On “quasi-Richards” equation and finite volume approximation of two-phase flow with unlimited air mobility

B. Andreianov1, R. Eymard2, M. Ghilani3,4 and N. Marhraoui4

1Université de Franche-Comte Besançon, 2Université de Marne-la-Vallée, Paris, 3Ecole Nationale Supérieure des Arts et Metiers, Meknès (Maroc), 4Université Moulay Ismail, Faculté des Sciences, Meknès (Maroc)

8-9 October 2012, MoMaS workshop, Nice
Introduction and motivation
Introduction and motivation

- Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
Outline

1 Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility \(\mu \) of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as \(\mu \rightarrow \infty \)
Outline

Introduction and motivation

• Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
• “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
• Comparison with the Richards equation?
 Existence, uniqueness of solutions?
Outline

1 Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 Asymptotic-preserving scheme?
Outline

1. Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 Asymptotic-preserving scheme?

2. Some theory of the “quasi-Richards” equation
Outline

1 Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 Asymptotic-preserving scheme?

2 Some theory of the “quasi-Richards” equation
 - Solutions of two-phase flow equations; estimates
Outline

1 introduction and motivation
 - two-phase model in porous medium.
 high/infinite mobility \(\mu \) of the “air” phase?
 is the classical richards model appropriate?
 - “quasi-richards” equation as the singular limit as \(\mu \rightarrow \infty \)
 - comparison with the richards equation?
 existence, uniqueness of solutions?
 - robust with respect to \(\mu \) finite volume approximation?
 asymptotic-preserving scheme?

2 some theory of the “quasi-richards” equation
 - solutions of two-phase flow equations; estimates
 - passage to the limit (singular) and “quasi-richards”
Outline

1. **Introduction and motivation**
 - Two-phase model in porous medium.
 - High/infinite mobility μ of the “air” phase?
 - Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 - Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 - Asymptotic-preserving scheme?

2. **Some theory of the “quasi-Richards” equation**
 - Solutions of two-phase flow equations; estimates
 - Passage to the limit (singular) and “quasi-Richards”
 - Renormalization and incomplete contraction inequality
Outline

1. Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility \(\mu \) of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as \(\mu \rightarrow \infty \)
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to \(\mu \) finite volume approximation ?
 Asymptotic-preserving scheme ?

2. Some theory of the “quasi-Richards” equation
 - Solutions of two-phase flow equations; estimates
 - Passage to the limit (singular) and “quasi-Richards”
 - Renormalization and incomplete contraction inequality

3. Finite volumes for two-phase flow with unlimited mobility
Outline

1. Introduction and motivation
 - Two-phase model in porous medium. High/infinite mobility μ of the “air” phase?
 - Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 - Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 - Asymptotic-preserving scheme?

2. Some theory of the “quasi-Richards” equation
 - Solutions of two-phase flow equations; estimates
 - Passage to the limit (singular) and “quasi-Richards”
 - Renormalization and incomplete contraction inequality

3. Finite volumes for two-phase flow with unlimited mobility
 - The idea of the scheme, auxiliary parameters
1. Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 Asymptotic-preserving scheme?

2. Some theory of the “quasi-Richards” equation
 - Solutions of two-phase flow equations; estimates
 - Passage to the limit (singular) and “quasi-Richards”
 - Renormalization and incomplete contraction inequality

3. Finite volumes for two-phase flow with unlimited mobility
 - The idea of the scheme, auxiliary parameters
 - A priori estimates, existence, convergence
Outline

1. Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 Asymptotic-preserving scheme?

2. Some theory of the “quasi-Richards” equation
 - Solutions of two-phase flow equations; estimates
 - Passage to the limit (singular) and “quasi-Richards”
 - Renormalization and incomplete contraction inequality

3. Finite volumes for two-phase flow with unlimited mobility
 - The idea of the scheme, auxiliary parameters
 - A priori estimates, existence, convergence
 - Asymptotics of the scheme as $\mu \to 0$
Outline

1. Introduction and motivation
 - Two-phase model in porous medium.
 High/infinite mobility μ of the “air” phase?
 Is the classical Richards model appropriate?
 - “Quasi-Richards” equation as the singular limit as $\mu \to \infty$
 - Comparison with the Richards equation?
 Existence, uniqueness of solutions?
 - Robust with respect to μ finite volume approximation?
 Asymptotic-preserving scheme?

