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Abstract

We consider the null controllability of a homogeneous linear string of length one submitted

to a lower time dependent obstacle {ψ(t)}(0≤t≤T ) at the extremity x = 1. The Dirichlet

control acts on the other extremity x = 0. The string is modelled by the wave equation

y′′ − yxx = 0 in (t, x) ∈ (0, T ) × (0, 1) while the obstacle is modelled by the Signorini’s

conditions y(t, 1) ≥ ψ(t), yx(t, 1) ≥ 0, yx(t, 1)(y(t, 1) − ψ(t)) = 0 in (0, T ). In the framework

of the characteristic method which reduces the study to the analysis on (0, T )×{1}, we show

that the controllability of any initial condition (y0, y1) in a subset of H1(0, 1)×L2(0, 1) holds

for any T > 2. Two distinct approachs are used. We first introduce a penalized system in yε,

ε > 0 transforming the Signorini’s condition into the simpler one yε,x(t, 1) = ε−1[yε(t, 1)−ψ(t)]

and then constructs explicitly a family of controls {uε}ε>0 in H1(0, T ), uniformly bounded

with respect to ε. A more direct approach based on differential inequation theory then leads

to a similar positive conclusion. Numerical experiments complete the study.

Mathematics Subject Classification. 35L85, 65M12, 74H45

Keys words. Nonlinear boundary controllability, Fixed point method, Unilateral constraint,
Penalization.

1 Introduction

Let T > 0 and QT = (0, T )× (0, 1). We consider the following system
y′′ − yxx = 0, (t, x) ∈ QT ,
y(t, 0) = u(t), t ∈ (0, T ),
y(t, 1) ≥ ψ(t), yx(t, 1) ≥ 0, (y(t, 1)− ψ(t))yx(t, 1) = 0, t ∈ (0, T ),
y(0, x) = y0(x), y′(0, x) = y1(x), x ∈ (0, 1)

(1.1)
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where the symbol ′ denotes the derivative with respect to the variable t. System (1.1) models the
vibration of a homogeneous and linear string of length one in the time interval (0, T ) submitted to
an initial excitation (y0, y1) at time t = 0. On the left extremity x = 0 acts a control function u(t),
whereas on the right extremity x = 1, the string is limited by a lower time dependent obstacle
so that y(1, t) ≥ ψ(t) for all t > 0. When the rod touches the obstacle, its reaction can be only
upward, so that yx(1, t) ≥ 0 on the set {t : y(1, t) = ψ(t)}. When the rod does not touch the
obstacle, the right end is free so that yx(1, t) = 0 on the set {t : y(1, t) > ψ(t)}. These usual
conditions which permit to describe the presence of the obstacle are called unilateral Signorini
conditions (see for instance [3]).

Various papers have been devoted to the existence and uniqueness of a solution of the boundary
obstacle problem for the wave equation. Among all of these, we mention [4, 5] (whose idea is used
in our present work) and [11].

We investigate in this work the exact boundary controllability of the non linear system (1.1)
stated as follows: for any T fixed large enough and any (y0, y1) in a given space, does there exist
a Dirichlet control u ∈ H1(0, T ) which drives the corresponding solution of (1.1) to rest, i.e.

y(T ) = y′(T ) = 0, in (0, 1)? (1.2)

More precisely, we will prove the following:

Theorem 1.1 Let T ∈ (2, 3). For any
(
y0, y1

)
∈ H1(0, 1)× L2(0, 1) and ψ ∈ H1(0, T ) with

ψ(0) ≤ y0(1), ψ(T ) ≤ 0, (1.3)

there exists u ∈ H1(0, T ) such that (1.1) admits a unique solution y ∈ C
(
[0, T ] ,H1(0, 1)

)
∩

C1
(
[0, T ] , L2(0, 1)

)
satisfying y(T ) = y′(T ) = 0 in (0, 1).

To our knowledge, the study of the exact controllability when a unilateral constraint is involved
has not been studied so far. In the different context of stabilization, we mention the contribution
[8] where the authors prove the exponential decay of the energy associated with the solution of a
damped wave equation submitted to a boundary obstacle.

We address this nonlinear controllability problem, in a constructive way, using the characteristic
method. This permits to compute the behavior of the solution φ of the wave equation submitted to
the initial condition (φ0, φ1) and the boundary φ(t, 0) = u(t), φ(t, 1) = f(t) for any u, f ∈ L2(0, T )
and then to compute explicitly the Dirichlet-to-Neumann map A defined by A(φ0, φ0, u, f) =
φx(·, 1) (see Section 2). At the right extremity x = 1 of the string, the Signorini conditions then
become the following ordinary differential inequations in (0, T )

f − ψ ≥ 0, t ∈ (0, T )
Ac(φ0, φ1, u, f) ≥ 0, t ∈ (0, T )
(f − ψ)Ac(φ0, φ1, u, f) = 0, t ∈ (0, T )

(1.4)

The idea is then to find a control u = u(f, φ0, φ1) for φ such that φ(·, 1) = f and f solution of (1.4).
u is then a control for y solution of (1.1). In section 4, by the way of general results for differential
inequation, we describe a class of such controls u ∈ H1(0, T ), assuming that T is strictly greater
than 2. In Section 3, we obtain alternatively the controllability result using a penalty method,
classical in contact mechanics, which consists in relaxing the Signorini inequations by the equation
yε,x(·, 1) = ε−1[yε(·, 1) − ψ]− in (0, T ). ε > 0 denotes the penalized parameter. Following the
previous fixed point argument, we then construct a class of couple (uε, fε) solution of

Ac(φ0, φ1, uε, fε) = ε−1[fε − ψ]−1, t ∈ (0, T ) (1.5)
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uniformly bounded with respect to ε (Section 3.1). This property then permits to the pass to the
limit and obtain a control for (1.1). Section 5 presents some numerical applications in aggreement
with the theoretical part while Section 6 concludes with some related extensions and open problems.

2 The Control Dirichlet-to-Neumann map of a linear system

Let T > 0, QT = (0, T )× (0, 1) and consider the following system:
φ′′ − φxx = 0, (t, x) ∈ QT ,
φ(t, 0) = u(t), t ∈ (0, T ),
φ(t, 1) = f(t), t ∈ (0, T ),
φ(0, x) = φ0(x), φ′(0, x) = φ1(x), x ∈ (0, 1)

(2.6)

where u ∈ L2(0, T ) is a control function and f ∈ L2(0, T ) is given. The following result is well-
known (see, for instance, [6]).

