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Abstract

Linear systems of Timoshenko type equations for beams including a memory term are
studied. The exponential decay is proved for exponential kernels, while polynomial kernels are
shown to lead to a polynomial decay. The optimality of the results is also investigated.
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1. Introduction

In this paper we consider linear systems of Timoshenko type with memory, which
are written as

P1Pxu _k((px"’_lp)x =0 in (07L) x (0, OO)? (1'1)

P — b +gx o + k(o +¢) =0 in (0,L) x (0, ), (1.2)
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where p,, k, p,,b and L are positive constants. The functions ¢ and y describe the
transverse displacement of the beam and the rotation angle of a filament,
respectively. The boundary conditions we consider here are given by

0(0,1) = (L, t) =(0,¢) =y(L,t) =0, t=0. (1.3)

The initial conditions are
?(,0) =g, @,(,0) =0, Y(,0)=Yo Y,(,0)=y, in (0,L). (14)

The usual convolution term

g (1) = /0 gt — (v, ) ds

represents the memory effect with a real-valued C>-function g.

Our main interest concerns the asymptotic behavior of the solution of the system
above. That is, whether the dissipation given by the memory effect in Eq. (1.2) is
strong enough to stabilize the whole system. Another natural question concerning
the asymptotic behavior is about the rate of decay of the solution. That is, what type
of rate of decay may we expect? (if there exist one). How can the damping
mechanism given by the memory effect through the relaxation function ¢ be effective
to produce uniform stabilization?

Let us mention some known results about related viscoelastic systems. Dafermos
[3] proved that the solutions to viscoelastic systems tend to zero as time tends to
infinity, but without giving explicit rates of decay. Lagnese [10] considered a linear
viscoelastic equation obtaining uniform rates of decay but introducing additional
damping terms acting on the boundary. Greenberg [7] and Hrusa [8] proved an
exponential rate of decay for the nonlinear viscoelastic equation when the relaxation
function g is of the form g(¢) = e7*. In this case using the fact that ¢'(r) = —ug(z)
the convolution term is eliminated by differentiation, therefore the resulting equation
has no integral term, hence this method cannot be used for a more general class of
relaxation functions even for those which are a linear combination of exponential
terms with varying rates of decay. A similar result was obtained by Dassios and
Zafiropoulos [4] for homogeneous and isotropic viscoelastic materials which occupy
the whole three-dimensional space. They proved that the longitudinal and transverse
waves decay to zero uniformly like r""73/2, where m increases depending on the
symmetry of the initial data, provided the relaxation is an exponential function
like 7+ pye"". The method the authors used is based on the study of the roots of the
characteristic polynomial associated to the ordinary differential equation, which is
obtained by taking Fourier transform of the system and then differentiating the
resulting equation with respect to time. By using the fact that the kernel g is an
exponential function, that is ¢'(#) = —yg(z), the convolution term is eliminated, so
the authors work with the resulting purely ordinary differential equation. In
[11,13,14] it was proved that the rate of decay of the solution depends on the rate of
decay of the relaxation function, that is if the relaxation function decays
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exponentially then the solution decays exponentially, while if the relaxation function
decays polynomially then the solution decays also polynomially with the same rate.
For localized damping in viscoelasticity see Rivera and Peres [15] where it is shown
that the first-order energy decays exponentially to zero provided the relaxation
kernel also decays exponentially to zero. When the kernel decays polynomially, the
problem is open.

Finally, we remark that the memory effect is a subtle damping mechanism, the
effect of which depends on the rate of decay rather than its dissipative properties. In
fact, if we consider the memory effect with a dissipative relaxation function together
with other stronger dissipative effects, for example the frictional damping, then the
resulting dissipation does not produce any rate of decay if the relaxation function
does not decay uniformly, see the work of Frabrizio and Polidoro [6].

The main result of this paper is that the whole system decays uniformly if and only
if the coefficients satisfy

P _ k

=y (1.5)

Concerning the rate of decay, we will show that the solution decays exponentially to
zero provided the kernel tends to zero also exponentially. When the kernel decays to
zero polynomially, the solution also decays polynomially with the same rate. More
precisely: If g is of exponential type, i.e. if the following assumption

g>0, 3Jko,ki,ky>0: —kog<g' < — kg, g”|<k2g,} (1.6)

A=b— [ g(s)ds>0
is satisfied, then the exponential decay of the energy
1 L t
B0 =5 [ ool 4o+ (b= [ e )P + Ko+ 0P + g0 s

for a solution (¢,y) as time tends to infinity will be proved if and only if the
coefficients satisfy (1.5). The symbol [0 denotes the following convolution:

wono = [ =911 (s) (O ds.

If g is of polynomial type, i.c. if it satisfies

0<g(r)<bo(1+1)7",

ptl p+l
—big(1) 7 <g'()< = bag(1) 7, (1.7)
p2 pH2

—bslg' (NPT <g" (1)< — balg' (1) P71,

with positive constants by, by, by, b3, by and p>2, then the polynomial decay of the
energy will be proved. This result is also shown to be optimal in the sense, that there
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cannot occur an exponential decay. The typical example g satisfying (1.7) is
of course

3(1) = bo(1+ 1) 7.

In Sections 2 and 3 we consider exponential kernels showing the exponential decay
result under assumption (1.5) and that there is no uniform decay if this assumption is
not satisfied, respectively. In Sections 4 and 5 polynomial kernels are studied and the
polynomial decay of the energy (under assumption (1.5)) is proved as well as the
optimality, i.e. non exponential decay, respectively. The results in Sections 2, 4 and 5
are proved by energy methods, using suitably sophisticated estimates for multipliers,
while Section 3 also uses sharp perturbation arguments for the spectral radius of a
semigroup.