2. Some theory of the “quasi-Richards” equation
 - Solutions of two-phase flow equations; estimates
 - Passage to the limit (singular) and “quasi-Richards”
 - Renormalization and incomplete contraction inequality

3. Finite volumes for two-phase flow with unlimited mobility
 - The idea of the scheme, auxiliary parameters
 - A priori estimates, existence, convergence
 - Asymptotics of the scheme as $\mu \to 0$
 - Numerical illustrations
Models

Assumptions about groundwater flow

- Water and air: incompressible phases
- Porous medium: homogeneous and isotropic
- Gravity: neglected
- Source term: of a special form

\[\text{lower bound on saturation} \]
Assumptions about groundwater flow

- Water and air incompressible phases
- Porous medium homogeneous and isotropic
- Gravity neglected
- Source term of a special form

\[
\left\{ \begin{array}{l}
\frac{du}{dt} - \text{div}(k_w(u)\nabla p) = s_w, \\
u = p_c^{-1}(p_{atm} - p),
\end{array} \right.
\]

Richards model

Two-phase model

\[
\left\{ \begin{array}{l}
\frac{du}{dt} - \text{div}(k_w(u)\nabla p) = s_w, \\
(1 - u)\frac{du}{dt} - \text{div}(\mu k_a(u)\nabla (p + p_c(u))) = s_a
\end{array} \right.
\]

where \(\mu := \text{Ratio between the phase mobilities (we want } \mu \rightarrow \infty)\)
Assumptions

1. \(\Omega \) is a polygonal subset of \(\mathbb{R}^d \), \(d = 2 \) or \(3 \),
2. \(T > 0 \) is given,
3. \(u_m \in (0, 1) \),
4. \(u_0 \in L^\infty(\Omega) \) and \(u_m \leq u_0(x) \leq 1 \) for a.e. \(x \in \Omega \),
5. \(c \in L^\infty(\Omega \times (0, T)) \), \(u_m \leq c(t, x) \leq 1 \) for a.e. \((x, t) \in \Omega \times (0, T) \),
6. \(\bar{s} \in L^2(\Omega \times (0, T)) \), \(\bar{s} \geq 0 \), \(s \in L^2(\Omega \times (0, T)) \), \(s \geq 0 \) and \(\int_{\Omega} (\bar{s}(x, t) - s(x, t)) dx = 0 \) a.e.,
7. \(k_w \in C^0([0, 1], \mathbb{R}) \), \(k_w \) is non-decreasing with \(k_w(0) = 0 \), \(k_w(1) = 1 \) and \(k_w(u_m) > 0 \),
8. \(k_a \in C^0([0, 1], \mathbb{R}) \), \(k_a \) is non-increasing with \(k_a(1) = 0 \), \(k_a(0) = 1 \) and \(k_a(s) > 0 \) for all \(s \in [0, 1) \),
9. \(p_c \in C^0([u_m, 1], \mathbb{R}) \), \(p_c \in \text{Lip}_{loc}([u_m, 1], \mathbb{R}) \), \(p_c \) is strictly decreasing
Mathematical setting of the problem

Set

\[f_\mu(u) := \frac{k_w(u)}{k_w(u) + \mu k_a(u)} \quad \xrightarrow{\mu \to \infty} \quad 1_{[u=1]} \]

