads to the following.

Theorem 2 Let γ < 0 and ω > γ2/4.

(i) Let 1 < p ≤ 3. Then eiωtφω(x) is stable in H1
r for any ω ∈ (γ2/4,∞).

(ii) Let 3 < p < 5. Then there exists a ω2 = ω2(p, γ) > 0 such that
eiωtφω(x) is unstable in H1 for any ω ∈ (γ2/4, ω2) and stable in H1

r for
any ω ∈ (ω2,∞). Here ω2 is defined as follows:

p− 5

p− 1
J(ω2) =

γ

2
√
ω2

(
1− γ2

4ω2

)−(p−3)/(p−1)

,

J(ω2) =

∫ ∞

A(ω2,γ)

sech4/(p−1)ydy, A(ω2, γ) = tanh−1

(
γ

2
√
ω2

)
.

(iii) Let p ≥ 5. Then eiωtφω(x) is unstable in H1 for any ω ∈ (γ2/4,∞).

Remark 10 In the case γ = 0, we have ‖ψω‖2
2 = ω2/(p−1)−1/2‖ψ1‖2

2 by the
scaling invariance. Here ψω(x) denotes the solution of (1) with γ = 0 (see
(10)). When the problem is non-autonomous this scale invariance is lost in
general. However, in the present one-dimensional case, with our Dirac-delta
potential, we can compute the increase or decrease of the L2 norm.

Remark 11 By Proposition 5 and Theorem 2, we see that φω(x) tends to
be more stable in the case γ > 0, in comparison with the case γ = 0. On the
contrary it tends to be more unstable when γ < 0.

Remark 12 Concerning the critical case ∂ω||φω||22 = 0 we conjecture that
eiω2tφω2(x) is unstable in view of the result of Comech and Pelinovsky [9].
However we have not pursued in that direction.

Remark 13 As we already mentioned, in Theorem 2 our stability results
are restricted to the space H1

r because in our proof we need to use the fact
that φω(x) is a minimizer on a manifold of codimension one. We do not know
if this is the case in all H1 and thus it is unclear if our stability results still
hold in H1. For results on a somehow related problem, we refer to [11, 26].
In [11] it is proved that, in some cases, one has stability in H1

r but instability
in H1. In our situation we conjecture that we still have stability in H1 when
it holds in H1

r . In particular we suspect that φω(x) is a local minimizer of
Sω on the natural constraint.
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This paper is organized as follows. In Section 2, we prove the existence
of a nonnegative minimizer for dr(ω). Section 3 is devoted to the proof of
Theorem 2. Finally, in Section 4, we give some partial results concerning the
stability of φω(x) in all H1 and an alternative proof of Proposition 5.

2 Existence of a nonnegative minimizer for dr(ω)

The aim of this section is to prove Theorem 1. First we observe

Remark 14 Let us show that d(ω) has no minimizer when γ < 0. From the
definition of d(ω) it is easy to see that we also have

d(ω) =
p− 1

2(p+ 1)
inf{‖v‖p+1

p+1 : v ∈ H1 \ {0}, Iω(v) = 0}. (6)

Suppose, by contradiction, that vω(x) is a minimizer of d(ω) and let τyvω(x) =
vω(x−y) for any y ∈ R. We note that lim|x|→∞ |vω(x)| = 0 since vω ∈ H1(R).
Also |vω(0)| > 0. Indeed reasoning as in Lemma 15 below, we see that |vω(x)|
is also a minimizer and thus satisfies S ′ω(|vω|) = 0. Now by Lemma 26 we
conclude that |vω(x)| = φω(x) and in particular |vω(x)| > 0 on all R. This
shows that Iω(τyvω) < Iω(vω) = 0 for |y| sufficiently large and thus there
exists λ∗ < 1 such that Iω(λ∗τyvω) = 0. By the definition of d(ω) given in
(6) we then have

d(ω) ≤ p− 1

2(p+ 1)
‖λ∗τyvω‖p+1

p+1 <
p− 1

2(p+ 1)
‖τyvω‖p+1

p+1 =
p− 1

2(p+ 1)
‖vω‖p+1

p+1 = d(ω),

which is a contradiction.

Lemma 15 Let γ ∈ R and ω > γ2/4. Then if u ∈ H1 is a minimizer of
dr(ω), |u| ∈ H1(R,R) is also a minimizer. In particular we can search for a
minimizer of dr(ω) inside the subset of real valued functions of H1.