Remark. Timoshenko plates can be dealt with in a similar manner as the
Timoshenko beams discussed here.

The uniform stabilization of Timoshenko beams with the memory term g * ., in
Eq. (1.2) replaced by some control function f was studied by Soufyane [19]. He
showed the exponential decay of the associated energy for

S (e 1) = by, (x, 1)

and also if and only if assumption (1.5) is satisfied. Previous work of different
authors considered two boundary control functions, like Kim and Renardy [9], or
two forces, see [20]. In our paper the first results are presented for a memory type
control term, both for exponential and for polynomial kernels.

In the sequel we shall always assume the unique existence of strong solutions to
the initial-boundary value problem under consideration, cp. for example [18,19]. The

problem is well posed for data ((¢,, ®,), (Yo, ¥,)) in the Sobolev space [H*((0, L)) x
H{((0,L))]*. Weak solutions and the energy are well defined also in [H{((0, L)) x
L((0. L)

2. Exponential decay

First, we consider exponential kernels of type (1.6) and we look for the
exponential decay of the energy

1 L t
B0 =5 [ mlo ol (b= [ e )P Ko+ 9P + 900 d. @)

Using the following simple lemma (cf. Lemma 3.2 from [16]).
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Lemma 2.1. For f,he C'([0, ), R) we have
27+ 0O0 = (rEm0 + 5] [ 760 as ok - (ron | - romo,

We easily conclude that the energy decays:

L
jt /|1ﬁ| dx + = /Og’Dtpxdx<O. (2.2)

The main point to show the exponential decay is to construct a Lyapunov
functional & satisfying

d

BENSZLO<BEG), — L)< —aZ(1)

for all t>0 and some positive constants f;, f,,a. To achieve this we will use the
multiplicative technique, and our starting point will be the multiplier (g * /), to deal
with the functional I given by

L L L
1() = /0 pothi(g + ), dx + b /0 Walg ¥ dx + & /0 V(g ¥) d

1 L b t L
-5/ |g*wx|2dx—(/gdr>/ 2 dx
2 0 2 0 0
L L t L
+9/ ngﬂxdx—kE/ ngpdx—’f /gd‘c / | dx
2 Jo ) 2 Jo 2\Jo 0

which will yield a negative term — fOL |1//,|2 dx. To simplify notations let us introduce
the symbol ¢ by

wonin = | gt~ $){hr) — h(s)} ds.

Then we have

Lemma 2.2. There are ¢>0 and for any ¢>0 a positive constant C, such that
for t=0

d P2 ~ 2 / o 2
——1(1) < ——9(0)/ V| dx+Ce(|g|+g)/ V.| dx
dt 2 0 0

L L L
+ c/ \g’|l]lpxdx+c/ g”l]x//dx—i—e/ lo.|* dx. (2.3)
0 0 0
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Proof. Multiplying Eq. (1.2) by (g *),, we obtain

d L
E/o P2‘//t<g*¢)tdx
d L 1 L ) L
=0 [ wtowadre s [ClavuFas— [Cugenax
L L
+b/0 ¢X,<gwx>dx+k/0 Vilg ) dx

L L L
+ ng(O)/O Ilﬂtlzderpz/o gV dx—pz/o W, (g" O) dx
L
—k/ o {9(0)y + ¢ xy} dx.
0

Observing

L _bd L t 5 b L 5
o[t =35 [ [aas)ufar=] [“ow P

bd [ b [
= O Z 'O
2dt/0 g l/fxdx+2/0 g Oy, dx

and

k/OLw,<g*w>dx—’g%/f(/otgdﬁ|¢|2dx—§/0Lg|w|2dx

kd [F k [t
- = O = 'O
24t )y g lﬁdx—i-z/o g Oy dx,

we conclude
d L 2 L /
10 =00 [l i, [ gupar
0 0
L L
—p2/0 wt<g"w>dx+k/0 ooV — g O V) d

b (L 5 b [t k(X k[t
5| g dx+=5 | JOy dx—5 [ gl dx+5 | ¢ Oydx
2 Jo 2 Jo 2 Jo 2 Jo

which implies the assertion of the lemma. [

Now we introduce the multiplier w given by the solution of the Dirichlet problem

Wy =V, w0)=w(L)=0,
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and we introduce the functional
L L
Ji(1) = p, ; Vo dX+p1/0 @,w dx

in order to get a negative term — fOL W |* dx.

Lemma 2.3. For any ¢, >0 there exists a positive constant C., >0 such that for t=0:

d L ) /1 L 5 L L )
—h(O<Cy [ Wl dx—5 [ W[ dx+C, | gO¢dx+ea | |of dx. (24)
dt 0 2 Jo 0 0

Proof. Multiplying Eq. (1.2) by  we get

d L B L 5 t L ) L 5
o Ry dx—(b—/o qd)/o WiFav—k [ fas
L L
—k /0 P dx — /0 (GO d. (2.5)

Multiplying Eq. (1.1) by w we obtain

d [t L Lo L
E/ prowdx = —k/ oY, dx+k/ [wy dx+p1/ owidx.  (2.6)
0 0 0 0

Eqgs. (2.5) and (2.6) lead to

e pz/ P dx—( /qdr)/ |w|dx—k/ P dx
Ttk / el dx + p, /0 pove dx — /0 (g0, dx.

Observing that, for 6 >0,

L L L
. 2
|/0 (gowwxdxscajo gwxdxw/o W d,

our conclusion follows. O

Let &(¢) and A(r), respectively, denote the functionals

éa](l) = NIE(I) — Nz](l) +N3J1([),

L
) = / W+ 22 + g0y, . 2.7)
0
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Using Lemmas 2.2, 2.3 and assumption (1.6) on g, it follows for any ¢; >0 and for
sufficiently large Ni*> N5*, N§* that & () satisfies

d NO Ne
— &5 — =21 — =L
4610 > V-5

L L
/0 gl P dx + e /0 (P + o) dx. (28

Let us introduce the functional

L L L
KO = [ obilocn st [ hoas=R [Tgrvo s @9

which will provide us a negative term — fOL lp + l,bx|2 dx, and it is the next lemma,
where we shall use the essential condition (1.5) on the coefficients.

