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NA of survey sampling and resampling plans A few notations and NA

Inclusion probabilities and survey sampling plans

Sampling units

S ( UN of size n << N taken at Random

Inclusion variable : εi := I{i ∈ S} i ∈ UN
Inclusion probability: πi := P (εi = 1) = E (εi ) i ∈ UN
Second order inclusion probability : πi,j := P (εi = 1, εj = 1) = E (εiεj )

(i , j ) ∈ U2N
The survey sampling plan is characterized by a distribution RN on

S ≡ (ε1, . . . , εN )
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NA of survey sampling and resampling plans A few notations and NA

Links with resampling plans

Survey sampling plans can be seen as particular cases (without

replacement) of general resampling plans appearing in the weighted

bootstrap literature (Mason and Newton, 1992, Ann. Stat, Praestgaard

and Wellner, 1993, Ann. Probab., Barbe and Bertail, 1995, Springer)

(W1,N ,W2,N , ...WN ,N ) .

Naive bootstrap Mult(N , (1/N ..., 1/N )), n out of N bootstrap

Mult(n , (1/N , ..., 1/N )).

Bayesian bootstrap (Dirichlet weights).

Bootstrap bayesian clones (Lo, 1991, Ann. Stat.) (Y1/SN , ....,YN /SN )

with SN =
∑N

i=1
Yi .

Exchangeability is generally assumed! in bootstrap litterature
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NA of survey sampling and resampling plans A few notations and NA

Negative association

Negative and Positive association (see Joag-Dev and Proschan, 1983, Annals

of Stat. ) : frequently used in time series. See Oliveira(2012), Springer for

details, main properties and applications to time series

De�nition

The r.v.'s Z1, . . . , Zn are said to be negatively associated (NA) i� for any

pair of disjoint subsets A1 and A2 of the index set [[1,N ]]

Cov (f ((Zi )i∈A1), g((Zj )j∈A2)) ≤ 0, (1)

for any real valued measurable functions f : E#A1 → R and g : E#A2 → R
that are both increasing in each variable.

Remark : NA implies negative correlation. This property plays an important

role in survey sampling : πi,j − πiπj ≤ 0 (known as Sen-Yates-Grundy

property) -> special form of the variance of Horvitz-Thompson estimator.
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NA of survey sampling and resampling plans Examples of NA sampling plans

Examples of NA survey sampling plans

Poisson sampling = indep. B(1, π) r.v. (random sample size with mean∑n

i πi )

Rejective sampling = Poisson sampling conditional to the size equal a

�xed n

Subsampling = Rejective sampling with equal inclusion probabilities

(SWoR)

Pareto sampling, order sampling : select the n biggest values of well

chosen indep. Pareto distribution.

Tillé's Pivotal sampling or Srinivasan sampling : a sequential game

between candidates (see Dubhashi & Ranjan, 1998, Jonasson, 2012,

Electronic Com. Probab.)
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NA of survey sampling and resampling plans Examples of NA sampling plans

Examples of NA survey sampling plans

Determinantal sampling (cf Kulesza and Taskar,2012, Machine Learning

J., Loonis and Mary, 2018, JSPI) : probability of a sample proportional

to the determinant of sub-matrix (with inclusion probability on

diagonal)

Balanced sampling (which respects to some margin conditions) using

the Cube Method (Deville and Tillé, 2004) : very e�cient and "almost"

balanced. Not always negatively associated (plan and inclusion

probabilities depends on the original order) : apply a random

permutation �rst to get NA property.

Systematic sampling, cluster sampling, strati�ed sampling are NOT

negatively associated. But most of the times it is possible to write

estimators as sums of negatively associated variables by aggregrating

over clusters or stratas.
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NA of survey sampling and resampling plans Examples of NA sampling plans

Examples of NA resampling plans

Naive bootstrap, n out of N bootstrap are NA : already in the paper by

Joag-Dev and Proschan, 1983, Annals of Stat.

