Formulation and analysis of Discrete Duality Finite Volume schemes. Part II. DDFV schemes in 2D and 3D.

B. Andreianov

based on joint works with
Franck Boyer and Florence Hubert (Marseille), Stella Krell (Nice),
Mostafa Bendahmane (Bordeaux), Kenneth H. Karlsen (Oslo).

Original ideas: F. Hermeline – K. Domelevo and P. Omnès (2D)
Ch.Pierre – F. Hermeline – Y. Coudière and F. Hubert (3D)
J. Droniou – R. Eymard – R. Herbin (DDFV ⊂ gradient schemes)

¹Université de Franche-Comté, Besançon, France

Rocquencourt, July 2015

CEA-EDF-INRIA School New Trends in Compatible Discretizations
Plan of the talk

1. 2D diamond partition and DDFV discrete gradient
 - Quadrilateral diamonds and a gradient reconstruction formula
 - Centers of diamonds, elements and DDFV volumes

2. 2D DDFV scheme
 - Scalar products and Discrete Duality
 - Some properties of DDFV operators and schemes

3. The 3D CeVe-DDFV scheme
 - A primal mesh-oriented construction
 - 3D CeVe-DDFV: scalar products, discrete duality and reconstruction.

4. The 3D CeVeFE-DDFV scheme

5. Successful applications of DDFV schemes
2D DIAMOND PARTITION AND DISCRETE GRADIENT
Partition into quadrilateral diamonds

Partition Ω into quadrilateral (possibly degenerate) diamonds.

Quadrilateral has 4 vertices
$= 2$ pairs of “opposite” vertices.
Call them κ, ℓ and κ^*, ℓ^*.
2D DDFV gradient reconstruction

Attach DOFs u_K, u_L and u_{K^*}, u_{L^*} to the couples of opposite vertices.

DDFV gradient reconstruction:

$$\nabla \tilde{u} := \frac{1}{\sin \alpha_D} \left(\frac{u_L - u_K}{m_{\sigma^*}} \nu + \frac{u_{L^*} - u_{K^*}}{m_\sigma} \nu^* \right)$$

Lemma (consistency of the 2D DDFV gradient)

This reconstruction is exact on affine functions.

Proof: Take scalar products by $\vec{\tau}, \vec{\tau}^*$.
In order to create a FV scheme, one should attach volumes to DOFs.

Specificity of DDFV: overlapping volumes.

Two partitions: \(\mathcal{M} \) (“primal” volumes \(\kappa \)) and \(\mathcal{M}^* \) (“dual” volumes \(\kappa^* \)).

Given a choice of \(x_D \) “centers” of diamonds \(D \), the volumes are constructed from “elements”.

2D DDFV Element:
triangle with vertices \(x_D \), one \(\in \{ x_K, x_L \} \), and one \(\in \{ x_{K^*}, x_{L^*} \} \).

“Primal” and “dual” 2D DDFV volumes:
Assemble \(\kappa \) from all elements having \(\kappa \) for vertice.
Idem for \(\kappa^* = \) union of elements having \(\kappa^* \) for vertice.

“Primal” mesh \(\mathcal{M} := \{ \text{all } \kappa \} \); “dual” mesh \(\mathcal{M}^* := \{ \text{all } \kappa^* \} \).
Boundary primal and dual volumes (possibly degenerate) appear.

For implementation:
Only the diamond mesh and the measures of elements are relevant!
The matrix of the DDFV method is assembled “per diamond”.

Centers of diamonds, elements and DDFV volumes

2D diamond partition and gradient

2D DDFV scheme

The 3D CeVe-DDFV scheme

The 3D CeVeFE-DDFV scheme

Applications of DDFV schemes
Simplest choice of diamond centers x_D: the diagonals’ intersection

(Main) example of diamond, primal and dual meshes: x_D taken at diagonals’ intersection.

NB: another natural choice: x_D the barycenter of vertices of D. (easy to calculate the measures of elements from given vertices of D).
Primal mesh-oriented DDFV

The 2D DDFV scheme with x_D at diagonals’ intersection is the original one: Hermeline ’98,’00, Domelevo, Omnès ’05.

