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Model and motivation

D’Alembert paradox : a solid immersed in an inviscid fluid is not
submitted to any resultant force; in other words, birds (and planes...)
could not fly with a model where viscosity is neglected !
Yet, inviscid (hyperbolic !) models are desirable for some fluids.

1D case, scalar (playground?) :
the Lagoutière-Seguin-Takahashi ’JDE07 model for interaction,
via a drag force , of a massive point particle with a Burgers fluid:{

∂tu + ∂x (u2/2) = −D
(
u − h′(t)

)
δ0(x − h(t)),

mh′′(t) = D
(
u|(t,h(t)) − h′(t)

)
.

Call it B+P model. Here
• u, the velocity of the fluid, is unknown
• h, the position of the solid particle, is unknown.

Main focus: D(v) = λv (the linear case)
A variant: D(v) = λv |v | (the quadratic case).
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Delicate and important points

Sense to give the the product of distributions
(u − h′(t)) δ0(x − h(t)) in the RHS of the PDE ?
Describe u for a frozen h?

Sense to give to the RHS u|(t,h(t)) − h′(t) of the ODE ?
Describe h for a fixed u?

Resolve the coupling: fixed-point or splitting approach.
Well-posedness, convergence of approximating schemes.

Numerical approximation: a cheap scheme ?
(good resolution at the particle location is essential,
but full Riemann solver is not welcome).

(is being improved) Particle path approximation:
difficulty to keep particle(s!) at mesh interfaces.
Re-meshing? Projection?

(unsolved) uniqueness for L∞ (non BV ) data ???
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Giving sense to the PDE: description of interface coupling in Burgers

Interpret the singular source term as the limit of (u − h′(t))∂xHε(x)

⇒ description (LST’07 ) of the set
of all couples (u−,u+) ∈ R2

that can be connected
across the particle:

This is Gλ for particle at rest (h′ = 0) ;
one has Gλ(V ) = Gλ + (V ,V )
for h′(t) = V , due to invariance .

(0, 0)

u−

u+

λ

−λ

G 1

λ

G 2

λ

G 3

λ

Hence: postulate as modeling assumption:
u is an admissible solution of the PDE in B+P model if

it is a Kruzhkov entropy solution away from the path x = h(t) ;
and it takes traces such that

(
u|(t,h(t)−) , u|(t,h(t)+)

)
∈ Gλ(h′(t)) .

NB (decoupling) if the path h fixed⇒ existence, uniqueness
of an admissible solution u for any given L∞ initial datum.
For existence: traces must be “hidden”: adapted entropy ineq.
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Giving sense to the ODE: particle moved by conservation of momentum

Following LST’07 , we consider that particle moves according to

t 7→
∫
R

u(t , x) dx + mh′(t) ≡ const .

Thus, the particle is driven by the “lack of conservativity” of the PDE,
i.e., by the jump of the normal to the interface flux component:

mh′′(t) =
(
(u−)2/2− h′(t)u−

)
−
(
(u+)2/2− h′(t)u+

)
.

We prefer to see it as follows (use Green-Gauss):
given u a Kruzhkov solution to Burgers away from x = h(t),

−m
∫ T

0
h′(t)ξ′(t)dt = mh′(0)ξ(0) +

∫ T

0

∫
R

[
uψξt +

u2

2
ξψx

]
+

∫
R

u0ψξ(0).

∀ξ ∈ D([0,T )),
∀ψ ∈ D(R) such that ψ ≡ 1 on the particle path.
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FIXED PARTICLE

(h ≡ 0; THEN h(·) FROZEN)
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The case h ≡ 0: the playground ?

Playground: freeze the particle at x = 0, i.e., work with

ut +
(u2

2
)

x = −u δ0(x).

Dissipative structure (source=singular absorption term)⇒ an
extension of Kruzhkov theory applies A., Seguin DCDS-A’12 .
Our viewpoint: application of the theory of “discontinuous-flux
conservation laws” (Risebro, Towers, Karlsen, Seguin-Vovelle,
Adimurthi, Audusse-Perthame and many others). Framework of A.,
Karlsen, Risebro ARMA’11 guarantees well-posedness because of a
specific property of Gλ (it is a “maximal L1-dissipative germ”).
Moreover: convergence of monotone finite volume schemes

– with Godunov flux at x = 0 ! – is guaranteed.