Subsampling (without replacement even with unequal probability) is

NA (particular case of rejective sampling)

Bayesian bootstrap is NA

Bootstrap Bayesian clones based on a log-concave distribution are NA :

also in Joag-Dev and Proschan, 1983

Double bootstrap is NA

Remark : Exchangeability of the weights (normalized to 1 or n) always

implies negative correlation.

Patrice Bertail, Antoine Rebecq (MODAL'X)Functional CLT for negatively associated survey sampling May 2019 9 / 41



NA of survey sampling and resampling plans Examples of NA sampling plans

Negative association for survey sampling plans

Importance of negative association for sampling plans stressed recently

by Borcea and Brändén(2009), Inventiones Mathematicae, Brändén and

Jonasson (2012), Scandinavian Journal of Statistics, based on works by

Pemantle(2004) Math. Phys. 41, Joag-Dev and Proscan (1983), Annals

of Stat.

Borcea and Brändén(2009) propose criteria to prove NA (strongly

Raleigh property)

Many properties of resampling procedure (including weighted

bootstrap) may be derived by proving Negative Association including

CLT, deviation inequalities.
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NA of survey sampling and resampling plans Examples of NA sampling plans

Horvitz-Thompson estimators

Classical Horvitz-Thompson estimator of the mean of some

characteristic X

Parameter of interest XN = N−1
∑N

i=1
Xi

Horvitz Thompson estimator

X̂n = N−1
∑
k∈U

Xk

πk
εk

CLT for this estimator for general sampling plans . Pioneering work of

Hajek (1964), An. Math. Statist, Rosen(1997), An. Stat. : very

di�cult proofs based on coupling arguments respectively for rejective

sampling, Pareto sampling, immediate for sampling plan close to

Rejective sampling (Sampford, Successive sampling etc...), see

Berger(1998), JSPI, by controlling the L1 distance between this plan

and rejective sampling. Simpler proofs in B., Chautru and Clémençon

(2017), Scand. J. of Stat. (based on conditional CLT).
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NA of survey sampling and resampling plans A taylor made CLT for NA r.v's

CLT based on negative association

Patterson, Smith, Taylor, Bozorgnia(2001), Nonlinear Analysis. Oliveira

(2012), Asymptotics for assoc. r.v.'s, Springer

Theorem

Consider a triangular array (Xi,N )1≤i≤N of centered negatively

correlated random variables then, under the conditions

(i) S2

N = Var(
∑N

i=1
Xi,N )→∞ as N →∞

(ii) 1

S2
N

N∑
i=1

∑
i<j cov(Xi,N ,Xj ,N )→ 0 as N →∞

(iii) for any ε > 0, 1

S2
N

N∑
i=1

E(X 2

i,N 1{|Xi,N |>εSN )→ 0 as N →∞
we have

1

SN

N∑
i=1

Xi,N
L→

N→∞ N (0, 1).

Problem : this basic CLT does not hold for most survey sampling plans.
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NA of survey sampling and resampling plans A taylor made CLT for NA r.v's

Application to m out N bootstrap

the multinomial distribution Mult(m , 1/N , ..., 1/N )) and we have

E(Wi,N ) =
m

N

V (Wi,N ) =
m

N
(1− 1/N )

cov(Wi,N ,Wj ,N ) = −V (Wi,N )/(N − 1) = −m/N 2

It follows that if we consider the weighted bootstrap sums with

Zi,N = (Wi,N − m
N
)Yi where the Yi

′s are positive i.i.d. r.v.'s with

E(Y 2+η
i ) <∞ for some η > 0, then the Zi,N

′s are negatively associated

and we get

N∑
i=1

V (Zi,N ) =

N∑
i=1

(Yi −Y N )
2V (Wi,N ) = mσ2(1− 1/N )(1+ o(1))

N∑
i=1

∑
i<j

cov(Zi,N ,Zj ,N ) = −m

( 1

N

N∑
i=1

(Yi −Y N )