Construction from a given primal mesh \mathcal{M}:
natural if a mesh is given (\Rightarrow DDFV = cell+vertex - centered scheme)

Construction from diamonds:
most natural from the GS viewpoint Droniou, Eymard, Herbin ’15
“Almost arbitrary” primal meshes allowed

Example of a primal mesh allowing for the 2D DDFV construction:

Some conditions on families \mathcal{T}_h of primal meshes are needed such as uniform lower bound on angles $(\alpha_D)_{D \in \mathcal{D}_h}$ (condition satisfied for the meshes like those pictured above).
2D DDFV SCHEME
Discrete functions and fields. Discrete gradient and divergence operators

2D DDFV triple $\mathcal{I} = \text{diamond mesh } \mathcal{D} + \text{volumes meshes } \mathcal{M}, \mathcal{M}^*$

- Consider two kinds of objects:
 - discrete functions $u^\mathcal{I} \in \mathbb{R}^{\#\mathcal{M} + \#\mathcal{M}^*}$, discrete fields $\vec{F}^\mathcal{I} \in (\mathbb{R}^\mathcal{D})^2$:
 \[
 u^\mathcal{I} = \left((u_K)_{K \in \mathcal{M}}, (u_{K^*})_{K^* \in \mathcal{M}^*} \right), \quad \vec{F}^\mathcal{I} = \left(\vec{F}_D \right)_{D \in \mathcal{D}}.
 \]

- Discrete gradient operator:
 the DDFV per diamond reconstruction from opposite vertices
 \[
 \vec{\nabla}^\mathcal{I} : \mathbb{R}^{\#\mathcal{M} + \#\mathcal{M}^*} \rightarrow (\mathbb{R}^\mathcal{D})^d,
 \vec{\nabla}^\mathcal{D}_D u^\mathcal{I} := \frac{1}{\sin \alpha_D} \left(\frac{u_L - u_K}{d_{K,L}} n_{K^*,L^*} + \frac{u_{L^*} - u_{K^*}}{d_{K^*,L^*}} n_{K,L} \right)
 \]

- Discrete divergence operator: standard FV discretization per primal/dual volume integration + Green-Gauss
 \[
 \text{div}^\mathcal{I} : (\mathbb{R}^\mathcal{D})^d \rightarrow \mathbb{R}^{\#\mathcal{M} + \#\mathcal{M}^*},
 \text{div}_K \vec{F}^\mathcal{I} := \frac{1}{|K|} \sum_D |\partial K \cap D| \vec{F}_D \cdot \vec{n}_K, \quad \text{div}_{K^*} \vec{F}^\mathcal{I} := \frac{1}{|K^*|} \sum_D |\partial K^* \cap D| \vec{F}_D \cdot \vec{n}_{K^*}
 \]
Scalar products and Discrete Duality

Inner product on the space of discrete functions:

\[
\left[u^\varnothing, v^\varnothing \right] := \frac{1}{2} \left(\sum_{K \in \mathcal{m}} |K| u_K v_K + \sum_{K^* \in \mathcal{m}^*} |K^*| u_{K^*} v_{K^*} \right)
\]

NB: The GS viewpoint will be:

\[
\left[u^\varnothing, v^\varnothing \right]_{GS} := \sum_{K \in \mathcal{m}, K \in \mathcal{m}^*} |K \cap K^*| \frac{u_K + u_{K^*}}{2} \frac{v_K + v_{K^*}}{2}
\]

Inner product on the space of discrete fields:

\[
\left\{ \vec{F}^\varnothing, \vec{G}^\varnothing \right\} := \sum_{D \in \mathcal{D}} |D| \vec{F}_D \cdot \vec{G}_D
\]

Discrete Duality (DD) property:

\[
\forall u^\varnothing \in \mathbb{R}^{\# \mathcal{m} + \# \mathcal{m}^*} \quad \forall \vec{F}^\varnothing \in \mathbb{R}^{\# \mathcal{D}}
\]

\[
\left[u^\varnothing, \text{div}^\varnothing \vec{F}^\varnothing \right] + \left\{ \nabla u^\varnothing, \vec{F}^\varnothing \right\} = 0 \quad \text{(or} \quad \left\langle \ldots, \ldots \right\rangle_{\partial \Omega} \text{)}.
\]
Calculation of discrete gradient and proof of the Discrete Duality.

It is useful (both for proofs and for implementation) to rewrite $\nabla_D u^\xi$:

$$\nabla_D u^\xi = \frac{1}{2|D|} \left((u_L - u_K) \tilde{N}_{KL} + (u_L^* - u_K^*) \tilde{N}_{K*L}^* \right),$$

where

$$\tilde{N}_{KL} := \int_{K|L \cap D} \tilde{n}_K, \quad \tilde{N}_{K*L}^* := \int_{K|L \cap D} \tilde{n}_K^*$$

being the quantities that also appear in discrete divergence: e.g.,

$$\text{div}_K \vec{F}^\xi := \frac{1}{|K|} \sum_{D: D \cap K \neq \emptyset} \vec{F}_D \cdot \tilde{N}_{KL}$$

Lemma (2D DDFV has Discrete Duality property, Dirichlet BC)

Let u^ξ be a discrete function with zero entries in boundary volumes, and \vec{F}^ξ de a discrete field. Then

$$\left[u^\xi, \text{div}^\xi \vec{F}^\xi \right] + \left\{ \nabla u^\xi, \vec{F}^\xi \right\} = 0.$$

Proof: Write $\left[\cdot, \cdot \right]$ using the \tilde{N}_{KL} writing, gather terms with \vec{F}_D per diamond, use conservativity of fluxes (summation-by-parts idea).
Lift of the discrete solution to Ω. Relation to gradient schemes.