Proof. It is classical (see, for example, Proposition 2.2 in [15] for a proof)
that if u ∈ H1(R,C) then |u| ∈ H1(R,R) and that ||∇ |u| ||2 6 ||∇u||2.
Clearly also || |u| ||p+1 = ||u||p+1. We deduce that if u ∈ H1(R,C) then
Iω(|u|) 6 Iω(u). Thus there exists a λ∗ 6 1 such that Iω(λ∗|u|) = Iω(u)
and ||λ∗ |u| ||p+1 6 ||u||p+1. We now conclude using the definition of dr(ω)
given in (5). �

As a consequence of Lemma 15 we can develop our variational approach
in the space H1(R,R) instead of H1. We denote H1(R,R) by H1(R) and the
subset of real valued functions of H1

r by H1
r (R). In order to prove Theorem

1 we need a detailed study of the Palais-Smale sequences of Sω in H1(R) at
the level dr(ω).
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Definition 16 For c ∈ R we say that {un} ⊂ H1(R) is a Palais-Smale
sequence for Sω at the level c (a (PS)c sequence for short), if and only if it
satisfies, as n→∞,

Sω(un) → c, S ′ω(un) → 0 in H−1(R).

By continuity of Sω and S ′ω, if a Palais-Smale sequence for Sω at the level
dr(ω), which consists of elements of H1

r (R) converge, its limit is a minimizer
of dr(ω). As a first step in that direction we have

Lemma 17 Let γ ∈ R and ω > γ2/4. There exists a bounded Palais-Smale
sequence for Sω restricted to H1

r (R) at the level dr(ω). Namely a bounded
sequence {vn} ⊂ H1

r (R) such that, as n→∞,

Sω(vn) → dr(ω), S ′ω(vn) → 0 in H−1
r (R).

Proof. The existence of a sequence {vn} ⊂ H1
r (R) which is a (PS)dr(ω)

sequence for Sω|H1
r (R) is based on the Ekeland’s variational principle (see [10]).

In addition one can assume that {vn} ⊂ H1
r (R) is a minimizing sequence for

dr(ω) (namely that Iω(vn) = 0 for any n ∈ N). Such statements can be proved
along the same lines as Lemma 3.4 in [29]. Clearly the minimizing sequences
for dr(ω) are bounded.

Remark 18 An alternative, longer but more classical, proof of Lemma 17
is to show that Sω admits in H1

r (R) a mountain pass geometry (see [3, 19])
and that the mountain pass level corresponds to dr(ω). This, as well as the
boundedness of the Palais-Smale sequences, is true because of the simple form
(of power type) of Sω. Then it is standard that the Ekeland’s principle yields
the existence of a (PS)dr(ω) sequence in H1

r (R) (see [10, 31] for example).

Our next result shows that the sequence obtained in Lemma 17 is also a
Palais-Smale sequence in H1(R).

Lemma 19 Let γ ∈ R and ω > γ2/4. Any Palais-Smale sequence of Sω

considered on H1
r (R) is also a Palais-Smale sequence of Sω on H1(R). In

particular a critical point of Sω considered on H1
r (R) is also a critical point

of Sω on H1(R).

Proof. This result is related to the principle of symmetric criticality of Palais
and we adapt here a proof given in [16]. Clearly it suffices to show that if
u ∈ H1

r then S ′ω(u)h = 0 for any h ∈ H̃1
r with

H̃1
r = {h ∈ H1(R), 〈h, φ〉 = 0 for all φ ∈ H1

r (R)}.
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Here 〈·, ·〉 is the usual scalar product on H1(R). Let u ∈ H1
r (R), by Riesz’s

Theorem there exists a unique ψ0 ∈ H1(R) such that 〈ψ0, h〉 = φ(h) where
φ belongs to the dual of H1(R) and is defined by

φ(h) = (ω − 1)

∫
R
u(x)h(x)dx− γu(0)h(0)−

∫
R
|u(x)|p−1u(x)h(x)dx.