)2

+
1

N 2

N∑
i=1

(Yi −Y N )
2

 = o(m) a.s.
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NA of survey sampling and resampling plans A taylor made CLT for NA r.v's

A Taylor made CLT, B. and Rebecq(2017)

Theorem

Consider a triangular array (Xi,N )1≤i≤N of centered negatively

associated random variables then, under the Lindeberg-Feller

conditions (iii) of the Theorem by Patterson et al.(2001) and

assuming that we have

(iv) 0 < limN

S2

N

N
<∞,

then we have

1

SN

N∑
i=1

Xi,N
L→

N→∞ N (0, 1).
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NA of survey sampling and resampling plans A taylor made CLT for NA r.v's

A Taylor made CLT, B. and Rebecq(2017)

Proof : adaptation of Yuan, Su and Hu(2003),J. Theor. Prob. and Peligrad

and Utev(1997), Ann. Probab. to non-stationary variables. Block of block

techniques ensuring that we capture the covariance terms. This result yields

a CLT for all the sampling plan seen before. Allows to generalize the

approach of Bertail, Chautru and Clemençon (2017), Scand J. Stat.
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Empirical process for NA sampling plans

Horvitz-Thompson empirical processes

Horvitz-Thompson empirical measure (not a probability)

: PπN :=
1

N

N∑
i=1

εi

πi
δXi
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Empirical process for NA sampling plans

Our Goal : Donsker Theorem for survey data

Prove a Donsker theorem for a version of the Horvitz Thompson empirical

process indexed by classes of positive functions F under some natural

conditions on the sampling plan and the class of functions (measurability

issues evacuated in this talk), essentially existence of a L2+η(P) integrable

envelop and some uniform entropy condition (over discrete probability

measures).

In the i.i.d. case Z =
√
N {PN f − Pf } ,f∈F . see van der Vaart and

Wellner(1996), van de Geer(2009)

In the survey sampling case (for some sampling plan RN we will be

interested in Gπ(RN )
RN

= (Gπ(RN )
RN

f )f∈F , where

Gπ(RN )
RN

f = 1√
N

∑N

i=1

(
εi

πi (RN ) − 1
)
f (Xi )
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Empirical process for NA sampling plans

Existing functional results in survey sampling

Very few functional results even in the real case : Cardot, Goga,

Lardin(2013), E.J.S for the mean of functional data (over time), Wang

(2012), CSDA , corrected by Boistard, Lopuhäa and Ruiz-Gazen

(2017), Annals of Stat, for general survey sampling plans in the case of

the repartition function, based on control of fourth order moments

(conditions on fourth order inclusion probabilities), Bertail, Chautru,

Clémençon(2017), Scand. J. Stat. for general class but only conditional

plans (under conditions on 2d order inclusion probabilities).

Some general results for general class of functions for sampling

uniformly WR or WoR or for sampling schemes satisfying some

exchangeability conditions : particular cases of weighted bootstrap.

Not very interesting for real applications.

Functional version for strati�ed survey sampling plan ( UWR or UWoR

in each strata) -> same as independent bootstrap or subsampling in

each strata), Breslow & Wellner, 2008 and Saegusa & Wellner, 2012.
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Empirical process for NA sampling plans

A few notations and assumptions A0

Envelop of the class. There exists a measurable function H : X → R such

that there exists η > 0 such that H (x ) > η for every x and∫
x∈X H

2+η(x )P(dx ) <∞ for some η and |f (x )| ≤ H (x ) for all x ∈ X and

any f ∈ F .

Donsker classes. F is a Donsker class of function (Ho�mann-Jorgensen

weak convergence). The set of probability measures P may be considered

as a subset of l∞(F), i.e. the space of all maps Φ : F → R such that

||Φ||F = supf∈F |Φ(f )| < +∞) with the uniform convergence norm

||P −Q ||F = dF (P ,Q) = suph∈F |
∫
hdP −

∫
hQ |.