Two-phase problem: find \((u, \rho)\) such that:

\[
\begin{cases}
 u_t - \text{div}(k_w(u)\nabla \rho) = f_\mu(c) \bar{s} - f_\mu(u) s & \text{on } \Omega \times (0, T), \\
 \nabla \rho \cdot n = 0 & \text{on } \partial \Omega \times (0, T), \\
 \int_\Omega \rho(x, t) \, dx = 0 & \text{on } (0, T), \\
 u(\cdot, 0) = u_0 \geq u_m > 0 & \text{on } \Omega
\end{cases}
\]
Mathematical setting of the problem

Set

\[f_\mu(u) := \frac{k_w(u)}{k_w(u) + \mu k_a(u)} \xrightarrow{\mu \to \infty} 1[u=1] \]

Two-phase problem: find \((u, p)\) such that:

\[
\begin{aligned}
&u_t - \text{div}(k_w(u)\nabla p) = f_\mu(c) \overline{s} - f_\mu(u) s \\
&(1 - u)_t - \text{div}(\mu k_a(u)\nabla (p + p_c(u))) = (1 - f_\mu(c)) \overline{s} - (1 - f_\mu(u)) s
\end{aligned}
\]

on \(\Omega \times (0, T)\),
Mathematical setting of the problem

Set

\[
f_\mu(u) := \frac{k_w(u)}{k_w(u) + \mu k_a(u)} \xrightarrow{\mu \to \infty} 1[u=1]
\]

Two-phase problem: find \((u, \rho)\) such that:

\[
\begin{align*}
 u_t - \text{div}(k_w(u)\nabla p) &= f_\mu(c) \bar{s} - f_\mu(u) s & \text{on } \Omega \times (0, T), \\
 (1 - u)_t - \text{div}(\mu k_a(u)\nabla (p + p_c(u))) &= (1 - f_\mu(c)) \bar{s} - (1 - f_\mu(u)) s & \text{on } \Omega \times (0, T), \\
 \nabla p \cdot \mathbf{n} &= 0 & \text{on } \partial\Omega \times (0, T), \\
 \nabla (p + p_c(u)) \cdot \mathbf{n} &= 0 & \text{on } \partial\Omega \times (0, T), \\
 \int_{\Omega} p(x, t) \, dx &= 0 & \text{on } (0, T).
\end{align*}
\]
Mathematical setting of the problem

Set

\[
f_\mu(u) := \frac{k_w(u)}{k_w(u) + \mu k_a(u)} \rightarrow_{\mu \to \infty} 1[u=1]
\]

Two-phase problem: find \((u, p)\) such that:

\[
\begin{cases}
 u_t - \text{div}(k_w(u) \nabla p) = f_\mu(c) \bar{s} - f_\mu(u) s & \text{on } \Omega \times (0, T), \\
 (1 - u)_t - \text{div}(\mu k_a(u) \nabla (p + p_c(u))) = (1 - f_\mu(c)) \bar{s} - (1 - f_\mu(u)) s & \text{on } \Omega \times (0, T), \\
 \nabla p \cdot n = 0 & \text{on } \partial\Omega \times (0, T), \\
 \nabla(p + p_c(u)) \cdot n = 0 & \text{on } \partial\Omega \times (0, T), \\
 \int_{\Omega} p(x, t) \, dx = 0 & \text{on } (0, T), \\
 u(\cdot, 0) = u_0 \geq u_m > 0 & \text{on } \Omega
\end{cases}
\]
Mathematical setting of the problem

Set

\[f_\mu(u) := \frac{k_w(u)}{k_w(u) + \mu k_a(u)} \quad \text{as } \mu \to \infty \quad 1[u=1] \]

Two-phase problem: find \((u, p)\) such that:

\[
\begin{align*}
 u_t - \text{div}(k_w(u) \nabla p) &= f_\mu(c) \bar{s} - f_\mu(u) s & \text{on } \Omega \times (0, T), \\
 (1 - u)_t - \text{div}(\mu k_a(u) \nabla (p + p_c(u))) &= (1 - f_\mu(c)) \bar{s} - (1 - f_\mu(u)) s & \text{on } \Omega \times (0, T), \\
 \nabla p \cdot n &= 0 & \text{on } \partial\Omega \times (0, T), \\
 \nabla(p + p_c(u)) \cdot n &= 0 & \text{on } \partial\Omega \times (0, T), \\
 \int_{\Omega} p(x, t) \, dx &= 0 & \text{on } (0, T), \\
 u(\cdot, 0) &= u_0 \geq u_m > 0 & \text{on } \Omega
\end{align*}
\]

Tools: vanishing viscosity regularization or finite volume scheme
The “quasi-Richards” equation

Theorem (Eymard, Henry, Hilhorst'09, DCDS-S'12.)