Let ψ̃0 be given by ψ̃0(x) = ψ0(−x). Direct calculations show that, for any
h ∈ H1(R), 〈ψ̃0, h〉 = 〈ψ0, h̃〉 where h̃ is such that h̃(x) = h(−x). Now,
since u ∈ H1

r (R), we have φ(h̃) = φ(h) and thus 〈ψ0, h̃〉 = 〈ψ0, h〉 for any
h ∈ H1(R). It shows that ψ0 ∈ H1

r (R). Now, for any h ∈ H̃1
r we indeed have,

S ′ω(u)h = 〈u, h〉+ φ(h) = φ(h) = 〈ψ0, h〉 = 0 (7)

since u ∈ H1
r (R) and ψ0 ∈ H1

r (R). �

Before stating our next lemma we recall some results concerning the case
γ = 0 which plays the role of a problem at infinity for (1).

It is known that the set of solutions of

−D2ψ + ωψ = |ψ|p−1ψ, x ∈ R, ω > 0, ψ ∈ H1(R) (8)

is exactly given by {±ψω(x − y); y ∈ R} where ψω(x) is a positive even
solution. Moreover ψω(x) corresponds to a minimizer of the problem

d∞(ω) = inf{S∞ω (v) : v ∈ H1(R) \ {0}, I∞ω (v) = 0}

=
p− 1

2(p+ 1)
inf{||v||p+1

p+1 : v ∈ H1(R) \ {0}, I∞ω (v) = 0} (9)

where

S∞ω (v) =
1

2
‖Dv‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1,

I∞ω (v) = ‖Dv‖2
2 + ω‖v‖2

2 − ‖v‖p+1
p+1.

Also d∞(ω) > 0. For a proof of such statements we refer to [19] (see also
[5, 6]). Now setting γ = 0 in (3) we deduce, because of the uniqueness of
positive even solutions, that

ψω(x) =

{
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
|x|

)} 1
p−1

. (10)

The following lemma is in the spirit of the work of P. L. Lions [21]. For
a proof we refer to Theorem 5.1 of [20].
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Lemma 20 Let {un} ⊂ H1(R) be a bounded (PS)c sequence for Sω. Then
there exists a subsequence still denoted by {un} for which the following holds:
there exist a solution u0 of (1), an integer k ≥ 0, for i = 1, · · · , k, sequences
of points {xi

n} ⊂ R and nontrivial solutions νi(x) of the limit equation (8)
satisfying

un ⇀ u0 weakly in H1(R),

Sω(un) → c = Sω(u0) + Σk
i=1S

∞
ω (νi)

un −
(
u0 + Σk

i=1νi(x− xi
n)

)
→ 0 strongly in H1(R),

|xi
n| → ∞, |xi

n − xj
n| → ∞ for 1 ≤ i 6= j ≤ k,

where we agree that in the case k = 0, the above holds without νi(x) and xi
n.

From Lemma 20 and somehow inspired by the work of Adachi [2] we
deduce that

Lemma 21 Let γ ∈ R and ω > γ2/4. Assume that

dr(ω) < 2d∞(ω). (11)

Then, the (PS)dr(ω) sequence {vn} ⊂ H1
r (R) given by Lemma 17 admits a

strongly convergent subsequence.

Proof. By Lemma 19 we know that {vn} ⊂ H1
r (R) is a Palais-Smale se-

quence for Sω in H1(R). Assume, by contradiction, that it does not admit
any convergent subsequence. Then we see from Lemma 20 that the case
k = 0 cannot occurs. Clearly, the case k = 1 is also impossible because
each vn(x) is an even function and thus the νi(x) must be present in an even
number. Thus, since d∞(ω) > 0, we have

dr(ω) = lim inf
n→∞

Sω(vn)

≥ Sω(u0) +
2∑

i=1

S∞ω (νi)

= Sω(u0) + 2d∞(ω). (12)

Now necessarily Sω(u0) ≥ 0 since Iω(u0) = 0 and thus (12) contradicts (11).
�

Remark 22 In the case γ > 0 we see from [12] that dr(ω) = d(ω) for any
ω > γ2/4 (as d(ω) is reached by an even function). Also, if γ > 0 one has
d(ω) < d∞(ω). Indeed we have Sω(ψω) < S∞ω (ψω) = d∞(ω) and Iω(ψω) < 0.
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Thus there exists λ∗ < 1 such that Iω(λ∗ψω) = 0 and Sω(λ∗ψω) = S∞ω (λ∗ψω)−
γ
2
|λ∗ψω(0)|2 < S∞ω (ψω) − γ