Uniform covering and entropy number condition∫
1

0
supQ∈D

√
log(N (ε||H ||2,Q ,F , ||.||2,Q))dε <∞,

where D is the set of all discrete probability measures Q such that

0 <
∫
H 2dQ <∞
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Empirical process for NA sampling plans An simple Hoe�ding inequality for NA r.v's

Empirical process for NA sampling plans

Recent results of Bertail and Clémençon, 2017, to appear Bernoulli) make

use of Negative association to prove bounds. But some simple ones were

already available in Janson(1992).

Theorem

Let Y1, . . . , Yn be negatively associated random variables such that

ai ≤ Yi ≤ bi a.s. and E[Yi ] = 0 for 1 ≤ i ≤ n. Then, for all t > 0, we

have: ∀n ≥ 1,

P

(
n∑
i=1

Yi ≥ t

)
≤ exp

(
−

2nt2∑n

i=1
(bi − ai )2

)
.
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Empirical process for NA sampling plans General assumptions

The �rst order inclusion probabilities π = (π1, . . . , πN ) are now supposed to

depend on some auxiliary variable W through the link function

p :W → [p?, 1], p? > 0. For this link function we will thus write

πi = p(Wi )

and

Gp

RN
f :=

1√
N

N∑
i=1

(
εi

p(Wi )
− 1

)
f (Xi ).

Because the variance of this process also depends on the second order

inclusion probability we will also assume that:

Assumption

there exists a constant K (independent of N and W′is ) such that for

all i , j

|πi,j − πiπj | ≤
K

N
.
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Empirical process for NA sampling plans General assumptions

Assumption

Assume that we can write for some symmetric bounded positive

function 0 < h(., .) ≤ K,

πiπj − πi,j =
h(Wi ,Wj )

N
, i 6= j .

Under this condition and the negative association condition of the plan

S2

N (f ) = V (Gp

RN
f ) =

1

2N 2

N∑
i=1

N∑
j=1,i 6=j

h(Wi ,Wj )

(
f (Xi )

p(Wi )
−

f (Xj

p(Wj )

)2

.

Under the preceding assumptions we have, for any f

S2

N (f ) ≤
K

2

1

N 2

N∑
i=1

N∑
j=1,i 6=j

(
f (Xi )

p(Wi )
−

f (Xj )

p(Wj )

)2
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Empirical process for NA sampling plans General assumptions

Assumption

The random vectors (X1,W1), . . . , (XN ,WN ) are exchangeable random

vectors with common marginal distribution PX ,W , such that

E H (Xi )
2

p(Wi )2
<∞.

Under this condition, we de�ne the covariance operator

Σp(f , g) := EPX,W

(
h(Wi ,Wj )

(
f (Xi )

p(Wi )
−

g(Xj )

p(Wj )

))
, (f , g) ∈ F2.
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Empirical process for NA sampling plans General assumptions

A Lindeberg-Feller condition

Assumption

Lindeberg-Feller type condition hold : ∀η > 0,

EPX,W

(
ETN

(
X 2

N ,i I
{
XN ,i > η

√
N
}))

−→
N→∞ 0,

with XN ,i :=
∣∣∣∣ εi

p(Wi )
− 1

∣∣∣∣ supf∈F |f (Xi )|.
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Empirical process for NA sampling plans A functional CLT for NA survey samples

A functional CLT for NA survey samples

Theorem

Let F be a set of function satisfying conditions A0 (entropy condition

+ envelop), the Lindeberg-Feller condition and let the sampling plan

satisfy the conditions before. Then, there exists a ρP-equicontinuous

Gaussian process Gp in `∞(F) with covariance operator Σp(f , g) such

that , almost surely along the sequence,

Gp
RN
⇒ Gp weakly in `∞(F), as N →∞.
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Empirical process for NA sampling plans A functional CLT for NA survey samples