Lemma 2.4. Assume (1.5), i.e.
pL_k

py b

Then there exists for any ¢>0 a constant C.>0 such that for t=0:

d 7 L
GROS b= g5 0)0d2 K [ o+ vl as

L L L
e / o, dx + C. / 16100 + gl dx + ps / 0, dx.

Proof. Multiplying Eq. (1.2) by ¥ + ¢, and using Eq. (1.1) we get

d (- _ x=L pi ("
G| ptoc s = bw - g v o b - b5 [ v

dt
L d L
_ 2 a]p
e[ Clocrwlaxe G5 [ aenoear
P1 L
—;/0 {90+ g * ¥, }o, dx
L ) L
+ Pz/o | dx"’ﬂz/o Yy, dx.

Noting that

L d [t L
/ Vi :E/ Yo, dx — / Y., dx
0 0 0

d L L
= - E/ Wx(P[ dx + / l//x(Ptl‘ dX,
0 0
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we are at the key point in using the basic assumption (1.5), because now

pl L L d L
—b;/ Py dX+pz/ - dx:pza/ W@, dx
0 0 0

and hence the terms of higher order cancel, and we have

d - L
KO =0 =g )0~ [l il s
P L L 2
% (glﬁx+g’<>%)<p,dx4rpz/0 W, dx

from where our conclusion follows. [

The last lemma implies the estimate
d
EI<(Z)< C({lble(L, l) - (g * W‘c)(]ﬂ t)|2 + |blp‘c(07 t) - (g * l//x)(oa l)‘z}
L
+ellouLOP +1ou0.0P) <k [ o+ uf v

L L L
e /O o dx + C, /0 16| O+ gl dx + ps /O W Pdx. (210

In order to deal with the boundary terms appearing we shall prove the following
lemma using an extension ¢ of the exterior normal into the domain, this being a well-
known approach for dealing with this kind of boundary terms.

Lemma 2.5. Let ge C'([0, L]) satisfy q(0) = —q(L) = 2y>0. Then there exist C; >0
and for any ¢>0 a positive constant C; such that for t=0 we have

. d [t 2
(i) - / Pt (bW — g x ) dx< — p{|bY (L, 1) — (g% ¥,) (L, )]
0
+ b (0, 1) — (g% ¥,)(0,2)]}

L
+ e/ lp > dx + CeV (1)
0

.. d [*
(i) E/o P190.q0y dx< — ky{|o (L, )] + 0,0, 1)’}

L
+ 61/0 o, + o, * + [ d.
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Proof. With Eq. (1.2) we obtain

d [t 1 S B
G| pvaten, - v dx =3, ~ g w5 [ o g e

L
- k/ ((p»c + lﬁ)Q(b‘/& —gx* lp‘c) dX
0
L
+%bp2/0 qd%\l//zlzdx
L
b /0 Vg, + g +u,) dx

= {IbW (L, 1) = (g * W) (L. )
+ 16y (0,0) = (g % ¥,)(0,0)°}

N

L
e [ o+ Cor o),
0

where we used assumption (1.6) on g. This proves (i). Estimate (ii) is proved, using
Eq. (1.1), as follows:

d L L L
97 / P1PqPy dx =k / 4Py Py dx + k / q¥ ., dx
0 0 0

1 21x=L L 2
+§p1[q\@,l oy *pl/o gxle,|” dx

< = kp{lo (L )] + 00,07}

L
2 2 2
e / 0 + o + [ Pdx. D
0

For 6>0 and Ns>1 let
L L
L0 = KO+ No [ gt =g 0)ds+6 [ progocds. @11
Observing

k L 2 k L 2 L 2
5 [Clocraravs <5 [Cofacrc [P
0 0 0

for some positive constant C, we conclude from Lemma 2.5 and (2.10) that for
sufficiently large N4 and sufficiently small 6 we have for 0<7t<1 and some C;>0
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and C, >0 that

d k L L
ZL(< —5/ . + Y| dx + CQ‘C/ g, dx + C.N (1), (2.12)
0 0

where we used (1.6) again. Here, one can choose first § of order 7, then ¢ small
enough, then N4 large enough, then ¢ small enough.
Finally, let us introduce the functional

L
B0 = [ o1+ pab (2.13)

to obtain, as usual, negative terms — foL lp,|* dx and — fOL W, |* dx; we easily get

Lemma 2.6. There exists a positive constant c satisfying

d L L L
G h0< =0 [l dv—ps [ WP vk o P dsrer)

Lemma 2.6 and (2.12) yield, choosing 7 small enough,

d 2C k [ L
—{L(l)— ﬂ@(x)}s ——/ \(px—l—lﬁ|2dx—Czr/ lo, P dx + C.A(1).  (2.14)
di g 4 Jo 0

Now we are in the position to show the main result of this section:

Theorem 2.7. Let us suppose that the initial data satisfy

(pmlpOEH(;((OaL))’ q)la‘//IEL2((O7L))7
and that the coefficients of system (1.1), (1.2) satisfy (1.5), ie.,

p_k
py b
Moreover, assume that the kernel g is of exponential type satisfying (1.6). Then
the energy E(t) decays exponentially as time tends to infinity, that is, there
exist positive constants C and o, being independent of the initial data, such that
for t=0:

E(1) < CE(0)e™™.
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Proof. To use the multiplicative techniques we need that the initial data satisfy
@, Woe HY((0, L)) nH?((0,L)), ¢, ¢,€HL((0,L)), but the conclusion of the
theorem will then follow by density arguments.