2
|λ∗ψω(0)|2 < S∞ω (ψω) = d∞(ω). This shows that

d(ω) < d∞(ω). On the contrary when γ < 0 we have d(ω) = d∞(ω). To see
this let u ∈ H1

r (R) \ {0} be such that I∞ω (u) = 0. Then there exists a unique
t ∈ R such that Iω(tu) = 0. In addition, since γ < 0 we have t > 1. From
the definition of d(ω) and d∞(ω) given in (6) and (9) we then deduce that
d(ω) > d∞(ω). Now let τyψω(x) = ψω(x− y) for y ∈ R. Clearly Sω(τyψω) →
S∞ω (τyψω) = S∞ω (ψω) = d∞(ω) and Iω(τyψω) → I∞ω (τyψω) = I∞ω (ψω) = 0
as |y| → ∞. At this point we conclude easily that d(ω) 6 d∞(ω) and thus
d(ω) = d∞(ω). Finally d(ω) < dr(ω) since otherwise d(ω) would be reached.

Remark 23 When γ > 0 we have just observe that d(ω) < d∞(ω). Also it
is readily seen that Sω admits a Palais-Smale sequence at the level d(ω) in
H1(R). Thus we can deduce, using Lemma 20, that d(ω) has a minimizer
uω(x). Then |uω(x)| is also a minimizer and thus a nonnegative non trivial
solution of (1). By Lemma 26 we identify |uω(x)| with φω(x).

Let us now determine when the condition (11) holds.

Lemma 24 Let γ < 0 and ω > γ2/4. The inequality (11) is satisfied for any
ω > γ2/4.

Proof. Because ψω(x) is a minimizer of (9) and since φω(x) ∈ H1
r (R) and

Iω(φω) = 0, to check that (11) holds it suffices to verify that

‖φω‖p+1
p+1 < 2‖ψω‖p+1

p+1.

We put A(ω, γ) = tanh−1
(

γ
2
√

ω

)
and note that A(ω, γ) < 0 if γ < 0. We

directly calculate each Lp+1(R) norm and we obtain

‖φω‖p+1
p+1 = 2

∫ ∞

0

φp+1
ω (r)dr

= 2C0C1

∫ ∞

A(ω,γ)

sech2(p+1)/(p−1)(y)dy

= 2C0C1

{∫ 0

A(ω,γ)

sech2(p+1)/(p−1)(y)dy +

∫ ∞

0

sech2(p+1)/(p−1)(y)dy

}
< 4C0C1

∫ ∞

0

sech2(p+1)/(p−1)(y)dy

= 4C0

∫ ∞

0

sech2(p+1)/(p−1)

(
(p− 1)

√
ω

2
r

)
dr = 2‖ψω‖p+1

p+1,

12



where C0 =

(
(p+ 1)ω

2

)(p+1)/(p−1)

and C1 =
2

(p− 1)
√
ω
. �

Proof of Theorem 1. From Lemmas 15, 17, 21 and 24 we see that dr(ω)
admits a nonnegative minimizer. �

3 Stability and instability
In this section we first identify the nonnegative minimizer of dr(ω) obtained in
Theorem 1 with φω(x). Next we formulate the spectral assumptions which
have to be satisfied for the theory of [14] to apply. Having checked these
assumptions Theorem 2 follows from Proposition 9.

Lemma 25 Let γ ∈ R and ω > γ2/4. Then any solution v(x) ∈ H1(R) of
(1) verifies the following:

v ∈ Cj(R \ {0}) ∩ C(R), j = 1, 2, (13)
−D2v + ωv − vp = 0, x 6= 0, (14)
Dv(0+)−Dv(0−) = −γv(0), (15)
Dv(x), v(x) → 0, as |x| → ∞. (16)

Proof. To check (13) and (16), we make use of functions ξ ∈ C∞
0 (R \ {0}).

Clearly ξv(x) satisfies

−D2(ξv) + ωξv = −(D2ξ)v − 2(Dξ)(Dv) + ξvp,

in the sense of distributions. We employ a standard bootstrap argument
(see Section 8 of [6] for details). The right hand side is in L2(R) and so
ξv ∈ H2(R), that is, v ∈ H2(R \ {0}) ∩ C1(R \ {0}). The case of j = 2 is
similar. The equation (14) follows from the fact that C∞

0 (R \ {0}) is dense
in L2(R). Concerning (15), we integrate (1) from −ε to ε,

−
∫ ε

−ε

D2vdx+ ω

∫ ε

−ε

vdx− γ

∫ ε

−ε

δ(x)vdx =

∫ ε

−ε

vpdx.