There exist solutions \((u^\mu, p^\mu)\) for the two-phase flow problem that obey uniform estimates: lower bound \(u_m\) on the saturations \(u^\mu\), \(L^2(0, T; H^1)\) bound on the pressures \(p^\mu\) and on the \(1/2\)-Kirchoff transform \(\zeta(u^\mu)\),
The “quasi-Richards” equation

Theorem (Eymard, Henry, Hilhorst’09, DCDS-S’12.)

There exist solutions \((u^\mu, p^\mu)\) for the two-phase flow problem that obey uniform estimates: lower bound \(u_m\) on the saturations \(u^\mu\), \(L^2(0, T; H^1)\) bound on the pressures \(p^\mu\) and on the \(1/2\)-Kirchhoff transform \(\zeta(u^\mu)\), estimate on \(\mu \int \int k_a(u^\mu) |\nabla(p^\mu + p_c(u^\mu))|^2\);
The "quasi-Richards" equation

Theorem (Eymard, Henry, Hilhorst'09, DCDS-S'12.)

There exist solutions \((u^\mu, p^\mu)\) for the two-phase flow problem that obey uniform estimates: lower bound \(u_m\) on the saturations \(u^\mu\), \(L^2(0, T; H^1)\) bound on the pressures \(p^\mu\) and on the \(1/2\)-Kirchoff transform \(\zeta(u^\mu)\), estimate on \(\mu \int \int k_a(u^\mu) |\nabla (p^\mu + p_c(u^\mu))|^2\); any accumulation point of \((u^\mu, p^\mu)\) as \(\mu \to \infty\) satisfies

\[
\begin{cases}
 u_t - \text{div}(k_w(u) \nabla p) = s_w \\
 \nabla (p + p_c(u)) = 0 \quad \text{a.e. on the set } [u < 1],
\end{cases}
\]
The “quasi-Richards” equation

Theorem (Eymard, Henry, Hilhorst’09, DCDS-S’12,)

There exist solutions \((u^\mu, p^\mu)\) for the two-phase flow problem that obey **uniform estimates:** lower bound \(u_m\) on the saturations \(u^\mu\), \(L^2(0, T; H^1)\) bound on the pressures \(p^\mu\) and on the \(1/2\)-Kirchoff transform \(\zeta(u^\mu)\), estimate on \(\mu \int \int k_a(u^\mu)|\nabla(p^\mu + p_c(u^\mu))|^2\); any accumulation point of \((u^\mu, p^\mu)_\mu\) as \(\mu \to \infty\) satisfies

\[
\begin{cases}
 u_t - \text{div}(k_w(u)\nabla p) = s_w = \bar{s} \mathbb{1}_{[c=1]} - \theta \bar{s} \mathbb{1}_{[u=1]} \\
 \nabla(p + p_c(u)) = 0 \text{ a.e. on the set } [u < 1],
\end{cases}
\]

where \(\theta\) is an unknown \([0, 1]\)-valued function.
The “quasi-Richards” equation

Theorem (Eymard, Henry, Hilhorst’09, DCDS-S’12.)