Proposition 2.1 • If
((
φ0, φ1

)
, (u, f)

)
∈
(
L2(0, 1)×H−1(0, 1)

)
× L2(0, T )2 then there exists

a unique solution φ of (2.6) such that φ ∈ C
(
[0, T ] , L2(0, 1)

)
∩ C1

(
[0, T ] ,H−1(0, 1)

)
and a

positive constant C such that

‖(φ(t), φ′(t))‖L2(0,1)×H−1(0,1) ≤ C
(∥∥(φ0, φ1

)∥∥
L2(0,1)×H−1(0,1)

+ ‖(u, f)‖L2(0,T )2

)
.

• If ((
φ0, φ1

)
, (u, f)

)
∈ H1(0, 1)× L2(0, 1)×H1(0, T )2 (2.7)

with the compatibility conditions

u(0) = φ0(0), f(0) = φ0(1) (2.8)

then there exists a unique solution φ of (2.6) such that

φ ∈ C
(
[0, T ] ,H1(0, 1)

)
∩ C1

(
[0, T ] , L2(0, 1)

)
.

and

‖(φ(t), φ′(t))‖H1(0,1)×L2(0,1) ≤ C
(∥∥(φ0, φ1

)∥∥
H1(0,1)×L2(0,1)

+ ‖(u, f)‖H1(0,T )2

)
.

In this paper, we work with the space

H =
{((

φ0, φ1
)
, (u, f)

)
∈ H1(0, 1)× L2(0, 1)×H1(0, T )2, u(0) = φ0(0), f(0) = φ0(1)

}
.

Given
(
φ0, φ1, f

)
, our aim is to find a family of explicit controls u for which the solution φ of (2.6)

satisfies φ(T ) = φ′(T ) = 0 in (0, 1). Setting

p = φ′ − φx, q = φ′ + φx, (2.9)

leads to the hyperbolic linear system
p′ + px = q′ − qx = 0, (t, x) ∈ QT ,
(p+ q) ( · , 0) = 2u′, t ∈ (0, T ),

(p+ q) ( · , 1) = 2f ′ t ∈ (0, T ),

p0 = φ1 − φ0
x, q

0 = φ1 + φ0
x, x ∈ (0, 1).

(2.10)
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If
((
p0, q0

)
, (u, f)

)
∈ L2(0, 1)2 × H1(0, T )2 system (2.10) admits a unique generalized solution

(p, q) ∈ C
(
[0, T ] , L2(0, 1)2

)
(see for instance [9, Theorem 3.1, p. 650]). In view of (2.9), this

solution corresponds to a solution φ of (2.6) satisfying

φ ∈ C
(
[0, T ] ,H1(0, 1)

)
∩ C1

(
[0, T ] , L2(0, 1)

)
associated with data

((
φ0, φ1

)
, (u, f)

)
∈ H.

Proposition 2.2 Let T ∈ (2, 3) and assume that
((
φ0, φ1

)
, (u, f)

)
∈ H. Then the solution (p, q)

of (2.10) satisfies (p, q) (T ) = 0 in (0, 1) if and only if
((
φ0, φ1

)
, (u, f)

)
satisfies

u′(t) = f ′(t+ 1) +
1
2
q0(t) if T − 2 < t < 1

u′(t) = f ′(t+ 1) + f ′(t− 1)− 1
2
p0(2− t) if 1 < t < T − 1

u′(t) = f ′(t− 1)− 1
2
p0(2− t) if T − 1 < t < 2

u′(t) + u′(t− 2) = f ′(t− 1) +
1
2
q0(t− 2) if 2 < t < T.

(2.11)

Proof. Solving system (2.10) using the characteristics method gives the expressions:

p(t, x) =


p0(x− t) if 0 < t < x < 1

2u′(t− x)− q0(t− x) if 0 < x < t < 1 + x

2u′(t− x)− 2f ′(t− x− 1) + p0(2− t+ x) if 1 + x < t < 2 + x

2u′(t− x) + 2u′( t− x− 2 )− 2f ′(t− x− 1)− q0(t− x− 2) if 2 + x < t < 3
(2.12)

and

q(t, x) =


q0(x+ t) if 0 < t < 1− x

2f ′(t+ x− 1)− p0(2− t− x) if 1− x < t < 2− x

2f ′(x+ t− 1)− 2u′(t+ x− 2) + q0(t+ x− 2) if 2− x < t < 3− x

2f ′(t+ x− 1)− 2u′(t+ x− 2) + 2f ′(t+ x− 3)− p0(4− t− x) if 3− x < t < 3
(2.13)

It follows that

p(T, x) =

{
2u′(T − x)− 2f ′(T − x− 1) + p0(x− T + 2) if 0 < T − 2 < x < 1

2u′(T − x) + 2u′(T − x− 2) +−2f ′(T − x− 1)− q0(T − x− 2) if 0 < x < T − 2 < 1

and

q(T, x) =


− 2u′( x+ T − 2 ) + 2f ′(x+ T − 1) + q0(x+ T − 2) if 0 < x < 3− T

− 2u′(T + x− 2) + 2f ′(T + x− 1)

+ 2f ′(T + x− 3)− p0(4− T − x) if 0 < 3− T < x < 1.

Consequently, (p, q) (T ) = 0 in (0, 1) if and only if u satisfies

u′(T − x) = f ′(T − x− 1)− 1
2
p0(x− T + 2) if T − 2 < x < 1

u′(T − x) = −u′(T − x− 2) + f ′(T − x− 1) +
1
2
q0( T − x− 2) if 0 < x < T − 2

u′(x+ T − 2) = f ′(x+ T − 1) +
1
2
q0( x+ T − 2 ) if 0 < x < 3− T

u′(x+ T − 2) = f ′(T + x− 1) + f ′(T + x− 3)− 1
2
p0(4− T − x) if 3− T < x < 1
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which turns to be equivalent to (2.11). �

Remark 2.1 We point out that in Proposition 2.2, the values of the control functions u are not
prescribed on (0, T − 2). Consequently, there exists an infinite number of such control functions.
The fact that u is ”free” in (0, T − 2) plays a crucial role in the sequel. �

We then set
Hc =

{((
φ0, φ1

)
, (u, f)

)
∈ H satisfying (2.11)

}
.

Corollary 2.1 Let T ∈ (2, 3) and
((
φ0, φ1

)
, (u, f)

)
∈ Hc. Then the solution φ of (2.6) satisfies

φ(T ) = φ′(T ) = 0 on (0, 1) if and only if

u(T ) = f(T ) = 0.

Proof. From Proposition 2.2 and (2.9), it follows that

φ′(T, x) = φx(T, x) = 0, x ∈ (0, 1) .

Thus, in particular
φ(T, x) = φ(T, 0) = φ(T, 1), x ∈ (0, 1) .

It follows that, in order to get φ(T ) = 0 on (0, 1) , it is necessary and sufficient to choose u(T ) =
f(T ) = 0. �

In the sequel, we use the space

Hr
c =

{((
φ0, φ1

)
, (u, f)

)
∈ Hc, u(T ) = f(T ) = 0

}
.