Let the final Lyapunov functional be defined by

2C2‘E

L= 60+ L0 -

S (1),
where & (¢), L(t) and J,(t) were defined in (2.7), (2.11) and (2.13), respectively. With
(2.8) and (2.14) we conclude for sufficiently small ¢; and some f,>0 that

d

%3(1)< = BoE(1).

Moreover, there are positive constants f3;, §, such that for >0
PIE()<ZL (1) <PLE({)
whence

%g(r) < —a2(1)

for o .= f,/f,, and hence our conclusion follows. [

3. Parameter optimality

Condition (1.5) assume out to be sufficient to prove the exponential stability in the
previous section. Now we shall demonstrate that it is also a necessary condition in
general. Since the convolution term, the memory type damping, in general does not
generate a semigroup, but rather an evolution system, it is the first task for this new
problem to get an appropriate semigroup approximation. Having obtained this, we
shall find a compactly perturbed semigroup—not speaking of generators—for which
the spectrum can be described explicitly and for which known methods and results
for the essential spectrum apply.

3.1. Approximation of the problem

Let us denote the energy defined in (2.1) by
E(1) = Eg(@,¥) =: E4(1). (3.1)

Let g be an exponential type kernel and let k; >0 such that

g(1)<g(0)e ™",
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Let ke (0,%) and let j be the bijection:
, { [0, 20) (0, 1],
J:

t— jlt) =x=e".

With the kernel g, we associate the function f defined on [0, 1] by

oj 1 X
f(x):=g’kx( )7 xe(0,1],  £(0)=0.

Now we can approximate the function f by its Bernstein polynomials (see [5])
defined by

where C) = <n>
v

Lemma 3.1. Assume that g satisfies (1.7) and let

B =5 (e

i—1
—kt g —kt
(1) = B, , .
gn(t) = ke (k[d e )

Then we have

Ve>0,3N.eN  n=N = [lg — gull 0,00y <€

Moreover, for all neN, g, satisfies:

(1) g.=0,
(i) g,<0,
(i) limy,o o [y gu(0) dt = [;" g(1) dt

Proof. Using assumptions (1.7) on g, one gets

o0y =K) for

Then, if ke (0,4) one deduces that f'e C'([0,1]) and f7(0) = 0. So, for all positive
there exists N/ in N such that

Xk, 1)<

n=N; = ||f = Bu()llcr o <€
(see [5, Theorem 2.1, p. 306]), hence

N = (1f = Bul Dl o,y <€
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Since
+o0 1
| o0 = auotd= [ 1560 = Butr 01
hence
n=N,=|lg - Inllion) <€
Moreover,

/ “1e — gl / () 4+ 5 (3) — (Balf1x) + xB,(f. )| <ke
0

and the first claim of the lemma follows.
The second part of the claim is a consequence of the definition of f and properties
(1.7) of g. More precisely, one has, using assumptions on g,

f(x)= (k,lcz;zk) g <_l£ x) >0, x>0,

since ke (O,%). Now, using the following simple properties of the Bernstein
polynomials of f, B,(f,x) [5], one has also that for all neN and x€][0, 1]:

B,(f,x)=0, B,(f,x)>0

Returning to ¢, one gets:
(1) =~ (By(f.e™) + e B (f, 7))

which gives assertion (ii) of the lemma. To complete the proof, notice that, if we set

Oun(s) = kCpe™ TR (1 — ey

one has

/()Hog,,(s)ds:n_lHéf(%)—»/olf(x)dx:/;wg(s)ds. O

Let us denote by (@, ) the solution of the initial boundary value problem (1.1)—
(1.4) with the same initial data but with g replaced by some approximation g,
corresponding to some fixed ¢>0.

Lemma 3.2. Assume that g satisfies (1.7) and that there exists a positive function
deL'((0, 0)) such that lim,_, ., d(t) = 0 and for all data and all t=0

Ey(0,0)(1)<d*(1)Ey(¢,1)(0). (3:2)
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Then, with the previous notations, there exists C >0, such that for all e>0 sufficiently
small and all t=0

) Eg, (¢ = 9,¥ — )(1) S CeEy, (0).

(ii) |Ey(@,)(t) — E,,(3,0)(1)|< Ce'E,, (0).

Proof. Let us denote by z = ¢ — @ and by w ==y — . Then z and w satisfy

1z —k(ze +w), =0,
PaWi — bWy + gn % Wy + k(2 + W) = (gn — ) * Yy
z(0,¢) = z(L, 1) = w(0,7) = w(L,?) =0,
z(0) =0, w(0)=0.

Then we get
dE( w)(1) : (l)/vadx—i—l/L’Dw dx
— Ly, \Z = — XY ~ )
i 29 fy T fy I
L
+ [ =) s wmd
0
Integration with respect to time yields

E, (z,w) / / VoW dx ds =: 1(1). (3.3)

Integration by parts in time leads to

I(f)=/L((g —9) %V dx—// 0)y . w dx ds
// (g, — W)W dx ds.