There exist solutions \((u^\mu, p^\mu)\) for the two-phase flow problem that obey **uniform estimates**: lower bound \(u_m\) on the saturations \(u^\mu\), \(L^2(0, T; H^1)\) bound on the pressures \(p^\mu\) and on the 1/2-Kirchhoff transform \(\zeta(u^\mu)\), estimate on \(\mu \int \int k_a(u^\mu) \left| \nabla (p^\mu + p_c(u^\mu)) \right|^2\); any accumulation point of \((u^\mu, p^\mu)\) as \(\mu \to \infty\) satisfies

\[
\begin{aligned}
 u_t - \text{div}(k_w(u) \nabla p) &= s_w = \bar{s} \mathbb{1}_{[c=1]} - \theta \underline{s} \mathbb{1}_{[u=1]} \\
 \nabla (p + p_c(u)) &= 0 \text{ a.e. on the set } [u < 1],
\end{aligned}
\]

where \(\theta\) is an unknown \([0, 1]\)-valued function.

Thus: solution of the quasi-Richards eqn. is a **triple** \((u, p, \theta)\) with \(\nabla p = -\nabla p_c(u)\) on \([u < 1]\) and with \(\theta\) defined on \([u = 1]\).

Regularity:

\(u\) is \([u_m, 1]\)-valued with \(\zeta(u) \in L^2(0, T; H^1)\), \(p \in L^2(0, T; H^1)\).
Is quasi-Richards well-posed? Is it different from Richards?

- Richards is well-posed: Alt, Luckhaus’83.
 L^1 contraction inequality holds. (\Rightarrow uniqueness, stability)
- Existence of sols to quasi-Richards: Eymard, Henry, Hilhorst.
 Uniqueness? Relation to the unique solution of Richards?
Is quasi-Richards well-posed? Is it different from Richards?

- Richards is well-posed: Alt, Luckhaus’83.
 \(L^1\) contraction inequality holds. \(\Rightarrow\) uniqueness, stability
- Existence of sols to quasi-Richards: Eymard, Henry, Hilhorst.
 Uniqueness? Relation to the unique solution of Richards?

Theorem (A., Eymard, Ghilani, Marhraoui’12)

Assume \(u, \hat{u}\) are weak solutions of the quasi-Richards equation corresponding to data \((u_0, \bar{s})\) and \((\hat{u}_0, \hat{s})\). Then we have the following *incomplete* contraction inequality: for a.e. \(t\),

\[
\int_{\Omega} (u - \hat{u})^+(t, \cdot) \leq \int_{\Omega} (u_0 - \hat{u}_0)^+ + \int_0^t \int_{\Omega} (\bar{s} - \hat{s})^+ + \int_0^t \int_{\{u=1=\hat{u}\}} \bar{s}. \quad (1)
\]

Proof: use renormalized solutions of Plouvier-Debaigt, Gagneux.
Is quasi-Richards well-posed? Is it different from Richards?

Theorem (A., Eymard, Ghilani, Marhraoui’12, dedicated to M.Madaune-Tort)

*Assume there is no water injection: \(\bar{s}1_{[c=1]} = 0 \) a.e. on \((0, T) \times \Omega\) (with \(c = c(t,x)\) the saturation in water of the injected fluid).

Then for every datum \(u_0\) there exists a unique \(u\) such that \((u,p,\theta)\) is a solution of the quasi-Richards equation.*
Theorem (A., Eymard, Ghilani, Marhraoui'12, dedicated to M. Madaune-Tort)

Assume there is no water injection: \(\overline{s}1_{[c=1]} = 0 \) a.e. on \((0, T) \times \Omega \) (with \(c = c(t, x) \) the saturation in water of the injected fluid).

Then for every datum \(u_0 \) there exists a unique \(u \) such that \((u, p, \theta)\) is a solution of the quasi-Richards equation.

Moreover, in absence of water injection we have \(\theta s = 0 \) a.e. (no water production!); and the saturation \(u \) given by quasi-Richards eqn coincides with the unique solution of the Richards eqn.
Is quasi-Richards well-posed? Is it different from Richards?