- The discrete fields are lifted to Ω by $\left(\Pi, \tilde{\mathcal{F}}\right)(x) := \sum_D \mathcal{F}_D \mathbf{1}_D(x)$.

- For the reasons that will become clear while studying asymptotic compactness, we have to lift u^Ξ on Ω by
 \[
 (\Pi u^\Xi)(x) := \frac{1}{2} \left(\sum_K u_K \mathbf{1}_K(x) + \sum_{K^*} u_{K^*} \mathbf{1}_{K^*}(x) \right) \equiv \sum_{K,K^*} \frac{u_K + u_{K^*}}{2} \mathbf{1}_{K \cap K^*}(x).
 \]

Relation to gradient schemes: in the GS setting, one uses
\[
\left[u^\Xi, v^\Xi\right]_{GS} := \int_\Omega (\Pi u^\Xi)(x) (\Pi v^\Xi)(x) \, dx \neq \text{the DDFV scalar product}.
\]

Yet if v^Ξ is the discretization of $v \in C^1(\Omega)$,
\[
\forall x \in K \cap K^* \quad |v_K - \frac{v_K + v_{K^*}}{2}|, \quad |v_{K^*} - \frac{v_K + v_{K^*}}{2}| \leq \text{diam}(K) \quad \Rightarrow
\]
\[
\left[u^\Xi, v^\Xi\right]_{GS} = \sum_{K \in \mathcal{W}, K^* \in \mathcal{W}^*} |K \cap K^*| \left| \frac{u_K + u_{K^*}}{2} \frac{v_K + v_{K^*}}{2} \right|
\]
\[
= \frac{1}{2} \left(\sum_{K \in \mathcal{W}, K^* \in \mathcal{W}^*} |K \cap K^*| u_K \frac{v_K + v_{K^*}}{2} + \sum_{K \in \mathcal{W}, K^* \in \mathcal{W}^*} |K \cap K^*| u_{K^*} \frac{v_K + v_{K^*}}{2} \right)
\]
\[
\approx \frac{1}{2} \left(\sum_{K \in \mathcal{W}} |K| u_K v_K + \sum_{K^* \in \mathcal{W}^*} |K^*| u_{K^*} v_{K^*} \right) = \left[u^\Xi, v^\Xi\right]
\]
up to a term of order size(Ξ)$\|u^\Xi\|_{L^1}$.
Lift of the discrete solution to Ω. Relation to gradient schemes.

- The discrete fields are lifted to Ω by $(\vec{\Pi}_D \vec{\xi}) (x) := \sum_D \vec{\xi}_D \mathbf{1}_D (x)$.
- For the reasons that will become clear while studying asymptotic compactness, we have to lift u^Ξ on Ω by $(\vec{\Pi} u^\Xi) (x) := \frac{1}{2} \left(\sum_K u_K \mathbf{1}_K (x) + \sum_{K^*} u_{K^*} \mathbf{1}_{K^*} (x) \right) \equiv \sum_{K,K^*} \frac{u_K + u_{K^*}}{2} \mathbf{1}_{K \cap K^*} (x)$.

Relation to gradient schemes: in the GS setting, one uses

$$\left[u^\Xi, v^\Xi \right]_{GS} := \int_\Omega (\vec{\Pi} u^\Xi)(x)(\vec{\Pi} v^\Xi)(x) \, dx \neq \text{the DDFV scalar product.}$$

Yet if v^Ξ is the discretization of $v \in C^1(\Omega)$,

$$\forall x \in K \cap K^* \quad |v_K - \frac{v_K + v_{K^*}}{2}|, |v_{K^*} - \frac{v_K + v_{K^*}}{2}| \leq \text{diam}(K) \quad \Rightarrow$$

$$\left[u^\Xi, v^\Xi \right]_{GS} = \sum_{K \in \mathcal{M}, K^* \in \mathcal{M}^*} |K \cap K^*| \frac{u_K + u_{K^*}}{2} \frac{v_K + v_{K^*}}{2}$$

$$= \frac{1}{2} \left(\sum_{K \in \mathcal{M}, K^* \in \mathcal{M}^*} |K \cap K^*| u_K \frac{v_K + v_{K^*}}{2} + \sum_{K \in \mathcal{M}, K^* \in \mathcal{M}^*} |K \cap K^*| u_{K^*} \frac{v_K + v_{K^*}}{2} \right)$$

$$\approx \frac{1}{2} \left(\sum_{K \in \mathcal{M}} |K| u_K v_K + \sum_{K^* \in \mathcal{M}^*} |K^*| u_{K^*} v_{K^*} \right) = \left[u^\Xi, v^\Xi \right]$$

up to a term of order size(Ξ)$\|u^\Xi\|_{L^1}$.