Then, letting ε→ 0, we get that Dv(0+)−Dv(0−) = −γv(0). �

Lemma 26 Let γ ∈ R \ {0} and ω > γ2/4. Then (1) has a unique nonneg-
ative nontrivial solution. By uniqueness φω(x) is this solution and thus the
set of all solutions of (1) is given by

{eiθφω : θ ∈ R}.

13



Proof. Since S ′ω(v) = 0, φω(x) satisfies (1) and thus by Lemma 25 the
properties (13)-(16) hold for φω(x). Let v ∈ H1(R) be nonnegative, nontrivial
and satisfying (13)-(16). We shall prove that v(x) is unique. It will establish
that v(x) = φω(x).

Let f(s) = −ωs + sp and F (s) =

∫ s

0

f(t)dt. Multiplying (14) by Dv(x)

and integrating from x = 0 to x = R, we have

−1

2
{Dv(R)}2 +

1

2
{Dv(0+)}2 − F (v(R)) + F (v(0+)) = 0, (17)

for any R > 0. Letting R→∞, we get

1

2
{Dv(0+)}2 + F (v(0+)) = 0. (18)

Similarly, we see that

1

2
{Dv(0−)}2 + F (v(0−)) = 0.

Thus to insure the continuity of v(x) at x = 0 we must have |Dv(0−)| =
|Dv(0+)|. If Dv(0−) = Dv(0+) then v(0) = 0 by (15). If Dv(0−) =
Dv(0+) = 0 then by Cauchy Uniqueness Principle we get that v ≡ 0 on
R. If Dv(0−) = Dv(0+) 6= 0 then necessarily v(x0) < 0 for some x0 ∈ R
close to 0 and this contradicts the fact that v(x) in nonnegative. Thus nec-
essarily Dv(0−) = −Dv(0+) and we have

Dv(0+) = −γ
2
v(0). (19)

Now we set v(0) = c > 0 where c > 0 is a parameter and consider the
function

P (c) =
γ2 − 4ω

8
c2 +

1

p+ 1
cp+1.

For c > 0, this function has a unique zero that we denote by c0. We remark
that (18) and (19) imply P (v(0)) = 0. Thus necessarily

v(0) = c0. (20)

Consider now the initial value problem on (0,∞) given by (14) with (19) and
(20) as initial conditions. It has a unique solution. Indeed, the solution is
unique for x > 0 close to 0 since f(s) is Lipschitz. This uniqueness holds
for all x > 0 since, by (13) and (16), v(x) is bounded. The uniqueness for

14



x ∈ (−∞, 0) is proved in the same way. The proof of the last statement
follows from this uniqueness as in the proof of Theorem 8.1.6 in [6]. �

To derive our stability results we use Theorem 3 in [14]. It is clear that
in our situation Assumptions 1 and 2 of Theorem 3 in [14] hold and thus we
shall concentrate on proving Assumption 3 that we have referred to so far as
the spectral requirement of [14].

For u ∈ H1
r we write u = u1 + iu2. Let Hω be defined by

Hωu = L1u1 + iL2u2

where, for v ∈ Dom(L1) = Dom(L2) = {v ∈ H2(R\{0})∩H1
r (R) : Dv(0+)−

Dv(0−) = −γv(0)},

L1v = −D2v + ωv − pφp−1
ω v,

L2v = −D2v + ωv − φp−1
ω v.

It follows from the explicit formula of the resolvent of −D2 with domain
Dom(L1) (see Theorem 3.1.2 in [1]) that the operator −D2 with Dom(L1)
is a self-adjoint operator on L2(R). Since the perturbation ω − pφp−1

ω is real
valued and not too large compared to −D2, the operators L1 and L2 are also
self-adjoint on L2(R) with domains Dom(L1) and Dom(L2). The operator
Hω corresponds to the linearization of S ′′ω at φω(x). Indeed we have for L1

(and a similar result holds for L2) that

Lemma 27 Let γ ∈ R and ω > γ2/4. Then

〈L1u, v〉 = 〈S ′′ω(φω)u, v〉 , when u ∈ Dom(L1) and v ∈ H1.