Theorem (A., Eymard, Ghilani, Marhraoui'12, dedicated to M.Madaune-Tort)

Assume there is no water injection: \(\bar{s} 1_{[c=1]} = 0 \) a.e. on \((0, T) \times \Omega\) (with \(c = c(t,x) \) the saturation in water of the injected fluid).

Then for every datum \(u_0 \) there exists a unique \(u \) such that \((u, p, \theta)\) is a solution of the quasi-Richards equation.

Moreover, in absence of water injection we have \(\theta s = 0 \) a.e. (no water production!); and the saturation \(u \) given by quasi-Richards eqn coincides with the unique solution of the Richards eqn.

In general, we do not expect that quasi-Richards and Richards coincide:

- Physical reasons: \(p_{atm} \) is not the good pressure for air when air is captured by saturated water phase

- While uniqueness of \(u \) in the triple \((u, p, \theta)\) can be hoped for, we do not expect uniqueness of \((p, \theta)\) in the saturated set \([u = 1]\).

More work needed to understand quasi-Richards!
Write $k_w(u) = f_{\mu}(u)M_\mu(u)$, $M_\mu = k_w + \mu k_a$. Set $\delta_{K,L}^{n+1}(Z_D) = Z_L^{n+1} - Z_K^{n+1}$.
Write \(k_w(u) = f_\mu(u) M_\mu(u) \), \(M_\mu = k_w + \mu k_a \). Set \(\delta^{n+1}_{K,L} (Z_D) = Z^{n+1}_L - Z^{n+1}_K \).

The scheme is: find \(U_D = (U^K_n)_n, K, P_D = (P^K_n)_n, K \) satisfying

\[
\frac{U^{n+1}_K - U^n_K}{\delta t^n} m_K = \sum_{L \in \mathcal{N}_K} \tau_{K|L} f_\mu(U^{n+1}_{K|L}) M_\mu (\bar{U}^{n+1}_{K|L}) \delta^{n+1}_{K,L} (P_D) - \text{source}
\]
Finite volume scheme

Write $k_w(u) = f_\mu(u) M_\mu(u)$, $M_\mu = k_w + \mu k_a$. Set $\delta_{K,L}^{n+1}(Z_D) = Z_L^{n+1} - Z_K^{n+1}$.

The scheme is: find $U_D = (U^n_K)_{n,K}$, $P_D = (P^n_K)_{n,K}$ satisfying

$$
\frac{U_{K}^{n+1} - U_{K}^{n}}{\delta t^n} m_K = \sum_{L \in \mathcal{N}_K} \tau_{K|L} f_\mu(U_{K|L}^{n+1}) M_\mu(\bar{U}_{K|L}^{n+1}) \delta_{K,L}^{n+1}(P_D) - \text{source}
$$

$$
\frac{(1 - U_{K}^{n+1}) - (1 - U_{K}^{n})}{\delta t^n} m_K = \text{air source} \quad \text{Kirchoff transform: } \downarrow \ g' = k_a p_c'
$$

$$
+ \sum_{L \in \mathcal{N}_K} \tau_{K|L} (1 - f_\mu(U_{K|L}^{n+1})) M_\mu(\bar{U}_{K|L}^{n+1}) \delta_{K,L}^{n+1}(P_D) - \mu \sum_{L \in \mathcal{N}_K} \tau_{K|L} \delta_{K,L}^{n+1}(g(U_D))
$$

(+ discretization of IC u_0, + normalization of P_D due to Neumann BC)
Finite volume scheme

Write \(k_w(u) = f_\mu(u) M_\mu(u) \), \(M_\mu = k_w + \mu k_a \). Set \(\delta^{n+1}_{K,L}(Z_D) = Z^{n+1}_L - Z^{n+1}_K \).