Definition 2.1 The Dirichlet-to-Neumann map associated with the system (2.6) is the appli-
cation A : H → L2(0, T ) defined by

A(φ0, φ1, u, f) = φx(., 1)

where φ is the solution of (2.6) associated with
(
φ0, φ1, u, f

)
. The Control Dirichlet-to-Neumann

map is the application
Ac = A|Hr

c
.

The following lemma gives a characterization of these two maps.

Lemma 2.1 Let T ∈ (2, 3) and (φ0, φ1, u, f) ∈ H. Then

A(φ0, φ1, u, f)(t) =


f ′(t)− p0(1− t) 0 < t < 1
f ′(t)− 2u′(t− 1)− q0(t− 1) 1 < t < 2
f ′(t) + 2f ′(t− 2)− 2u′(t− 1)− p0(3− t) 2 < t < T

(2.14)

As a consequence of (2.11), if (φ0, φ1, u, f) ∈ Hr
c , then

Ac(φ0, φ1, u, f)(t) =


f ′(t)− p0(1− t) 0 < t < 1
f ′(t)− 2u′(t− 1)− q0(t− 1) 1 < t < T − 1
−f ′(t) T − 1 < t < T

(2.15)

where p0 = φ1 − φ0
x and q0 = φ1 + φ0

x.
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Proof. Taking into account the expressions of p = φ′ − φx and q = φ′ + φx derived in (2.12) and
(2.13), we get:

φx(t, 1) =
q(t, 1)− p(t, 1)

2
,

which leads to (2.14). The expression (2.15) is obtained using (2.11). �

Remark 2.2 Note that the expression of Ac(φ0, φ1, u, f) in (2.15) involves only the part of u
defined on (0, T − 2), i.e. the ”free” part of u. �

Remark 2.3 Clearly, Ac ∈ L
(
Hr
c ;L

2(0, T )
)
. If moreover

(u, f, φ0, φ1) ∈ H2(0, T )×H2(0, T )×H2(0, 1)×H1(0, 1)

with the compatibility conditions

u′(0) = −φ0
x(0), f ′(T − 1) = u′(T − 2) +

1
2
(
φ0
x(T − 2) + φ1(T − 2)

)
then Ac(φ0, φ1, u, f) ∈ H1(0, T ). From (2.15) other regularity results can be easily derived. �

3 A penalty method

We are going to prove Theorem 1.1 by introducing the penalized problem:
y′′ε − yε,xx = 0 (t, x) ∈ QT ,
yε(t, 0) = uε(t) t ∈ (0, T ),
yε,x(t, 1) = ε−1[yε(t, 1)− ψ(t)]− t ∈ (0, T ),
yε(0, x) = y0(x), y′ε(0, x) = y1(x) x ∈ (0, 1).

(3.16)

where [·]− denotes the negative part so that [yε(t, 1)−ψ(t)]− = −min(0, yε(t, 1)−ψ(t)) and ε > 0.
In a first step, we prove that for any

(
y0, y1

)
∈ H1(0, 1) × L2(0, 1) and ψ ∈ H1(0, T ) satisfying

(1.3) there exists a family of controls uε ∈ H1(0, T ) such that the solution of (3.16) satisfies
yε(T ) = y′ε(T ) = 0 on (0, 1). At this level, we make use once again of the Dirichlet-to-Neumann
map.

In a second step, we provide some estimates on uε and yε which will allow to pass to the limit
in ε in order to obtain a solution of (1.1) satisfying y(T ) = y′(T ) = 0 on (0, 1) .

Let T ∈ (2, 3) and
(
φ0, φ1, u, f

)
∈ Hr

c , ψ ∈ H1(0, T ) with ψ(T ) ≤ 0. The associated solution
φ of (2.6), as we have previously noted, satisfies φ(T ) = φ′(T ) = 0 on (0, 1) . This solution φ is a
solution of (3.16) satisfying φ(T ) = φ′(T ) = 0 on (0, 1) if and only if, for any ε > 0, there exists f
such that

Ac(φ0, φ1, u, f) = ε−1[f − ψ]−, (0, T ). (3.17)

Let us define the space H1
r (1, T ) = {f ∈ H1(1, T ) : f(T ) = 0}. Using (2.15), problem (3.17)

becomes the following nonlinear control problem: given T ∈ (2, 3),

find f ∈ H1
r (1, T ) and u ∈ H1(0, T − 2) such that

f(0) = φ0(1), u(0) = φ0(1)

f ′(t) =


ε−1[f(t)− ψ(t)]− + p0(1− t) t ∈ (0, 1)

ε−1[f(t)− ψ(t)]− + 2u′(t− 1) + q0(t− 1) t ∈ (1, T − 1)

− ε−1[f(t)− ψ(t)]− t ∈ (T − 1, T )

(3.18)
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3.1 Existence and uniform bounds for solutions of the penalized problem

Lemma 3.1 For any ε > 0, problem (3.18) admits an infinite number of solutions (fε, uε).

Proof. On [0, 1] , let lε ∈ H1 (0, 1) be the unique solution of{
f ′(t) = ε−1[f(t)− ψ(t)]− + p0(1− t), t ∈ (0, 1)
f(0) = φ0(1).

(3.19)

and set f1,ε = lε(1). Similarly, on (T − 1, T ), let rε be the unique solution of the backward problem{
f ′(t) = −ε−1[f(t)− ψ(t)]−, t ∈ (T − 1, T )
f(T ) = 0.

(3.20)

and set fT−1,ε = rε(T − 1).
We then consider the following nonlinear control problem :

find uε ∈ H1(0, T − 2) and f ∈ H1 (1, T − 1) such that

f ′(t) = ε−1[f(t)− ψ(t)]− + 2u′ε(t− 1) + q0(t− 1), t ∈ (1, T − 1)
f(1) = f1,ε, f(T − 1) = fT−1,ε.