Integration by parts in space yields

1)< (Ign — gl * |10:1) ||wvu+// OWp .y dx ds
/0 (g, — | * |12l ] s ds (3.4)
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where is introduced the notation

IR0 = [ 1ok
On the other hand, there exists a constant C >0, independent of n, such that
[l (1) S CEy, (2,w) (), [W4lP (1) < CEq (0, (0). (3.5)
Note also that, since g — g,€ W"1(0, c0), for all £>0:
(9= 9n)OI<|lg" = gl 110,00y <€

Thus

||g_gn L*(0,00) <€ (3.6)

Therefore, using the general decay of the energy (see (2.2)), the properties of g,, (3.5)

and (3.2), we arrive at (denoting by C various positive constants independent of ¢
and ¢ all along this proof):

(g0 = g+ Wl (@) wl[(1) < Ce(Ey (9, ¥)(0) + Ey, (2, w)(1)). (3.7)

Using (3.2) and assumption on d, we also get

/ / w— ) (0) wy dx ds< ey/Eg(, ) (0 / (z w)(s) ds
< $(Mls 0.1 Exlo,)00) + / 61, 210)(5)
<c(B0O+ [ dBEHOE). 63

Therefore, returning to the estimation of the right-hand member of inequality (3.4),
using the previous estimate and (3.2), we also get

12

[ a1+ bl ds< By Go00 (/ 0y~ (o) )

X </0 lg,, — d'| % d(s)E,, (z,w)(s) ds) 1/2

for all =0. But now, we have by assumption on d:

t K
/0 /0 g, — g'l(s — 1) d(z) deds<|lg, — ¢l |l s <Ce. (39)



98 F. Ammar-Khodja et al. | J. Differential Equations 194 (2003) 82—115

Thus, setting
[ lg=gls-odwds, s>
we then have
[ 6= g1 il < e (eeton 0+ [ k0BG &) (10
Using (3.4), (3.7), (3.8) and (3.10), inequality (3.3) becomes
E, (z,w)(t) <SCeEy(¢,¥)(0) + CeEy, (z,w) +C/ S) + k(s))E,, (z,w)(s) ds

and, for ¢>0 sufficiently small,

Ey, (2w () ST

Ey(,¥)(0 E, (z,w)(s) ds.

Ce
1 - Ce l—C

Applying Gronwall’s inequality to E,, (z,w)(?) yields

%Em, nen( e [0 1) ).

From (3.9), it follows that fo )+ k(s)) ds< C(e + 1) uniformly in 7 and then we
conclude that

Ey, (2,w)(1) <

EaEmlns l—Le& Ey(9,)(0) exp (Ci(éfcle))
< CeEy(9,¥)(0) = CeE,,(0)

which is claim (i) of the lemma (notice that E,(0) does not depend on g: E,;(0) =
E, (0) = E(0) for the same initial data).
Let us prove claim (ii) of our lemma. Using the definition, the general decay of the

energy, we get
1 L t
o)~ Elol <3| [ ([0~ 0@ ds P + - 00.) ax

< c( / gn — 91(5) ds Ey( ) (1) + |gn — o] # Eg<<p,w><r>>

<c(/0 90— g1($)d(s) ds + |ga — gl » d(¢ >) (0.9)(0)
< CeEy (0. 0)(0).
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So, from this last inequality and claim (i), we get

|Eg(@,9)(1) = Eq, (@, 9) ()| < |Ey (@) — Eg, (0. 10)] + | Eg, (0. 1)(1) — Ey, (@) (1)]

< CeB,0)+ |\ B 000 - B (@)

(0. 0)(1) + \/Ey, (@.9)(0)

< CEy(0) + /By lo 3.0 — §)(1)

<¢E”¢¢ (0) +\/E,, (0.7 >

< CPE (0)

which is exactly claim (ii)). O

3.2. Nonuniform decay for the approximated problem

In this section we will prove that, whenever the wave speeds are different, i.e. when
k b
7;&7
P1 P2

then the associated energy does not decay uniformly.
Recall that

0 ( ) kcl (v+1) kt(l _ efkt)nfv.

Thus

g o= 3 S ()0 r
v=1

and if we denote by

Ynv(nt) = /0 Oy (t — TP (.,7) dr,

we obtain

V=n

Gn # Wx = E:f()ym
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Let us define the vector-valued function in R”

Yn,1
Yo=1| :
Ynn
One has
=AY, + Dy, }
Y,(,0) =0,
where

Dn = (O, ...,O,k)/, An = (a{/)léid.én,

—k(i+1) if j=i,
0 if not.

Lemma 3.3. A, is the generator of a C° semigroup in H = L*((0, L))". Moreover this
semigroup satisfies the following uniform estimate:

k
Ve=0: e ]| <e 2"

Proof. Observing that for the scalar product in R": 4,Y.Y we have
(i+1) 2 k k 5, k(n+1) ,
Yz—k;T(yi—ym —EZ: B e

k . p

< —<|Y

1|

the assertion follows. [

The initial-boundary value problem for (@, ) is then equivalent to the following
one:

plall - k(ax ) 07
p2lﬁrt blpw + k((/)v + lp) + B 0>
Y, (1) = 4, Y (1)
(
Y,

Do, (3.11)
(L, 1)
x(0)

?(0,1) = 9(L,1) = (0,1)

0,
0,
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where

To system (3.11), we associate the energy:
_ e —2 72 72 — 72 2
E@.4,Y)(1) =5 | {0107 + po¥y + DY + k(@ +¥)" + [ Yal } dx(2).  (3.12)

In the energy space H = (H) x L?)* x (L?)", it is not difficult to associate a
semigroup to system (3.11).
Now, the new variables:

VPP, — f(¢x+lﬁ>

Z]
_ VP2l = Vb + fB e
Z = . = \/_(Pt + \/_((p)b + lﬁ) (3.13)
- \/_lﬁﬁ-\/_%—\/—BYn
Y,
satisfy the system
Z,=AZ+ MZ (3.14)
with the boundary conditions
(zi +2i32)(0,2) = (zi + zip2) (L, 1) = 0, i=1,2. (3.15)

in the space G = (L2)* x (L?)". Here

e i)

0)eR"

and

M4 M4n
M = | ,
Nn4 An + EDan
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where

o 0

1 JE M 1 \f oSG lf .
M, — 2\ pa 2\ p2
N L/E
e 2w 2w
2\/ p> 2b 2\/ p» 2b

The matrices My, and N,4 will not play any role in the sequel but we give their
expressions for completeness:

0
s (B,D,B, + bB, A4,
M4n = b ( ) 5 Nn4 =10 Dn 0 Dn .
0 2b1/2 2b1/2
_173% (BnDan + anAn)
Note here that (3.13) can be written as
VP11 P,
V(@ + )
z=r'| BV
Vb
Y,
with
1 -1 0 O 0
0 0 I -1 ibB,,
P'=]1 1 0 0 0 :
1
0 0 I 1 7 B,
0 0 0 O I,
1/2 0 /2 0 0
-1/2 0 /2 0 0
P, = 0 1/2 0 172 0 (3.16)

1
0 -1/2 0 12 LB,
0 0 0 0 I,
If we forget for a moment the condition Y,(x,0) = 0 and replace it by any initial

data, we may associate to (3.11) a Cy-semigroup e1%+M) A result of Neves et al.
[17] (actually, an extension of their result to the case where there are null and
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multiple eigenvalues in the diagonal matrix A, see [1,2]) asserts that, since %#%, if

we consider the semigroup e% Mo associated with the following system:
Z,=AZ, + MyZ,
(Zi + Zi+2)(0, t) = (Zi + Zi+2)(La Z) = 0) i= 1527

i /G S
My = dzag(O, b ,0, %

, An +;DHB,,> (3.17)

with the same boundary conditions, then e(A+M) _ o(A04+Mo)t js 3 compact
operator. Now, for this last system, the eigenvalues can be easily computed by

solving the diagonal differential system:
IZ =AZ\ + MyZ,
(zi +2i42)(0) = (zi + zis2) (L) =0, i=1,2.

)

Indeed we get

1 [k .
G(Aﬁx—i-Mo)—a(An—i-EDan)u{m p—lzl,meZ}
St /() br.

Now we compare the energy E, (¢,})(¢) and the norm of the solution Z(7) =
e0 M)t 7 associated to the corresponding initial data.

Lemma 3.4. There exists a constant C such that for all neN and all
((@07 Qol), (lp07 lpl) € [H(%((OvL)) X Lz((ov L))}z one has

—k(t—1)

|Z<r>||2=||e<Aav+M>’zo||2<C(Emw)(t)+ /0 ¢ 2 Emwr)df)’

where

VP1®1
V(o + o)
Zy=P'| ;i
Vb,
0
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Proof. Notice that with the particular choice of the initial data, Z; is independent of
n. Now, computing Z(¢) by using the matrix P!, one gets

121 < CE, (@.9)(0) + 55 1B Yo )P + 1Y)

Let’s compute ||B, Y,(¢)||* using the fact that Y,(0) = 0:

2
1B, (1) _/ (/ Zf )omz—s)l/}x(s)ds> dx
</ { L3 G)otras | tif(%)(’m(l—s)lﬁi(s)dsdx}

c(fare [ s
zb/ [ onte= ) - w.xm)zds+z</0tgn<s>ds>2||&x<r>||2

< CE,,(9.V).

Recall that

+ o0 + o0
lim gn(s) ds = / g(t)dt = A<b.
0

n—>+w [

It remains to estimate the norm of Y,;:

TP = \

But, using the definition of D,, we get

t
< / =4[ ()1 s

t
/ 9D (s) ds

0

and using Lemma 3.3, one gets

2 o k(t=s) )
1%l </0 e T ()| ds.

But, for all s€(0, c0) one has

_ 5 1 v
95601 < gy B D))
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Consequently, we get

L
<
InOIP<= [ e

Then, collecting the previous estimates, we obtain

k(t—s) _
2 Ey,(9,4)(s) ds.

_ LK o
1Z(1)|* < CE,, (@,)(¢) + C/O e 2 E,(@,¥)(s)ds
which is the claim of the lemma. [
We are now ready to state and prove the main result of this section:

Theorem 3.5. Assume that g satisfies (1.7). Assume moreover that

Pk
L
pa b

Then the energy E;(¢,y) does not decay uniformly in the initial data as time tends to
infinity, i.e., there does not exist de L'((0, o))" L2 ([0, c0)) such that for all t=>0:
lim,_, ,, d(¢) = 0 and

E,(1) <d*(1)E, (0).

Proof. Assume to the contrary that there exists L'((0, c0))n L3

2 .([0, 20)) such that
for all >0 lim,, ., d(¢) =0 and

E, (1) <d*(1)E,(0). (3.19)
Using (ii) in Lemma 3.2, we get, g, being the e-approximate function of ¢,
Ey, (0,0)(1)< Ey(@,9)(1) + CeZEy(,4)(0)
< (d(1) + CEP?)E (9,)(0). (3.20)

From Lemma 3.4, it follows for Y,(¢,x) = fot AU Doap . ds

k(t—s

1201 < CE, (D)0 +C [ ', (0.0)(5) ds
< C<d2(z) +Ce'? + /t(dz(s) + Ce‘/2)e*@ ds)Eg(q),lp)(O). (3.21)
0

Now, let us choose as initial data the particular sequence (Z('),,., of the

eigenfunctions of the operator A9, + M, associated with the eigenvalues im pﬁlf,
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meZ (see (3.18)), which are given by

ZI' = —— (e ™L*,0,—¢™L*,0,0), VmeZ.