15



Proof. Let u ∈ Dom(L1) and v ∈ H1. We have

〈L1u, v〉 = −
∫

R
(D2u)v dx+ ω

∫
R
uv dx− p

∫
R
φp−1

ω uv dx

= lim
ε↓0
{−

∫ ∞

ε

D(Du · v) dx−
∫ −ε

−∞
D(Du · v) dx}+

∫
R
Du ·Dv dx

+ ω

∫
R
uv dx− p

∫
R
φp−1

ω uv dx

= lim
ε↓0
{Du(ε)v(ε)−Du(−ε)v(ε)}+

∫
R
Du ·Dv dx

+ ω

∫
R
uv dx− p

∫
R
φp−1

ω uv dx

= (Du(0+)−Du(0−))v(0) +

∫
R
Du ·Dv dx

+ ω

∫
R
uv dx− p

∫
R
φp−1

ω uv dx

= −γu(0)v(0) +

∫
R
Du ·Dv dx+ ω

∫
R
uv dx− p

∫
R
φp−1

ω uv dx

= −γ
∫

R
δ(x)uv dx+

∫
R
Du ·Dv dx+ ω

∫
R
uv dx− p

∫
R
φp−1

ω uv dx

= 〈S ′′ω(φω)u, v〉 .

�

In our notations the Assumption 3 of [14] is reduced to show that for each
ω > γ2/4, Hω has exactly one negative simple eigenvalue and has its kernel
spanned by iφω(x). Observe that L2φω = 0, therefore φω(x) is in the kernel
of L2. Moreover φω(x) being positive it corresponds to the first eigenvalue
of L2 which is simple. Thus the kernel of L2 is spanned by φω(x) and to
satisfy Assumption 3 it is sufficient to show that L1 has exactly one negative
eigenvalue and only 0 in its kernel.

Lemma 28 Let γ ∈ R \ {0} and ω > γ2/4. Then the kernel of L1 is zero.

Proof. It is classical to show (see for example Theorem 8.1 in [8]) that the
subspace of L2 solutions of L1v = 0, x > 0 is of dimension one. Also we can
show that Dφω satisfies L1(Dφω) = 0 for x > 0. As a consequence to show
that the kernel of L1 is {0} it suffices to prove that Dφω does not satisfy
the condition Dv(0+)−Dv(0−) = −γv(0) which since we work in H1

r (R) is
reduced to Dv(0+) = (−γ/2)v(0).
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We have seen in the proof of Lemma 26 that φω(0) = c0, where c0 is the
unique zero of

−4ω − γ2

8
c2 +

1

p+ 1
cp+1 = 0

(see (20)). More precisely,

c0 =

(
p+ 1

8
(4ω − γ2)

)1/(p−1)

.

Since Dφω(0+) = −γ
2
φω(0) (see (19)) we have −γ

2
(Dφω)(0+) =

γ2

4
c0. On

the other hand, we see from (1) that φω(x) satisfies,

lim
x→0+

D2φω(x) = ωc0 − cp0.

Let z0 be the unique zero of

γ2

4
z = ωz − zp,

namely,

z0 =

(
4ω − γ2

4

)1/(p−1)

.

It is easily seen that z0 < c0, which concludes the proof. �

Lemma 29 Let γ < 0 and ω > γ2/4. Then L1 has exactly one negative
eigenvalue.

Proof. Since 〈L1φω, φω〉 = −(p − 1)‖φω‖p+1
p+1 < 0, the first eigenvalue λ1 is

negative. From Weyl’s theorem, we see that the essential spectrum of L1

is in [ω,+∞). Thanks to Lemma 28 the kernel of L1 is {0}. Therefore to
prove the lemma it just remains to show that L1 cannot have two negative
eigenvalues. Assume, by contradiction, that there exists two distinct negative
eigenvalues λ1, λ2 ∈ R and denote by v1 and v2 two eigenvectors associated
to λ1 and λ2 respectively.

By Lemma 27 we know that 〈S ′′ω(φω)u, v〉 = 〈L1u, v〉 for any u, v ∈
Dom(L1). Also since S ′′ω(φω) is self adjoint we have 〈v1, v2〉 = 0. Now let
β1, β2 ∈ R be arbitrary. Since 〈v1, v2〉 = 〈S ′′ω(φω)v1, v2〉 = 〈S ′′ω(φω)v2, v1〉 = 0
we have

〈S ′′ω(φω)(β1v1 + β2v2), β1v1 + β2v2〉 = λ1β
2
1 ||v1||22 + λ2β

2
2 ||v2||22 < 0.
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Thus S ′′ω(φω) is negative definite on a subspace of dimension two. To conclude
we shall prove that the variational characterization of φω(x) implies that
S ′′ω(φω) is positive on a subspace of co-dimension one.