(3.21)

which consists to find a control uε steering the solution of the differential equation

f ′(t) =
1
ε
[f(t)− ψ(t)]− + 2u′ε(t− 1) + q0(t− 1), t ∈ (1, T − 1)

from the initial data f1,ε to the final data fT−1,ε. We proceed as follows : we first consider the
linear control problem

find vε ∈ H1(0, T − 2) and θε ∈ H1 (1, T − 1) such that

θ′ε(t) = 2v′ε(t− 1), t ∈ (1, T − 1)
θε(1) = f1,ε, θε(T − 1) = fT−1,ε

(3.22)

Clearly, any vε ∈ H1(0, T − 2) satisfying

vε(T − 2) = vε(0) +
1
2

(fT−1,ε − f1,ε) (3.23)

(where vε(0) ∈ R is arbitrary) gives a solution of (3.22). Without loss of generality, we take
vε(0) = 0. Now let us choose{

θε(t) = 2vε(t− 1) + f1,ε

2u′ε(t− 1) = 2v′ε(t− 1)− 1
ε
[2vε(t− 1) + f1,ε − ψ(t)]− − q0(t− 1)

t ∈ (1, T − 1) (3.24)

It is straightforward that the couple (θε, uε) defined by formulas (3.24) satisfies (3.21).
Thus, a family of solutions solution (fε, uε) to problem (3.18) is constructed if we take

fε =


lε [0, 1]
θε [1, T − 1]
rε [T − 1, T ]

(3.25)

where lε, rε and (θε, uε) are given by (3.19), (3.20) and (3.21) respectively. �
In the following step, we prove that the sequence (uε, fε) may be chosen uniformly bounded

with respect to ε in H1(0, T ). From now on, C denotes a strictly positive constant that may varies
from line to line but is independent on ε.
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Lemma 3.2 There exists a constant C = C(φ0, φ1, ψ) > 0 such that for any ε > 0, the solution
fε of (3.18) and satisfies the estimate:

(fε(t))2 ≤ C t ∈ [0, 1] ∪ [T − 1, T ] . (3.26)

If moreover φ0(1)− ψ(0) ≥ 0, then:

1
ε

(
[fε(t)− ψ(t)]−

)2

≤ C, t ∈ [0, 1] ∪ [T − 1, T ] (3.27)∫ t

0

f ′2ε (s)ds ≤ C, t ∈ [0, 1] (3.28)∫ T

t

f ′2ε (s)ds ≤ C, t ∈ [T − 1, T ] . (3.29)

Proof. We set hε = fε − ψ so that problem (3.19) writes{
h′ε(t) =

1
ε
h−ε (t) + p0(1− t)− ψ′(t), t ∈ (0, 1)

hε(0) = φ0(1)− ψ(0).
(3.30)

Multiplying this equation by hε and integrating over (0, t) for t < 1, we get

h2
ε(t) = h2

ε(0)− 2
ε

∫ t

0

[
h−ε (s)

]2
ds+ 2

∫ t

0

(
p0(1− s)− ψ′(s)

)
hε(s)ds

≤
(
h2
ε(0) +

∥∥p0
∥∥2

L2(0,1)
+ ‖ψ′‖2L2(0,1)

)
+
∫ t

0

h2
ε(s)ds.

From Gronwall’s lemma, we deduce that

h2
ε(t) ≤ C

((
φ0(1)− ψ(0)

)2
+
∥∥p0
∥∥2

L2(0,1)
+ ‖ψ′‖2L2(0,1)

)
.

and then
f2
ε (t) ≤ C

((
φ0(1)− ψ(0)

)2
+
∥∥p0
∥∥2

L2(0,1)
+ ‖ψ‖2H1(0,1)

)
, t ∈ (0, 1) . (3.31)

Similarly, problem (3.20) writes{
h′ε(t) = −1

ε
h−(t)− ψ′(t), t ∈ (T − 1, T )

hε(T ) = −ψ(T ).

Multiplying as previously this equation by hε and integrating over (t, T ) for t ∈ (T − 1, T ) , the
same arguments lead to the estimate

h2
ε(t) ≤ C

(
ψ2(T ) + ‖ψ′‖2L2(T−1,T )

)
.

This implies
f2
ε (t) ≤ C

(
ψ2(T ) + ‖ψ‖2H1(T−1,T )

)
, t ∈ (T − 1, T ) . (3.32)

Estimates (3.31) and (3.32) prove the first part of the lemma.
We now multiply the equation of hε in (3.30) by h′ε and integrate over (0, t) with t ∈ (0, 1) , we

get ∫ t

0

(h′ε(s))
2
ds+

1
ε

(
h−ε (t)

)2 =
1
2ε
(
h−ε (0)

)2 +
∫ t

0

(
p0(1− s)− ψ′(s)

)
h′ε(s)ds.
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If we assume that hε(0) = φ0(1)−ψ(0) ≥ 0, then h−ε (0) = 0 and Cauchy-Schwartz inequality imply∫ t

0

(h′ε(s))
2
ds+

1
ε

(
h−ε (t)

)2 ≤ ∫ t

0

(
p0(1− s)− ψ′(s)

)2
ds, t ∈ (0, 1) .

From this last inequality, it follows that

1
2

∫ t

0

(f ′ε(s))
2
ds+

1
ε

(
[fε(t)− ψ(t)]−

)2

≤
∫ t

0

[ψ′(s)]2ds+
∫ t

0

(
p0(1− s)− ψ′(s)

)2
ds, t ∈ (0, 1) .

With the same argument, we get on (T − 1, T ):∫ T

t

(f ′ε(s))
2
ds+

1
ε

(
[fε(t)− ψ(t)]−

)2

≤ C ‖ψ‖2H1(T−1,T ) , t ∈ (T − 1, T ) .

This ends the proof. �

Remark 3.1 From (3.28) and (3.19) (resp. (3.29) and (3.20)) it can be deduced that

1
ε2

∫ t

0

(
[fε(s)− ψ(s)]−

)2

ds ≤ C, t ∈ [0, 1]

(resp.
1
ε2

∫ T

t

(
[fε(s)− ψ(s)]−

)2

ds ≤ C, t ∈ [T − 1, T ]).

The next step is to prove that the estimates (3.26)-(3.29) hold true on (1, T − 1) .

Lemma 3.3 In (3.24), there exists a sequence (vε)ε>0 ⊂ H1(0, T − 2) such that

‖fε‖H1(1,T−1) ≤ C, ‖uε‖H1(1,T−1) ≤ C.

Proof. Fix ε > 0 sufficiently small. Let us recall first that fε = θε on (1, T − 1) and that in ( 3.24),
vε ∈ H1(0, T − 2) is an arbitrary function satisfying vε(0) = 0 and 2vε(T − 2) = fT−1,ε− f1,ε. This
amounts to say that fε ∈ H1(1, T−1) is an arbitrary function satisfying fε(1) = f1,ε and fε(T−1) =
fT−1,ε. The idea behind the following construction of fε is to choose a function joining the points
(1, f1,ε) and (1 + ε, ψ (1 + ε)) (resp. (T − 1− ε, ψ (T − 1− ε)) and (T − 1, fT−1, ε)) on [1, 1 + ε]

(resp. on [T − 1− ε, T − 1]) in such a way that the integrals 1
ε2

∫ 1+ε

1

(
[fε(t)− ψ(t)]−

)2

ds and

1
ε2

∫ T−1

T−1−ε

(
[fε(t)− ψ(t)]−

)2

ds remain uniformly bounded with respect to ε. On [1 + ε, T − 1− ε] ,
it is sufficient to take fε = ψ. One possible choice is the following:

• If ψ(1) − f1,ε < 0 and ψ(T − 1) − fT−1,ε < 0, we choose any function fε ∈ H1(1, T − 1)
satisfying fε(1) = f1,ε and fε(T − 1) = fT−1,ε. For instance:

fε(t) = max
(
fT−1,ε − f1,ε

T − 2
(t− 1) + f1,ε, ψ(t)

)
, t ∈ (1, T − 1) .