8-
=

Clearly, we have

wea ]y

NZo)> =1, VYmez, Zp = 0in (L*)* x (L*)". (3.22)

Now, using (3.21) and Lemma 3.2 yields

405400 73 2 < || (LD A0+ Z 2t 030z 2

< zH(e(A(‘:),C-‘rMO) (/ld +M)t )Zm”

! k(t—s)
+2C<d2(z) +C? + / (d*(s) + C?e ™7 ds)
0

X Ey(@,%)(0). (3.23)

But

/f(dz(s) + Cel/z)efk T

0

Hence

||e(/1(9x+M0)lZ(r)n||2< 2||<e(/10x+Mo)t _ (/1(9 +M)t )Zm”

k(t—s)

+ C(dz(t) + Ce'? + /t d*(s)e” dS) Ey(¢,¥)(0).
0

On the other hand, since Zf]' is an eigenfunction of the operator A0, + M, associated

k=

to the eigenvalue im oD

. kn
=t
\|e(Aa“+M°>lZgl\|:Helm\/;L Zyll=1 VmeZ, vi=0.

Now, we arrive at a contradiction, choosing ¢ sufficiently small and observing

1. ||(eW0tMo)t _ oADMY 7| | a5 |m| — o0, since A0 FM)t _ o(A%+M) g 3 compact
operator and (3.22) holds,
2.d(t)>0as t—> o0,

o, K=s)
3. [, d*(s)e 2 ds—0ast—o0. [
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4. Polynomial decay

Here we shall show the polynomial decay of the solution when the kernel g decays
polynomially. More precisely, we use assumption (1.7) to prove the polynomial rate
of decay of the first-order energy. The method used is essentially the same as in
Section 2, but there exist some major points in some estimates which demand a
different procedure. Therefore the proof has to be adapted to the case of
polynomially decaying kernels, and we have to discuss the points that need a
different argument. We follow the approach in [16] and shall prove the following
theorem.

Theorem 4.1. Let us suppose that the initial data satisfy

(/)OvlpOEH(}((OvL))? q’lleJIELZ((OvL))?

and that the coefficients of system (1.1), (1.2) satisfy (1.5). Moreover assume that the
kernel g is of polynomial type satisfying (1.7) with p>2. Then the energy E(t) decays
polynomially as time tends to infinity, that is, there exists a positive constant C, being
independent of the initial data, such that for t=0:

E(n<

For the proof we need the following versions of three lemmas from [16] (based on
[12]) which we state for the sake of completeness with the short proofs.

Lemma 4.2. Let m and h be integrable functions, and let 0<r<1 and q>0. Then, for
t=0:

[ mte=cym@taes ([ e o o) d)( [ e = nce d)

Proof. Define

ot) = It — ) TR, w(z) = (e — o) TR T

An application of Holder’s inequality with exponents

o=—9_ for v, 0=q+1 forw
q+1

gives the assertion of Lemma 4.2. [



108 F. Ammar-Khodja et al. | J. Differential Equations 194 (2003) 82—115

Lemma 4.3. Let p>1, 0<r<1, t>0 and ze L*((0,T),H'((0,L))) for any T >0.
Then we have for r>0:

(1-r)

L e , T L L T
/0 g0z, dx<2</0 () dT||Z||Lx((o,z>,H1((o,L)))> </0 9] I’szdx> ;
and forr =0

L ]
/ gDZ\dx<2</ l22(, |2 dt + 1|2 (8, )| > (/ 9" PDszx) .
0
Proof. Apply Lemma 4.2 with m(z) = |g(t) fo |z (2 () dx and ¢ =

(1 — r)p, for fixed ¢. This proves Lemma 4. 3 D

Lemma 4.4. Let f >0 be differentiable, let «>0 and let | satisfy
—&
1(0)?

for t=0, positive constants ¢1,C, and

FO<— rn)+

B=o+1.

Then there exists a constant ¢3>0 such that for t=0:

SO 5l )

Proof. Let >0 and

Integration yields

F(0)

FO<sgTer<uz )

from where our conclusion follows. [
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Proof of Theorem 4.1. Lemma 4.3 yields
(1-r)p
L 1 Lo 1+(1=r)p
/ g0y, dx<cE(0)1+1-rp (/ g Oy, dx) , (4.1)
0 0
for 0<r<1 with rp>1. From the proof of Lemma 2.2 we get

d L L
=10 = =200 [ ds—ps [ gwpax

L L
+ 05 /0 Vilg" Op) dx — k /0 olg¥ — g OW) dx

b [E s b [t k(L k[t
- g [dx—= | ¢dOy . dx+= [ gyl dx—= | ¢Oydx.
2 Jo 2 Jo 2 Jo 2 Jo

Hypothesis (1.7) implies that

¥ 141

6| <eg 7). 19" (0] <eq" (1),

Therefore we have that

pz/ong"w) dxsc(/OLg‘*iwdx)l/z(/oL de)

12

Similarly

L1 1/2 L 1/2
k/ (g OY) dx<c</ g+1’Dlpdx> (/ |(px2dx>
0 0

Using these relations and Poincaré’s inequality we have

d 1 Loy p Loa Lo
_El() Eng(o) W " dx +c.(lg'| +1g]) [ Wil dx+e [ o, dx
0 0 0

L ]+l
+ cg/ g POV, dx.
0
On the other hand, from the proof of Lemma 2.3 we have that

e Pz/ il (b —/gdr)/ P dx—k/ P dx

+ k/ |wx| dx—&—pl/O qolw,dx—/o (gOY I, dx. (4.2)
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ft 1/2 Ll 1/2
gOw(x, 1)< </g PdS) {g PD!//X}
0

L 1+l L
C,;/ g I’Dxpxdx—l—é/ |lﬂx|2 dx
0 0

Since

which implies

L
’ /0 (GOW W, dx| <

identity (4.2) can be rewritten as

4 <cﬂ/ |w|dx——/ [ dx
+ Cél/ g PD[L dx+el/ |q)l| dx. (4.3)
0

As in Section 2 we consider
é)l(l‘) = NlE(l) — N2](l) + N3J1(l).