We recall that φω(x) is a minimizer of Sω on the natural constraint {v ∈
H1

r (R) \ {0}, Iω(v) = 0}. Let us show that 〈S ′′ω(φω)v, v〉 > 0 on the subspace
of codimension one {v ∈ H1

r (R), I ′(φω)(v) = 0}. For this we borrow some
elements from [18] (see also [23]). Let v ∈ H1

r (R) be such I ′ω(φω)v = 0. Using
the Implicit Function Theorem, we see that there exist ε > 0 and a C2-curve
Λ : (−ε, ε) → H1

r (R) such that

Λ(0) = φω, Λ′(0) = v and Iω(Λ(s)) = 0, s < |ε|.

Thanks to the variational characterization of φω, 0 is a local minimum of
s 7→ Sω(Λ(s)), and therefore d2

d2s
Sω(Λ(s))|s=0 > 0. But, since S ′ω(φω) = 0, we

have
0 6

d2

d2s
Sω(Λ(s))|s=0 = 〈S ′′ω(φω)v, v〉

which ends our proof. �

At this point the Assumption 3 of [14] is established and thus to prove
Theorem 2 we can use Proposition 9.

End of Proof of Theorem 2. We put α = ω−1/2. Then it follows from
(3) that

∂

∂ω
‖φω‖2

2 = −α
3

2

∂

∂α
‖φα‖2

2,
∂

∂α
‖φα‖2

2 = Cpα
−4/(p−1)g(α),

g(α) =
p− 5

p− 1
J(α)− αγ

2
(1− C2

α,γ)
−(p−3)/(p−1),

J(α) =

∫ ∞

A(α,γ)

sech4/(p−1)ydy, A(α, γ) = tanh−1Cα,γ.

where Cα,γ = γα/2 and Cp is a positive constant depending only on p. It
suffices to check the sign of g(α). Here, we have

∂

∂α
A(α, γ) =

γ

2(1− C2
α,γ)

, sech2A(α, γ) = 1− C2
α,γ,

hence,
J ′(α) = − γ

2(1− C2
α,γ)

−(p−3)/(p−1)
. (21)
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After some calculations we obtain, using (21),

g′(α) = −γ(p− 3)

p− 1
(1− C2

α,γ)
−2(p−2)/(p−1),

g′′(α) = −αγ
3(p− 3)(p− 2)

(p− 1)2
(1− C2

α,γ)
−(3p−5)/(p−1).

In the case where γ < 0 and p ≤ 3, we have g(α) < 0 for any α ∈ (0,−2/γ)
since g(0) < 0, and g′(α) ≤ 0 for any α ∈ (0,−2/γ). In the case where γ < 0
and 3 < p < 5, we note that g(0) < 0, g′(0) > 0 and g′′(α) > 0 for any α ∈
(0,−2/γ). Thus, there exists a unique α∗∗ ∈ (0,−2/γ) such that g(α∗∗) = 0,
g(α) < 0 for any α ∈ (0, α∗∗) and g(α) > 0 for any α ∈ (α∗∗,−2/γ). Finally,
in the case where γ < 0 and p ≥ 5, we have g(0) > 0 and g′(α) > 0 for all
α ∈ (0,−2/γ). Thus g(α) > 0 for any α ∈ (0,−2/γ). �

4 Some remarks on the stability of φω(x) in H1

In this final section we establish some results related to the stability of φω(x)
in all H1 and give an alternative proof of Proposition 5.

Clearly Proposition 9 still holds under the spectral conditions of [14] if
H1

r is remplaced by H1 and thus, in order to apply the theory of [14], we
just need to check that the Assumption 3 of [14] holds. The operators L1

and L2 are now defined on Dom(L1) = Dom(L2) = {v ∈ H2(R \ {0}) ∩
H1(R) : Dv(0+) − Dv(0−) = −γv(0)} and as previously we just need to
check that L1 has exactly one negative eigenvalue and its kernel is zero. In
that direction we prove three results. First we show that the eigenvectors of
L1 are either even or odd. Then we show that the kernel of L1, denoted by
N(L1) = {v ∈ Dom(L1) : L1v = 0}, is still {0}. Finally we prove that L1

has at most two negative eigenvalues.