• If ψ(1)− f1,ε ≥ 0 and ψ(T − 1)− fT−1,ε ≥ 0,

fε(t) =


ψ(t) + (ψ(1)− f1,ε)

(
1
ε (t− 1)− 1)

)
t ∈ [1, 1 + ε]

ψ(t) t ∈ [1 + ε, T − 1− ε]
ψ(t) + (ψ(T − 1)− fT−1,ε)(−1 + T−1−t

ε ) t ∈ [T − 1− ε, T − 1]
. (3.33)
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• If ψ(1)− f1,ε ≥ 0 and ψ(T − 1)− fT−1,ε < 0,

fε(t) =


ψ(t) + (ψ(1)− f1,ε)

(
1
ε (t− 1)− 1)

)
t ∈ [1, 1 + ε]

ψ(t) t ∈
[
1 + ε, T2

]
max

(
fT−1,ε−ψ( T

2 )
T
2 −1

(t− T
2 ) + ψ(T2 ), ψ(t)

)
t ∈
[
T
2 , T − 1

]
• If ψ(1)− f1,ε < 0 and ψ(T − 1)− fT−1,ε ≥ 0,

fε(t) =


max

(
ψ( T

2 )−f1,ε
T
2 −1

(t− 1) + f1,ε, ψ(t)
)

t ∈
[
1, T2

]
.

ψ(t) t ∈
[
T
2 , T − 1− ε

]
ψ(t) + (ψ(T − 1)− fT−1,ε)(−1 + T−1−t

ε ) t ∈ [T − 1− ε, T − 1]

By construction fε ∈ H1(1, T − 1) and satisfies fε(1) = f1,ε, fε(T − 1) = fT−1,ε in all cases.
Note moreover that from (3.24), one has:

2u′ε(t− 1) = f ′ε(t)−
1
ε
[fε(t)− ψ(t)]− − q0(t− 1), t ∈ (1, T − 1) .

so that it is sufficient to find uniform estimates with respect to ε for fε.
For the first case, note that fε ≥ ψ on (1, T − 1) and that from (3.26), |fT−1,ε| and |f1,ε| are

uniformly bounded with respect to ε. It is straightforward that this implies uniform bounds with

respect to ε for ‖fε‖H1(0,T ) and
∫ T
0

(
[fε(t)−ψ(t)]

ε

)2

dt = 0.

Assume now that ψ(1)− f1,ε ≥ 0. Then∫ 1+ε

1

|fε(t)|2 dt =
∫ 1+ε

1

∣∣∣∣ψ(t) + (ψ(1)− f1,ε)
(

1
ε

(t− 1)− 1)
)∣∣∣∣2 dt

≤ C

(∫ 1+ε

1

|ψ(t)|2 dt+ (ψ(1)− f1,ε)
2
∫ 1+ε

1

∣∣∣∣(1
ε

(t− 1)− 1)
)∣∣∣∣2 dt

)

≤ C

(∫ 1+ε

1

|ψ(t)|2 dt+ ε (ψ(1)− f1,ε)
2

)
On the other hand∫ 1+ε

1

|f ′ε(t)|
2
dt =

∫ 1+ε

1

∣∣∣∣ψ′(t) +
1
ε

(ψ(1)− f1,ε)
∣∣∣∣2 dt

≤ C

(∫ 1+ε

1

|ψ′(t)|2 dt+
|(ψ(1)− f1,ε)|2

ε

)
.

These two last inequalities together with (3.27) give

‖fε‖H1(1,1+ε) ≤ C.

To prove a similar estimate for uε on (1, 1 + ε), we just need to estimate
∫ 1+ε

1

(
[fε(t)− ψ(t)]−

ε

)2

dt.

But, from (3.33), we get∫ 1+ε

1

(
[f(t)− ψ(t)]−

ε

)2

=
(ψ(1)− f1,ε)

2

ε2

∫ 1+ε

1

(
1− 1

ε
(t− 1))

)2

dt

≤ (ψ(1)− f1,ε)
2

ε
≤ C
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thanks again to (3.27). Thus ∫ 1+ε

1

|u′ε(t)|
2
dt ≤ C.

The same arguments on (T − 1− ε, T − 1) with ψ(T − 1)− fT−1,ε ≥ 0 give the estimates

‖fε‖H1(T−1−ε,T−1) ≤ C,

∫ T−1

T−1−ε
|u′ε(t)|

2
dt ≤ C.

The other situations are easier to treat. This ends the proof of the lemma. �

As a summary, we have proved:

Corollary 3.1 Let T ∈ (2, 3) and
(
φ0, φ1

)
∈ H1(0, 1)×L2(0, 1), ψ ∈ H1(0, T ) with ψ(T ) ≤ 0 and

assume that φ0(1) − ψ(0) ≥ 0. Then problem (3.18) admits a sequence (uε, fε) of solutions such
that

f2
ε (t) ≤ C, t ∈ [0, T ]

‖(fε, uε)‖H1(0,T ) ≤ C∫ T

0

(
[fε(t)− ψ(t)]−

ε

)2

dt ≤ C.

3.2 Limit of the family controls {uε}ε>0 - Proof of the main result

The aim of this section is to obtain a solution of problem (1.1) satisfying (1.2) by passing to the
limit in problem (3.18).

Thanks to Corollary 3.1, we may extract from the sequence (fε, uε) a subsequence, still denoted
by (fε, uε) , such that, as ε goes to zero,

(fε(t), uε(t)) → (f(t), u(t)) , t ∈ [0, T ]
(fε, uε) ⇀ (f, u) , in

(
H1
r (0, T )

)2
weak

Ac(uε, fε, φ0, φ1) ⇀ Ac(u, f, φ0, φ1) in L2 (0, T ) weak

[fε − ψ]−

ε
⇀ µ in L2 (0, T ) weak

with (f, u) satisfying (2.11) on (T − 2, T ) .
Recalling that problem (3.18) is equivalent to problem (3.17 ), it follows that

Ac(u, f, φ0, φ1) = µ (3.34)

On the other hand, since

[fε(t)− ψ(t)]− → 0, t ∈ [0, T ] as ε→ 0

it follows that
f − ψ ≥ 0, on [0, T ] . (3.35)

We now prove that (f − ψ)Ac(u, f, φ0, φ1) = 0 on (0, T ). (3.17) implies that

(fε − ψ)Ac(uε, fε, φ0, φ1) = (fε − ψ)
[fε − ψ]−

ε
= −

(
[fε − ψ]−

)2

ε
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so that, using corollary (3.1), we get

[fε − ψ]−√
ε

→ 0 in L2(0, T ) as ε→ 0

On the other hand, as ε goes to zero

fε − ψ → f − ψ in L2(0, T ),

Ac(uε, fε, φ0, φ1) ⇀ Ac(u, f, φ0, φ1) in L2 (0, T ) weak.