Proof of the result

1) Let fK = (f1, . . . , fK ) be any vector of functions in FK , K ≥ 1. Then the

�nite dimensional marginals Gp
RN

fK := (Gp
RN
f1, . . . ,Gp

RN
fK ) are

asymptotically Gaussian conditionally on DN , with limiting covariance

matrix ΣpfK := (Σp(fk , f`))1≤k ,`≤K a .s . for any sequence in DN . This can be

checked by tacking any linear combination a ′Gp
RN

fK , a ∈ R+K . This

amounts to check the asymptotic normality of Gp
RN
a ′fK . But under the

given hypotheses (Lindeberg-Feller assumption) this is direct a consequence

of the negative association property of the sampling plan and of the CLT

given before.
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Empirical process for NA sampling plans A functional CLT for NA survey samples

Proof of the result

2) Control of the increments

For this observe that we have for all (f , g) ∈ F2, for some constant

C1,C2, ...,

ERN

(
(Gp

RN
(f − g))2

)
≤ C1

1

N

N∑
i=1

N∑
j=1,j 6=i

(πiπj − πi,j )

(
f (Xi ) − g(Xi )

pi
−
f (Xj ) − g(Xj )

pj

)2

≤ C2||f − g ||2
2,PN
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Empirical process for NA sampling plans A functional CLT for NA survey samples

Proof of the result

The process {Gp
RN
f : f ∈ F } has conditionally sub-Gaussian tails with

respect to the semi-metric ρ2PN . Then Corollary 2.2.8 in van der Vaart and

Wellner(1996), Springer yields

ERN

(
sup

ρ2P(f ,g)≤δ
|Gp

RN
f −Gp

RN
g |

)
≤ K

∫δ
ε=0

√
log (N (ε/2,Fδ,L2(PN )))dε

(2)

where K < +∞ is a constant and Fδ = {f − g , ρ2PN (f , g) ≤ δ}.
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Some applications Con�dence bands for the distribution function

Con�dence bands for the distribution function

A particular case of interest

1 F = {fy(x ) := I{x ≤ y}, (x , y) ∈ X 2} è

Gπ(RN )
RN

fy =
√
N (F

π(RN )
RN

(y) − FN (y))

2 Fonctional CLT è
√
N sup

y∈R

∣∣∣Fπ(RN )
RN

(y) − FN (y)
∣∣∣ D−→
N→∞ sup

y∈R
|Gfy |

3 Con�dence bands of level 1− α for FN :

CB1−α :=

[
F
π(RN )
RN

−
q1−α√
N
, F

π(RN )
RN

+
q1−α√
N

]
,

q1−α quantile of order 1− α of sup
y∈R

|Gfy |

Practically

q1−α unknown (limiting distribution not pivotal as in i.i.d case for

continous F ) è simulation of the limiting process Gfy
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Some applications Con�dence bands for the distribution function

some simulation results

The underlying model

X = W +U •W ; T N (µ, σ2W ,w?,w
?) •U ; N (0, σ2U ) •W ⊥ U

Inclusion probabilities proportional to W

Results : an example

● ●

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

F N

● ●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

F N

Figure: Example of the 95% con�dence bands of the empirical distribution

function in the population FN (black line) with n/N = 0.1 (dark pink area) or

with n/N = 0.5 (light pink area) for N = 500 (left hand plot) and N = 10000

(right hand plot)
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Some applications Con�dence bands for the distribution function

Functionals of the HT-empirical probability

Use the plug-in estimator. Linearize with the in�uence function... Standard

approach.
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Some applications Tail index estimators based on survey sampling

Tail index estimators based on survey sampling

1 1− F (x ) = F (x ) = x−1/γ L(x ) L(x ) slowly varying function

2 Hill estimator on the whole population HK ,N := 1

K

∑K

i=1
log
(
XN−i+1,N

XN−K,N

)
based on the order statistics.