Lemma 30 Let γ ∈ R and ω > γ2/4. Then the eigenvectors of L1 are either
even or odd.

Proof. Our proof is inspired by the one of Proposition 15 in [11]. Let
v ∈ Dom(L1) be an eigenfunction of L1, namely L1v = λv for a λ ∈ R. Then,
since φω(x) is even, we also have

L1v(−x) = λv(−x).

It follows, since the eigenvalues of L1 are simple (see Theorem 8.1 of [8] for
such result) that there exists β ∈ R such that

v(x) = βv(−x), ∀x ∈ R. (22)
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If v(0) 6= 0 we see from (22) that β = 1 and thus v(x) is even. If v(0) = 0,
deriving (22) we get that v′(0) = −βv(0) and, since by Cauchy Uniqueness
Principle v′(0) 6= 0, we deduce that β = −1. Namely that v(x) is odd. �

Lemma 31 Let γ ∈ R \ {0} and ω > γ2/4. Then N(L1) = {0}.

Proof. By Lemma 30 the eigenvectors of L1 are either even or odd. Also
we proved in Lemma 28 that there is no even functions in N(L1). Thus it
suffices to show that there is no odd functions in N(L1).

Let v ∈ N(L1) be odd. Then v(0) = 0 and reasoning as in the proof of
Lemma 28, to conclude we just need to prove that Dφω(x) does not belong
to N(L1). But since Dφω(0) = −γ

2
φω(0) 6= 0, this is immediate. �

Lemma 32 Let γ ∈ R \ {0} and ω > γ2/4. The operator L1 has at most
two negative eigenvalues.

Proof. This result and its proof were given to us by M. Maris [24]. Let I1
ω

and I2
ω be the C2-functionals defined on H1(R) by

I1
ω(u) =

∫ 0

−∞
|Du|2 + ω|u|2 − |u|p+1 dx− γ

2
|u(0)|2,

I2
ω(u) =

∫ +∞

0

|Du|2 + ω|u|2 − |u|p+1 dx− γ

2
|u(0)|2.

We shall prove that φω(x) minimizes Sω in H1(R) under the constraint M =
{v ∈ H1(R) \ {0} : I1

ω(v) = 0, I2
ω(v) = 0}. Since this constraint is of

codimension two reasoning as in the proof of Lemma 29 it is easily shown
that L1 cannot have more than two negative eigenvalues. First observe that
I1
ω(φω) = I2

ω(φω) since φω(x) is even. Also I1
ω(φω) + I2

ω(φω) = Iω(φω) = 0.
Thus I1

ω(φω) = I2
ω(φω) = 0 and φω(x) belongs to the constraint M .

Now let v ∈ H1(R) be such that I1
ω(v) = I2

ω(v) = 0. We define

v1(x) =

{
v(x) if x < 0
v(−x) if x > 0

and
v2(x) =

{
v(−x) if x < 0
v(x) if x > 0.
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We have I1
ω(v1) = I1

ω(v) = 0 and I2
ω(v1) = I2

ω(v) = 0. Thus Iω(v1) =
I1
ω(v1) + I2

ω(v1) = 0 and because v1 ∈ H1
r (R) it follows that Sω(φω) 6 Sω(v1).

Similarly one deduce that Sω(φω) 6 Sω(v2). Making the sum it follows that

2Sω(φω) 6 Sω(v1) + Sω(v2) = 2Sω(v)

which complete the proof. �

Remark 33 The approach developed in this paper permits to give an alter-
native, complete, proof of Proposition 5 which corresponds to the case γ > 0.
We already know from Remark 23 that φω(x) minimizes Sω on the manifold of
codimension one {v ∈ H1(R)\{0}, Iω(v) = 0}. Also, from Lemma 31, the ker-
nel of L1 defined on {v ∈ H2(R)\{0}∩H1(R) : Dv(0+)−Dv(0−) = −γv(0)}
is zero. Finally, reasoning as in Lemma 29 the variational characterization
of φω(x) implies that L1 can only have one negative eigenvalue. Hence the
Assumption 3 of [14] holds and, using Proposition 9, we conclude the proof
of Proposition 5.
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