Thus

(fε − ψ)Ac(uε, fε, φ0, φ1) ⇀ (f − ψ)Ac(u, f, φ0, φ1) in L2 (0, T ) weak as ε→ 0

and
(f − ψ)Ac(u, f, φ0, φ1) = 0, in (0, T ) .

It remains to prove that the solution φε of (2.6) associated with the data
(
uε, fε, φ

0, φ1
)

converges
to the solution φ of (2.6) associated with the data

(
u, f, φ0, φ1

)
. But by linearity, φ − φε is the

solution of (2.6) associated with (u− uε, f − fε, 0, 0) . Thus by the first part of proposition 2.1, we
get

lim
ε→0

‖(φ− φε, φ
′ − φ′ε)‖L2×H−1(0,T ) = 0.

Therefore φ is a solution of our control problem.

4 A direct solution for the control problem

We now proceed to give a direct proof of Theorem 1.1. Let T ∈ (2, 3), (φ0, φ1, u, f) ∈ Hr
c and

ψ ∈ H1(0, T ) with the conditions

ψ(0) ≤ φ0(1), ψ(T ) ≤ 0.

Let φ be the associated solution of (2.6). From Corollary 2.1, we know that φ(T ) = φ′(T ) = 0 on
(0, 1) . Fixing

(
φ0, φ1

)
, a solution of (1.1) is obtained if (and only if) we can find (u, f) such that

(φ0, φ1, u, f) ∈ Hr
c and solves the problem

f − ψ ≥ 0, (0, T )
Ac(φ0, φ1, u, f) ≥ 0, (0, T )
(f − ψ)Ac(φ0, φ1, u, f) = 0, (0, T )
f(0) = φ0(1), f(T ) = 0.

(4.36)

Taking into account (2.15), problem (4.36) is decomposed into two parts.

• On (0, T − 1), problem (4.36) writes:
f − ψ ≥ 0,
f ′ − v ≥ 0,
(f − ψ) (f ′ − v) = 0
f(0) = φ0(1)

, (0, T − 1), (4.37)

where

v(t) =
{
p0(1− t) 0 < t < 1
2u′(t− 1)− q0(t− 1) 1 < t < T − 1

, (4.38)
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• On (T − 1, T ) : 
f − ψ ≥ 0,
f ′ ≤ 0,
(f − ψ) f ′ = 0,
f(T ) = 0

, (T − 1, T ), (4.39)

We solve separately the problems (4.37) and (4.39) using the following result which is for
instance a consequence of [1] :

Lemma 4.1 Let h ∈ H1(0, T ) and θ0 ≥ h(0). Then the function

θ(t) = max
(
θ0, sup

0≤s≤t
h(s)

)
, t ∈ [0, T [

belongs to H1(0, T ) and is the unique solution of the problem
θ ≥ h in (0, T )
θ′ ≥ 0 in (0, T )
θ′ (θ − h) = 0 in (0, T )
θ(0) = θ0.

(4.40)

Using this lemma and the notation [f ]+ = max (0, f), we get:

Proposition 4.1 Let v ∈ L2 (0, T − 1) defined by (4.38) and V (t) =
∫ t
0
v(s)ds. Then the unique

solution of (4.37) is given by

f(t) = V (t) + max
(
φ0(1), sup

0≤s≤t
(ψ(s)− V (s))

)
, t ∈ (0, T − 1) . (4.41)

The unique solution of (4.39) is given by

f(t) =
[

sup
t≤s≤T

ψ(s)
]+

, t ∈ (T − 1, T ). (4.42)

Proof. In (0, T − 1), let us set

V (t) =
∫ t

0

v(s)ds, θ(t) = f(t)− V (t), h(t) = ψ(t)− V (t) (4.43)

so that system (4.37) transforms into (4.40) with θ0 = φ0(1). From Lemma 4.1, it follows that the
unique solution of (4.37) in H1(0, T − 1) is given by:

f(t) = V (t) + max
(
φ0(1), sup

0≤s≤t
(ψ(s)− V (s))

)
, t ∈ (0, T − 1) .

Similarly, in (T − 1, T ), let us set δ(t) = f(T − t) and g(t) = ψ(T − t) for t ∈ (0, 1) so that (4.39)
transforms into the following system:

δ ≥ g in (0, 1)
δ′ ≥ 0 in (0, 1)
δ′ (δ − g) = 0 in (0, 1)
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which (again as a consequence of Lemma 4.1), since by assumption δ(0) = f(T ) = 0 and g(0) =
ψ(T ) ≤ 0, has a unique solution in H1(0, 1) given by

δ(t) = max
(
δ(0), sup

0≤s≤t
g(s)

)
.

In other words,

f(T − t) = max
(

0, sup
0≤s≤t

ψ(T − s)
)
, 0 < t < 1,

or equivalently (4.42). �

Proposition 4.2 There exists u such that the function f given by (4.41) and (4.42) belongs to
H1(0, T ).

Proof. To get a function f ∈ H1(0, T ), we have to ensure the continuity of f at t = T − 1 :

lim
t→(T−1)−

f(t) = lim
t→(T−1)+

f(t). (4.44)

But from

lim
t→(T−1)−

f(t) = V (T − 1) + max
(
φ0(1), sup

0≤s≤T−1
(ψ(s)− V (s))

)
and

lim
t→(T−1)+

f(t) =
[

sup
T−1≤s≤T

ψ(s)
]+

,

we are led to solve the following problem: find u ∈ H1(0, T − 2) such that

V (T − 1) + max
(
φ0(1), sup

0≤s≤T−1
(ψ(s)− V (s))

)
=
[

sup
T−1≤s≤T

ψ(s)
]+

. (4.45)

Note that the number Λ =
[
supT−1≤s≤T ψ(s)

]+ does not depend on u and that from (4.38)

V (t) =

{ ∫ 1

1−t p
0(s)ds, 0 ≤ t ≤ 1∫ 1

0
p0(s)ds+ 2 (u(t− 1)− u(0))−

∫ t−1

0
q0(s)ds, 1 ≤ t ≤ T − 1

and in particular

V (T − 1) = 2 (u(T − 2)− u(0)) +
∫ 1

0

p0(s)ds−
∫ T−2

0

q0(s)ds.