The scheme is: find \(U_D = (U^n_K)_{n,K} \), \(P_D = (P^n_K)_{n,K} \) satisfying

\[
\frac{U^{n+1}_K - U^n_K}{\delta t^n} m_K = \sum_{L \in \mathcal{N}_K} \tau_{K\mid L} f_\mu(U^{n+1}_K|L) M_\mu(\bar{U}^{n+1}_{K\mid L}) \delta^{n+1}_{K,L}(P_D) - \text{source}
\]

\[
\frac{(1 - U^{n+1}_K) - (1 - U^n_K)}{\delta t^n} m_K = \text{air source} \quad \text{Kirchoff transform: } \downarrow \quad g' = k_a p_c'
\]

\[
+ \sum_{L \in \mathcal{N}_K} \tau_{K\mid L} (1 - f_\mu(U^{n+1}_K|L)) M_\mu(\bar{U}^{n+1}_{K\mid L}) \delta^{n+1}_{K,L}(P_D) - \mu \sum_{L \in \mathcal{N}_K} \tau_{K\mid L} \delta^{n+1}_{K,L}(g(U_D))
\]

(+ discretization of IC \(u_0 \), + normalization of \(P_D \) due to Neumann BC)

where

- \(U^{n+1}_{K\mid L} \) is the upwind value: \(U^{n+1}_{K\mid L} = \begin{cases} U^{n+1}_L & \text{if } \delta^{n+1}_{K,L}(P_D) \geq 0, \\ U^n_K & \text{otherwise,} \end{cases} \)
Finite volume scheme

Write $k_w(u) = f_\mu(u)M_\mu(u)$, $M_\mu = k_w + \mu k_a$. Set $\delta^{n+1}_{K,L}(Z_D) = Z_L^{n+1} - Z_K^{n+1}$.

The scheme is: find $U_D = (U_K^n)_{n,K}$, $P_D = (P_K^n)_{n,K}$ satisfying

$$\frac{U_K^{n+1} - U_K^n}{\delta t^n} m_K = \sum_{L \in \mathcal{N}_K} \tau_{K|L} f_\mu(U_K^{n+1}) M_\mu(\bar{U}_K^{n+1}) \delta^{n+1}_{K,L}(P_D) - \text{source}$$

$$(1 - U_K^{n+1}) - (1 - U_K^n) m_K = \text{air source} \quad \text{Kirchhoff transform: } \downarrow \quad g' = k_a p_c'$$

$$+ \sum_{L \in \mathcal{N}_K} \tau_{K|L} (1 - f_\mu(U_K^{n+1})) M_\mu(\bar{U}_K^{n+1}) \delta^{n+1}_{K,L}(P_D) - \mu \sum_{L \in \mathcal{N}_K} \tau_{K|L} \delta^{n+1}_{K,L}(g(U_D))$$

(+ discretization of IC u_0, + normalization of P_D due to Neumann BC)

where

- U_K^{n+1} is the upwind value: $U_K^{n+1} = \begin{cases} U_L^{n+1} & \text{if } \delta^{n+1}_{K,L}(P_D) \geq 0, \\ U_K^{n+1} & \text{otherwise}, \end{cases}$

- $\bar{U}_K^{n+1} \in [\min(U_K^{n+1}, U_L^{n+1}), \max(U_K^{n+1}, U_L^{n+1})]$ is the auxiliary value:

$$k_a(\bar{U}_K^{n+1}) \delta^{n+1}_{K,L}(p_c(U_D)) = \delta^{n+1}_{K,L}(g(U_D)) \quad \text{i.e., } k_a(\bar{U}_K^{n+1}) = \frac{g(U_L^{n+1}) - g(U_K^{n+1})}{p_c(U_L^{n+1}) - p_c(U_K^{n+1})}.$$
Properties of the scheme

- The choice $\bar{U}_{k|l}^{n+1}$ makes appear $\mu k_a(\bar{U}_{k|l}^{n+1}) \delta_{k,l}^{n+1}(P_D - p_c(U_D)) \Rightarrow$ uniform in μ, h (discrete) estimates as for Eymard, Henry, Hilhorst

... except for time translation estimate on U_D (not uniform in μ)
Properties of the scheme