CV is based: on well-balance (equilibrium) property of the scheme ;
and on compactness due to stability:

L∞ stability (simple, by a kind of maximum principle)
BV stability (involved: Wave-Front Tracking A.,L.,S.,T. SIMA’14
or fine observation on a special FV scheme Aguillon, L., S.’14 )
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Particle: from h ≡ 0 to arbitrary frozen path h(·)

Actually the case h = 0 is easily upgraded to h = h(t) (arbirtary but
frozen, decoupled from u). The arguments are:

If h′(t) = V = const (straight particle path),
change (x−Vt)→ x̃ , (u−V )→ ũ yields ũt + ( ũ2

2 )x = −ũδ0(x).

Stop-and-restart⇒ well-posedness for piecewise affine h

Approximation of given h by a sequence of piecewise affine
paths hn, compactness of (un)n, passage to the limit
⇒ existence for any C1 path h.

Numerical counterpart: work on ut +
( u2

2 − h′(t)u
)

x = −uδ0(t)
or, equivalently, at each time step
incline the mesh following the particle Aguillon, L.,S.’14 .

Uniqueness obtained by the same proof as for h ≡ 0.
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RESOLVING

THE COUPLING
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Existence for B+P, L∞ data

We have just resolved the PDE on u, given h:

A : h 7→ u.

Conservation of momentum permits to resolve the ODE on h, given u
solution to Burgers:

B : u 7→ h.

Fixed point strategy (Schauder) applies in appropriate setting:

a ball of C1 for h,

a ball of L∞ considered in a weighted L1 space, for u.

One shows that
C = B ◦ A is continuous
(quite delicate point: check the continuity of A !)
C is compact (simple: compactification since Image(B) ⊂W 2,∞).

Thus C admits a fixed point. Existence follows. Uniqueness: open !
Details: A.,Lagoutière, Seguin, Takahashi SIMA’14 .
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Well-posedness for B+P, BV data

The essential ingredients here are:
BV estimate on u (depending only on u0 and on ‖h‖ in W 2,∞)
results on Lipschitz dependence of solutions to ut + f (t ,u)x = ...

on the flux f , here f (t ,u) = u2

2 − h′(t)u.
As a result, one easily proves that A is Lipschitz.
Possibility to replace Schauder by Banach-Picard (contractive)
fixed-point on short time intervals⇒ well-posedness, for BV data.

Another version: Gronwall for uniqueness. Splitting for existence:
freezing h′ on [tn−1, tn[,
resolve the problem h 7→ u on every time interval;
then update h′ at t = tn by conservation of momentum.
get existence from stability (L∞,BV for u, W 2,∞ for h)
using compactness due to flux nonlinearity,
Lions-Perthame-Tadmor’94, Panov’94 .
numerical counterpart for splitting: use a FV scheme
(GODUNOV??) to resolve h 7→ u approximatively

Details: A.,Lagoutière, Seguin, Takahashi SIMA’14 .
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Case study to describe the Riemann solver, h = 0...
Who wants to use Godunov ?

0

−λ

λ
uL

uR
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INTERFACE COUPLING CONDITIONS

AND ROLE OF EQUILIBRIA
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A point of view on the Kruzhkov theory

Consider homogeneous scalar conservation law ut + f (u)x = 0.
collective (“herd”) behaviour: if u, û solutions, ‖u − û‖L1(R)(t) ↓
with t . More precisely, Kato inequality holds:

|u − û|t + Φ(u, û)x 6 0 in D′

(|u − k | being Kruzhkov entropy, Φ(u, k) being the entropy flux).
Kruzhkov: to describe admissible solutions it’s enough to know

Kato ineq. holds for any couple of adm. solutions
(inherited from approx.! Kruzhkov: from vanishing viscosity)
û ≡ k are trivially admissible (inherited from approx. as well)

The basis of convergence proof of well-balanced monotone
Finite Volume schemes is :

compactness of families of approximate solutions (TVD, or weak
BV, or CompComp....)
monotonicity of the scheme⇒ discrete Kato inequality
well-balance property⇒ equilibria û ≡ k are trivial limits

We replicate this idea for ut + ( u2

2 )x = −uδ0. Seeking equilibria!
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û ≡ k are trivially admissible (inherited from approx. as well)

The basis of convergence proof of well-balanced monotone
Finite Volume schemes is :

compactness of families of approximate solutions (TVD, or weak
BV, or CompComp....)
monotonicity of the scheme⇒ discrete Kato inequality
well-balance property⇒ equilibria û ≡ k are trivial limits

We replicate this idea for ut + ( u2

2 )x = −uδ0. Seeking equilibria!