Let us noteA = max(φ0(1), sup0≤s≤1(ψ(s)−V (s))) and look for a control u such that sup1≤s≤T−1(ψ(s)−
V (s)) ≥ A i.e. such that, for all s ∈ (1, T − 1),

2(u(s− 1)− u(0)) ≥ ψ(s)−
∫ 1

0

p0(y)dy −A+
∫ s−1

0

q0(y)dy ≡ g(s). (4.46)

We check that g(1) ≤ 0 from the definition of A and Λ. The continuity condition (4.45) then
becomes

2(u(T − 2)− u(0)) = Λ−
∫ 1

0

p0(y)dy −A+
∫ T−2

0

q0(y)dy ≡ B.



15

compatible with (4.46) since we compute B−g(T −1) ≥ 0. We then choose u(s−1) and u(0) such
that 2(u(s − 1) − u(0)) = g(s) + G(s) where G(s) is a corrector function - linear positive - with
g(1) +G(1) = 0 and g(T − 1) +G(T − 1) = B. From the condition u(0) = φ0(0), this permits to
fixe the control u in (0, T − 2) as follows :

u(s) = φ0(0) +
1
2

(
g(s+ 1) +G(s+ 1)

)
, 0 ≤ s ≤ T − 2. (4.47)

This ends the proof. �
Proposition 4.1 and 4.2 then prove Theorem 1.1.

5 Numerical illustration

We illustrate our controllability results with some simple applications corresponding to the numer-
ical value T = 2.2 and the initial data

(y0(x), y1(x)) =
(
x(1− x

2
),−3x

)
, x ∈ (0, 1) (5.48)

which ensure an impact at the right extremity x = 1 for some t ∈ (0, T ) if the function ψ is
large enough. We consider the constant case ψ(t) = L, L ≤ 0 and the time dependent case with
ψ(t) = sin(nπt/T )/5 for some n ∈ N.

5.1 The penalty method

ε, T , y0, y1 and the obstacle function ψ being given, the process associated with the penalized
approach is as follows: the function f(t) = yε(t, 1) is first computed on (0, T ) by solving the
nonlinear ordinary differential equations 3.19 and 3.20 using the explicit Euler scheme. This then
leads to the control function uε = yε(t, 1) from (3.24). The control on the time interval (T − 2, T )
is then compute by solving the system (2.11). Once the displacement yε is known at the two
extremities, the controlled displacement yε, solution of the partial differential equation (3.16) on
QT is finally obtained using a P1 (finite element) approximation in space and the leapfrog scheme
for the time derivative. In the case where the obstacle behavior is not known a priori, specific
approximations are necessary (we refer to [2, 12] where accurate and consistent schemes preserving
the energy are proposed). The set QT = (0, T ) × (0, 1) is discretized with a uniform grid with
h = dt = 1/1000.

Figures 1, 2 and Table 5.1 report some results obtained in the constant case ψ(t) = −1/10 on
(0, T ) with ε = 1/200. As expected, the penalized approach ensure a small interpenetration of the
string below the obstacle, in the sense that during a time interval, the quantity yε(1, t) − ψ(t) is
strictly negative, but remains of order −ε. We also check that the control uε remains uniformly
bounded with respect to ε. Figures 3, 4 and Table 5.1 reports similar results in the time dependent
case ψ(t) = sin(2πt/T )/5.

5.2 Direct method

For the direct method, the process is as follows: the control u is first computed on (0, T − 2)
with the formulae (4.47) which permits to compute the function v on (0, T − 1) defined by (4.38),
then V (s) =

∫ s
0
v(t)dt and finally the function f(t) = y(t, 1) on (0, T ) with the formula (4.41) and

(4.42). The control u on (T − 2, T ) is then given by (2.11). The direct approach permits not only
to satisfy the condition y(t, 1) − ψ(t) ≥ 0 for all t but also to compute explicitly the control. In
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Figure 1: Penalty method - ε = 1/200 - ψ(t) = L = −1/10 - Evolution of the control uε (Left)
and corresponding displacement yε(·, 1) (Right) vs t ∈ [0, T ] - ‖uε‖L2(0,T ) ≈ 6.131× 10−1.

Figure 2: Penalty method - ε = 1/200 - ψ(t) = L = −1/10 - Evolution of yε on QT in the controlled
(Left) and uncontrolled case (Right).

ε = 1/100 ε = 1/200 ε = 1/400 ε = 1/800
‖uε‖L2(0,T ) 6.175× 10−1 6.131× 10−1 6.108× 10−1 6.097× 10−1

‖ε−1[yε(·, 1)− ψ]−‖L2(0,T ) 1.617 1.624 1.627 1.628
mint∈[0,T ](yε(t, 1)− ψ(t)) −2.47× 10−2 −1.25× 10−2 −6.34× 10−3 −3.19× 10−3

Table 1: Penalty approach - ψ(t) = L = −1/10.

ε = 1/100 ε = 1/200 ε = 1/400 ε = 1/800
‖uε‖L2(0,T ) 5.586× 10−1 5.533× 10−1 5.506× 10−1 5.492× 10−1

‖ε−1[yε(·, 1)− ψ]−‖L2(0,T ) 1.837 1.844 1.848 1.850
mint∈[0,T ](yε(t, 1)− ψ(t)) −3.09× 10−2 −1.57× 10−2 −7.97× 10−3 −4.01× 10−3

Table 2: Penalty approach - ψ(t) = sin(2πt/T )/5.
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Figure 3: Penalty method - ε = 1/200 - ψ(t) = sin(2πt/T )/5 - Evolution of the control uε (Left)
and corresponding displacement yε(·, 1) (Right) vs t ∈ [0, T ] - ‖uε‖L2(0,T ) ≈ 5.533× 10−1.