- the choice $\bar{U}_{K|L}^{n+1}$ makes appear $\mu k_a(\bar{U}_{K|L}^{n+1})\delta_{K,L}^{n+1}(P_D - p_c(U_D)) \Rightarrow$ uniform in μ, h (discrete) estimates as for Eymard, Henry, Hilhorst... except for time translation estimate on U_D (not uniform in μ)
- robustness even for $\mu \sim 10^7$ (with 10^2..10^3 needed in practice)
 empirical convergence orders: 0.9 in natural norms (for simple tests)
Properties of the scheme

- the choice $\tilde{U}_{K|L}^{n+1}$ makes appear $\mu k_a(\tilde{U}_{K|L}^{n+1})\delta_{K,L}^{n+1}(P_D - p_c(U_D)) \Rightarrow$ uniform in μ, h (discrete) estimates as for Eymard, Henry, Hilhorst
 - ... except for time translation estimate on U_D (not uniform in μ)
- robustness even for $\mu \sim 10^7$ (with $10^2..10^3$ needed in practice)
 - empirical convergence orders: 0.9 in natural norms (for simple tests)
- existence, compactness, convergence as $h \rightarrow 0$: “as usual”
Properties of the scheme

- the choice $\tilde{U}_{K|L}^{n+1}$ makes appear $\mu k_a(\tilde{U}_{K|L}^{n+1})\delta_{K,L}^{n+1}(P_D - p_c(U_D)) \Rightarrow$ uniform in μ, h (discrete) estimates as for Eymard, Henry, Hilhorst ...
 except for time translation estimate on U_D (not uniform in μ)
- robustness even for $\mu \sim 10^7$ (with $10^2..10^3$ needed in practice)
 empirical convergence orders: 0.9 in natural norms (for simple tests)
- existence, compactness, convergence as $h \to 0$: “as usual”
- numerical tests: $\|U_D^{\mu} - U_D^{\text{Rich}}\|_{1,\infty} \sim \frac{\text{const}}{\mu} + \text{residual}(h) \Rightarrow$
 Asymptotics of the scheme as $\mu \to \infty$: a scheme for Richards?
Properties of the scheme

- the choice $\bar{U}_{K|L}^{n+1}$ makes appear $\mu k_a(\bar{U}_{K|L}^{n+1})\delta_{K,L}^{n+1}(P_D - p_c(U_D)) \Rightarrow$ uniform in μ, h (discrete) estimates as for Eymard, Henry, Hilhorst ... except for time translation estimate on U_D (not uniform in μ)
- robustness even for $\mu \sim 10^7$ (with $10^2..10^3$ needed in practice)
- empirical convergence orders: 0.9 in natural norms (for simple tests)
- existence, compactness, convergence as $h \to 0$: “as usual”
- numerical tests: $\|U^\mu_D - U^{\text{Rich}}_D\|_{1,\infty} \sim \frac{\text{const}}{\mu} + \text{residual}(h) \Rightarrow$

Asymptotics of the scheme as $\mu \to \infty$: a scheme for Richards?

In the gradually saturated regime ($u \leq u_M < 1$) we find

$$U_{K|L}^{n+1} - U_{K|L}^{n} \frac{m_K}{\delta t^n} - \sum_{L \in \mathcal{N}_K} \tau_{K|L} k_w(U_{K|L}^{n+1}) \frac{k_a(\bar{U}_{K|L}^{n+1})}{k_a(U_{K|L}^{n+1})} \delta_{K,L}^{n+1}(P_D) = 0,$$

while the straightforward discretization of Richards equation yields

$k_w(U_{K|L}^{n+1})\delta_{K,L}^{n+1}(P_D)$. One can see that $\frac{k_a(\bar{U}_{K|L}^{n+1})}{k_a(U_{K|L}^{n+1})} \to 1$ as $h \to 0$, so we have an “almost asymptotic preserving” scheme: (limit $\mu \to \infty$ of the two-phase scheme is a “strange” scheme for Richards eqn).
Merci pour votre attention !