3 Empirical version of γ = limx→∞ ∫+∞
x

F(u)

F(x)
du
u

4 Horvitz Thompson version

γ̂ =

∫+∞
Xn−k,n

F
π(RN )

RN
(u)

F
π(RN )

RN
(Xn−k ,n)

du

u
=

k∑
i=1

∫Xn−i+1,n

Xn−i,n

F
π(RN )

RN
(u)

F
π(RN )

RN
(Xn−k ,n )

du

u

=

 k∑
j=1

1

πn−j+1,n

−1
k∑
i=1

1

πn−i+1,n
log

(
Xn−i+1,n

Xn−k ,n

)
=: Hπ

k ,n .

5 Equivalently

Hπk∗,N =
(∑K

j=1

ε(N,N−j+1)

π(N,N−j+1)

)−1∑K

i=1

ε(N,N−i+1)

π(N,N−i+1)
log
(
X(N,N−i+1)

X(N,N−K)

)
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Some applications Tail index estimators based on survey sampling

Conditions for Asymptotic normality of the HT-Hill estimator

Under the von Mises condition The regularly varying survivor function

F ∈ RV−α with α > 0 is such that there is a real parameter ρ < 0, referred

to as the second order parameter, and a measurable function a of constant

sign, whose absolute value lies in RVρ such that for any t > 0,

lim
x→∞ F (tx )/F (x ) − t−α

a(x )
= t−α

tρ − 1

ρ
.

i) The marginal cdf F is absolutely continuous with density f .

ii) The joint cdf FX ,W is absolutely continuous with Lebesgue-integrable

density fX ,W such that for all (x ,w) ∈ (0,+∞]×W,

fX ,W(x ,w) := c (F (x ),FW(w)) f (x ) fW(w),

for some copula density c : R?
+ × Rd → R.

iii) The following integral is �nite :∫
[0,1]d

c(1,v) dv <∞.
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Some applications Tail index estimators based on survey sampling

Asymptotic normality of HT-Hill estimator

extension of Theorem 2, Bertail, Chautru, Clémençon, ESAIM,

2015

Suppose that all the conditions required before hold. Then, for

σ2p :=

∫
W

1

p(w)
c(1,FW(w)) fW(w) dw

and provided that k → +∞ as N → +∞ so that
√
kA(N/k)→ λ for some

constant λ ∈ R, we have the convergence in distribution as N → +∞:

√
k (Hπ

k ,N − γ)⇒ N ( λ

1− ρ
, γ2 σ2p

)
. (3)
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Some applications Tail index estimators based on survey sampling

Optimal choice of the weights for Tail estimation

This variational problem may be clearly translated in terms of the simpler

�nite population problem (for large N )

min
1

N

N∑
i=1

1

p (Wi,N )
c(1,

i

N
) subject to

N∑
i=1

p (Wi,N ) = n , 0 < p (Wi,N ) < 1.

The Kuhn and Tucker theorem leads to

p (Wi,N ) = A c

(
1,

i

N

)1/2

and
N∑
i=1

p (Wi,N ) = A

N∑
i=1

c

(
1,

i

N

)1/2

= n = ANσ∗2p (1+ o(1))

with

σ∗2p =

∫
c (1,v)

1/2
dv =η.
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Some applications Tail index estimators based on survey sampling
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Some applications Tail index estimators based on survey sampling
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Some applications Tail index estimators based on survey sampling
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Some applications Tail index estimators based on survey sampling

De�nition

Strong Rayleigh property (SR). Assume now that E is a discrete

(countable) set. Denote F the probability-generating function of the

discrete measure µ taking its value on the set EN , de�ned by:

F (z ) =
∑

x=(x1,..,xN )∈EN

µ(x )z x ,

where z = (z1, . . . , zN ) ∈ CN and

z x =

N∏
i=1

z xii .

Then µ is said to be strongly Rayleigh (SR) if for all x ∈ RN and

1 ≤ i < j ≤ N :

F (x )
∂2F

∂xixj
(x ) ≤ ∂F

∂xi
(x )

∂F

∂xj
(x ).

Theorem (Pemantle,2000)

Strong Rayleigh property implies Negative Association.
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