Figure 4: Penalty method - ε = 1/200 - ψ(t) = sin(2πt/T )/5 - Evolution of yε on QT in the
controlled (Left) and uncontrolled case (Right).
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the simple case ψ(t) = L ∈ (−3/2, 0] in [0, T ], we obtain the following expressions. From (4.47),
we deduce that

u(t) = − t
2

(
2t− 1 +

L

T − 2

)
, t ∈ (0, T − 2) (5.49)

leading to the function V ∈ L2(0, T − 1) given by

V (t) =


t(−3 + t) 0 ≤ t ≤ 1
4− 2T − tL+ L

T − 2
1 ≤ t ≤ T − 1

(5.50)

and to the function f given by

f(t) =



t(−3 + t) +
1
2

0 ≤ t ≤ tL

L tL ≤ t ≤ 1

L(−t+ T − 1)
T − 2

1 ≤ t ≤ T − 1

0 T − 1 ≤ t ≤ T

(5.51)

with tL = (3 −
√

7 + 4L)/2 ∈ (0, 1). From (2.11), the function f then provides the control u in
(T − 2, T ) 

u(t) = −L
2

+
t

2
− t2 T − 2 < t < 1

u(t) =
3
2
− L

2
+
t2

2
− 5t

2
1 < t < tL + 1

u(t) = −3 +
L

2
+

5t
2
− t2

2
tL + 1 < t < 2

u(t) = −1
2
L(t− T )
T − 2

2 < t < T

(5.52)

assuming that L ∈ (−3/2, 0) and T ∈ (2, 3) are such that tL > T − 2. The knowledge of
(y(t, 0), y(t, 1)) in (0, t) then permits to compute the entire solution y on QT by using the for-
mulae given in Section 2. In practice, it is simpler to approximate y by a numerical discretization
of the wave equation (1.1). Figures 5 and 6 report the graph in the case L = −1/10. In particular,
the set {t ∈ (0, T ), f(t) = ψ(t) = L} is reduced to one interval, corresponding to the contact pe-
riod. Figure 6-left depicts the corresponding evolution of y on QT . The L2-norm of the control is
‖u‖L2(0,T ) ≈ 4.84×10−1. The others figures address the time dependent case ψ(t) = sin(nπt/T )/5
for n = 6, 11, 19.

6 Comments and remarks

1. It is clear from the proof that instead of looking for controls such that the solution of (1.1)
satisfies y(T ) = y′(T ) = 0 on (0, 1), we may look for a control such that, given

(
z0, z1

)
∈

H1(0, 1)×L2(0, 1), the solution satisfies y(T ) = z0, y′(T ) = z1? It suffices to suitably change
the expression of u′ in Proposition 2.2. The exact result is then

Theorem 6.1 Let T ∈ (2, 3). For any
((
y0, y1

)
,
(
z0, z1

))
∈
[
H1(0, 1)× L2(0, 1)

]2, ψ ∈

H1(0, T ) with
y0(1) ≥ ψ(0), z0(1) ≥ ψ(T ),
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Figure 5: ψ(t) = L = −1/10 - Evolution of the control u (Left) and corresponding displacement
y(·, 1) (Right) vs t ∈ [0, T ] - ‖u‖L2(0,T ) ≈ 4.84× 10−1.

Figure 6: Evolution of the controlled solution y in QT coresponding to ψ(t) = −1/10 (Left) and
ψ(t) = sin(6πt/T )/5 (Right).
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Figure 7: ψ(t) = sin(6πt/T )/5− - Evolution of the control u (Left) and corresponding displacement
y(·, 1) (Right) vs t ∈ [0, T ] - ‖u‖L2(0,T ) ≈ 6.44× 10−1.
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Figure 8: ψ(t) = sin(11πt/T )/5− - Evolution of the control u (Left) and corresponding displace-
ment y(·, 1) (Right) vs t ∈ [0, T ].
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Figure 9: ψ(t) = sin(19πt/T )/5− - Evolution of the control u (Left) and corresponding displace-
ment y(·, 1) (Right) vs t ∈ [0, T ].

Figure 10: Evolution of the controlled solution y in QT coresponding to ψ(t) = sin(11πt/T )/5
(Left) and ψ(t) = sin(19πt/T )/5 (Right).
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there exists u ∈ H1(0, T ) such that (1.1) admits a unique solution y such that y ∈ C
(
[0, T ] ,H1(0, 1)

)
∩

C1
(
[0, T ] , L2(0, 1)

)
and satisfying y(T ) = z0, y′(T ) = z1 on (0, 1).

2. The case T = 2. For simplicity with respect to the use of the caracteristic method, we have
assumed that T ∈ (2, 3), but the controllability is a fortiori true for any T > 2. Concerning
the limit case T = 2, if we use the penalty method, we first note that for the linear problem,
in view of corollary 2.1, the condition u(2) = f(2) = 0 is possible for any initial data(
φ0, φ1

)
∈ H1(0, 1)× L2(0, 1) if and only if the following compatibility conditions hold

u(0) = φ0(0), f(0) = φ0(1).

The control is then given by{
u′(t) = f ′(t+ 1) + 1

2q
0(t) if 0 < t < 1

u′(t) = f ′(t− 1)− 1
2p

0(2− t) if 1 < t < 2

and the control Dirichlet-to-Neumann map is given by

Ac(u, f, φ0, φ1)(t) =
{
f ′(t)− p0(1− t) a. e. 0 < t < 1
−f ′(t) a.e. 1 < t < 2

and it does not depend on u anymore. Thus the differential equation corresponding to (3.18)
is: 

f ′(t) =


1
ε
[f(t)− ψ(t)]− + p0(1− t) t ∈ (0, 1)

−1
ε
[f(t)− ψ(t)]− t ∈ (1, 2)

f(0) = φ0(1), f(2) = 0

(6.53)

For f to be a H1(0, 2) function, we need the condition

f(1−) = lim
t→1−

f(t) = lim
t→1+

f(t) = f(1+). (6.54)

If v ∈ H1 (0, 1) satisfies v(0) = 0 and v(1) = f(1+) − φ0(1) then the couple
(
f, p0

)
defined

on (0, 1) by

p0(1− t) = v′(t)−
[
v(t) + φ0(1)− ψ(t)

]−
ε

; f(t) = v(t) + φ0(1).

With this choice, (6.53) and (6.54) are satisfied but the initial data depend on ε. To pass to
the limit with respect to ε will impose supplementary conditions on the initial data.

The conclusion is that, in general, even the penalized problem is not controllable for any
initial data. The same kind of problem occurs if one tries the direct method.

3. Using this approach, we may also address the case of a lower and upper obstacle ψl, ψu ∈
H1(0, T ) so that ψl(t) ≤ y(t, 1) ≤ ψu(t), t ∈ (0, T ) with the condition ψl(T ) ≤ 0 ≤ ψu(T )
(see [2]).

4. With the method used in section 3, we can consider the nonlinear control problem
y′′ − yxx = 0 (t, x) ∈ (0, T )× (0, 1),
y(t, 0) = u(t) t ∈ (0, T ),
yx(t, 1) = f(t, y) t ∈ (0, T ),
y(0, x) = y0(x), y′(0, x) = y1(x) x ∈ (0, 1).
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and prove the controllability for
(
y0, y1

)
∈ H1(0, 1) × L2(0, 1) at any time T > 2 whenever

f is continuous with respect to t and Lipschitz with respect to y.

If f is superlinear in y, there will be a problem to act on the blow-up time of a solution of (3.18)
in (0, 1) where the control u does not act. But once conditions on f ensures the existence of
the solution of (3.18) on (0, 1) , the same technique will provide global controllability.

5. The same problem for the wave equation in higher dimension is an open problem.
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