_ L 2 _ 4 ’ 1+l

From the inequalities above we conclude that

d Néz N& L 5 L ) 5

Go0< =280~ L [CguPavea [(of +lofax @4
dt 2 2 Jo 0

Let

Using the same reasoning as above we can show that Lemmas 2.4 and 2.5 imply

KO0~ g b )0 ik [ oyl ax

L L L
+e/0 |</>I|2d>c+c(/0 g”pwx+g|wx|2dx+pz/o W dx,

d L
G| psbaton — g p ) dvs (L)~ (g4 0 Lo

L
1Ba(0,1) — (g ) (0,02} + / o, dx+ C:

Ce/OL W + (b— /O’st)w,f

1
+ gHP Oy, dx dx,
d (* 2 2
G| pioaocdss —klo L0r + lo.0.07)

L
e /O 0+ lou* + o dx.
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Denoting by L(#) again the functional
L L
L(1) = K(1) + N3 /0 by =g x W) dx+0 | p19.q@. dx,

we get
d

Sros -t [Cocrwtacron [ ofacticnn. @

Finally, the functional J, defined in Section 2 satisfies

d
SN pl/ 9" dx—pz/ v, dx+k/ (o W dx + Coly (1), (4:6)

From inequalities (4.5) and (4.6) we get
d 20t k L
oo -2l 5 Mo ruf v o dvs cryio,

Now using again the functional

20y = 61(1) + L{t) - 2

P1

Ja(1)

it is not difficult to see that

d 1 [t 141
G 20= =5 [ piloR + gl WP Koy 4 9P+ PO

Let us denote by &o(¢) the functional

1 L
600 =3 [ pilol + polbi 0+ Kl + 0 d

Since the energy is bounded, Lemma 4.3 implies
1+(1-r)p 1
Eo(t)=c&o(t) 1= E(0)T-1p,

1+(1-r)p

Lo L Tp =
/ g PD«//xdx>c{/ gDzﬁxdx} E(0)0-7)p,
0 0

Observing that & satisfies (cf. Section 2)

(
BE(N<Z(1)< 33{@@0(1) + / : 0y dx}l+(lr)pE(0)—l+(l—r)p 47)
0

with some f;>0, it follows that

d 1+(1- r) —1
Ez(z)s — (1) U=rp 2(0)1-r)p
and hence, by Lemma 4.4,
1
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This implies for >0

t t t
) 1
)| drgc/ L(t dré/—‘ dt Z(0)<cZ(0
| @y dese [ 2@ ar< | T 20 <e 0

provided (1 —r)p>1 which together with the previous condition rp>1 can be
satisfied since p>2. Moreover, we conclude

W, 0B o) SctL (D) <cZ(0)

and hence, using Lemma 4.3 now with » =0,

Lp -1
Eo(t)=céo(t) » E(0) 2

and
1+p

L L =
/ ngﬁdeZC{/ ngﬁxdx} EW0)r.
0 0

Repeating the same reasoning as before we now get
d I
AU e (1) P L(0)P
which implies by Lemma 4.4

C

Z(0)

from where our result follows. The proof is now complete. [J

5. Decay rate optimality

Already for the system of (magneto-thermo-) elasticity with memory type
boundary conditions it was shown in [16] that a merely polynomial kernel cannot
lead to an exponential decay result for the energy in general. In a similar manner, we
are now able to prove that the decay rate for polynomial kernels cannot be of
exponential type.

We take the kernel

for some p>1.
For the initial data we assume

L
lpOZOa (POa(plleIGCOOC((OvL))? /0 lp]dX;éo (51)
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Then we shall demonstrate that assumption of exponential decay,
3c>0 36>0 V¢=0:  E(t)<ce *E(0) (5.2)

leads to a contradiction. With the choice of the initial conditions as in (5.1), (v, w) :
= (¢,, y,) satisfies the same differential equations and boundary conditions as (¢, ).
Hence also the energy associated to (v, w) decays exponentially, which implies, using
the differential equation, that there is a constant ¢y depending on the initial data such
that for all 1>0:

/L(g*wxx(xv (1) dx| < epe™/?
0

which is equivalent to

[ o= Wl —0.00.9) | <cue 53
=:h(s)

On the other hand, since / decays exponentially by Sobolev’s imbedding theorem
and the assumption on exponential decay of the energy (applied to (¢,,,)), it can be
easily seen that for any m>1

t
1
1+r_ " < m 4
/0 (1+t_s)mh(s)dS (l+t) (5 )
for some constant ¢,,. For =0 and >0 let
Gy(1) = / h(s) ds
t+p
Then
! Gp(0) 1
- _ B 1
/0 (1 +Z_S)ph(S) s (1 —|—l)p Gﬂ(t)+(/ (1+t)]7+l ) (5.5)

where we used (5.4) form=p+ 1.
Case 1: 3f €0, 0] G;(0)#0. Thus, from (5.5),

! 1
/0 m/’l(é‘) ds

which is a contradiction to (5.3).
Case 2: YPe[0, wo]: Gg(0) = 0. This implies

lim

t—

(1+1) = G3(0)#£0

Vi=0: h(1)=0
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which means that  satisfies additionally the boundary conditions
VoL, 1) =¥.(0,1), 1=0.

Using this we conclude after integration of both sides of the differential equation
(1.2) that

dZ L L
Pz—/ W(X,l)dx—i—k/ Y(x,0)dx =0
de Jo 0
which implies, for v = \/k/p,,

L L
/ V(x,t)dx = / ¥, (x) dx sin(vt)
0 0
which is a contradiction to the assumption of exponential decay of the energy.

Remark. After the submission of our paper there appeared a paper by Fabrizio and
Polidoro [6] where, for a special class of integro-differential equations, the question
of optimality is analyzed in great generality.
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