Model and its interpretation Fixed particle case Resolving the coupling Interface coupling conditions and equilibria Finite Volume Schemes for B+P

A point of view on the Kruzhkov theory

Consider homogeneous scalar conservation law ut + f (u)x = 0.
collective (“herd”) behaviour: if u, û solutions, ‖u − û‖L1(R)(t) ↓
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We replicate this idea for ut + ( u2

2 )x = −uδ0. Seeking equilibria!



Model and its interpretation Fixed particle case Resolving the coupling Interface coupling conditions and equilibria Finite Volume Schemes for B+P

Blackboard talk (15 min?)

Piecewise constants k(x) = k−11x<0 + k+11x>0 are the simplest equilibria.
Blow-up argument identifies the set of all admissible k(x) with “(k−, k+) ∈ Gλ”.
The set Gλ has a structure of L1D germ ((u−, u+), (û−, û+) ∈ Gλ ⇒ dissipation
of the entropy flux: Φ(u+, û+)− Φ(u−, û−) 6 0; the maximality of Gλ). ∃, ! from
theory of A.,Karlsen,Risebro’11. Numerics: Godunov at interface converges...
Forget traces, use adapted entropy ineq. (≡ Kato ineq. with û(t , x) = k(x)).

The line G1
λ = {(u−, u+) | u−−u+ = 1} is a “preferential part” of Gλ. Idea: use

this graph to “predict” u± from u∓. This leads to “prediction” interface numerical
fluxes F± (non-conservativity⇒ one-sided fluxes at interface!):
F−(u−1/2, u1/2) := F (u−1/2, u1/2−λ), F +(u−1/2, u1/2) := F (u−1/2 +λ, u1/2)

The resulting “prediction” scheme is well-balanced w.r.t. G1
λ but not w.r.t. Gλ .

Difficulty: Gλ is a maximal L1D germ; its part G1
λ ∪ G

2
λ is a definite L1D germ,

but G1
λ is not definite. Therefore, convergence of the scheme on some Riemann

problems (with endstates in G2
λ) has to be proved “by hands” (delicate).

Infinitely many maximal L1-D germs! Example: conservative transmission maps
A.,Cancès JHDE’15. Extension to transmission-dissipation maps: germsG[ϕ,ψ].
ϕ,ψ⇒ “transmission” interface num. fluxes F±

ϕ,ψ (via an implicit relation ).

The graph G1
λ is a transmission map, moreover, the flux dissipation across the

interface equals λ u++u−
2 . A.,Cancès’15 : one finds Gλ = G[ϕ,ψ] for ϕ= Id−λ,

ψ=λId⇒ new well-balanced “hybrid” scheme (1 implicit unknown at interface) .
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FINITE VOLUME

SCHEMES FOR B+P
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Numerical Finite Volume schemes (first order) ≡ CONCLUSION

Four basic schemes for h ≡ 0 (all of them convergent )
which only differ by the choice of numerical flux at the particle location:

“totally well-balanced” : Godunov, with the Riemann solver of L.,S.,T.’07
“(partially) well-balanced” prediction interface flux of A.,S.’12
improves on the previous: “very well-balanced” flux of Aguillon,L.,S.’14
“almost well balanced” (totally WB, if based on Godunov for Burgers)
hybridized transmission interface flux of A.,Cancès JHDE’15 with one
nonlinear equation to solve (scalar, monotone: easy!) per time step.

Adapting these schemes to the coupled problem: main ideas.
Splitting : update (un, hn,V n) to (un+1, hn,V n) by one of the above;
then update the particle velocity V n to V n+1 by conservation of moment,
finally update its position hn to hn+1 by integration of the velocity.
All methods require to localize hn+1 at a mesh interface⇒

making the mesh follow the particle ? Aguillon,L.,S.’14 ,
1 particle only (but the only scheme with convergence proof !)
⇒ serious difficulties if more than 1 particle:
use projection by random sampling (like Glimm) ? A.,L.,S.,T.’10
trapezoid cells around the particle used for update, then erased
or shift the mesh by a multiple of ∆x ? Towers’15
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Coupled problem: a well-balanced random-choice numerical scheme
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Figure: Representation of the algorithm based on the well-balanced scheme.
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Numerics: Glimm scheme versus well-balanced random-choice scheme
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Figure: Probability distributions of velocity of the particle for the two schemes
(1000 runs, Van der Corput equidistributed sequences used)
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Numerics: drafting-kissing-tumbling
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Figure: Trajectories of two particles
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Thx !!!

MERCI – THANK YOU !


	Model and interpretation
	Fixed particle case
	Resolving the coupling
	Interface coupling conditions and equilibria
	Finite Volume Schemes for B+P