Scalar products and Discrete Duality

- 2D DDFV scheme
- The 3D CeVe-DDFV scheme
- The 3D CeVeFE-DDFV scheme
- Applications of DDFV schemes
Discrete compactness and lift of discrete functions.

Introduce primal and dual lift of discrete functions:

\[\Pi^0 u^\Xi := \sum_K u_K 1_K(x), \quad \Pi^* u^\Xi := \sum_{K^*} u_{K^*} 1_{K^*}(x) \]

\[\implies \Pi u^\Xi = \frac{\Pi^0 u^\Xi + \Pi^* u^\Xi}{2} \]

Using the DD property + ad hoc consistency properties, one proves

Proposition (Discrete asymptotic compactness)

Consider a sequence of meshes \(\Xi_h \) with \(h = \text{size}(\Xi_h) \to 0 \). Assume \((\Pi^0 u^\Xi_h)_h, (\Pi^* u^\Xi_h)_h \) and \((\Pi \nabla^\Xi_h u^\Xi_h)_h \) are bounded in \(L^{1+s\text{thg}}(\Omega) \).

Then there exist \(u^0, u^* \) such that

\[\Pi^0 u^\Xi_h \to u^0, \quad \Pi^* u^\Xi_h \to u^* \quad \text{in} \ L^1(\Omega) \]

Moreover, \(\Pi \nabla^\Xi_h u^\Xi_h \rightharpoonup \frac{u^0 + u^*}{2} \) weakly in \(L^1(\Omega) \).

\[\implies \] this is the reason to fix reconstruction \(\Pi \)!

(cf. also GS analysis of Droniou, Eymard, Herbin ’15)
Handling of nonlinearities (reaction terms,...). Penalization.

Nonlinearities I: for $b(u^\tau)$, use the GS reconstruction “per $K \cap K^*$”. I.e., do not use the lumped approximations “$b(u^\tau) \sim b(u_K)$ on K” but use “$b(u^\tau) \sim b(\frac{u_K+u_K^*}{2})$ on $K \cap K^*$” (natural for GS ideology).

Nonlinearities II: alternatively, add penalization and keep the natural DDFV (lumped) approximations for $b(u^\tau)$.

Penalization operator: add to $-\text{div}_K \vec{\nabla}^\tau u^\tau$ the extra diffusion

$$(\mathcal{P}^\tau u^\tau)_K := \frac{1}{|K|} \sum_{K^*} |K \cap K^*| \frac{u_K-u_K^*}{\text{size}(\tau)}.$$

(cf. S. Krell’s stabilization in DDFV for Stokes pb.)

Lemma (contributions of the penalization operator)

(i) Assume v^τ has zero DOF at boundary nodes. Then

$$\left[\mathcal{P}^\tau u^\tau, v^\tau\right] = \sum_{K,K^*} \frac{(u_K-u_K^*)(v_K-v_K^*)}{\text{size}(\tau)}.$$

(ii) If $\left[\mathcal{P}^\tau u^\tau, u^\tau\right] \leq C$ uniformly w.r.t $h = \text{size}(\mathcal{I}_h) \to 0$, then $u^o = \lim_h \Pi^o u^\tau_h$ and $u^* = \lim_h \Pi^* u^\tau_h$ coincide.
Handling of nonlinearities (reaction terms,...). Penalization.

Nonlinearities I: for \(b(u^\overline{x}) \), use the GS reconstruction “per \(K \cap K^* \)”. I.e., do not use the lumped approximations \(b(u^\overline{x}) \sim b(u_K) \) on \(K \) but use \(b(u^\overline{x}) \sim b\left(\frac{u_K + u_{K^*}}{2}\right) \) on \(K \cap K^* \) (natural for GS ideology).

Nonlinearities II: alternatively, add penalization and keep the natural DDFV (lumped) approximations for \(b(u^\overline{x}) \).

Penalization operator: add to \(-\text{div}_K \mathbf{K} \overrightarrow{\nabla} u^\overline{x} \) the extra diffusion

\[
(P^\overline{x} u^\overline{x})_K := \frac{1}{|K|} \sum_{K^*} |K \cap K^*| \frac{u_K - u_{K^*}}{\text{size}(\overline{x})}.
\]

(cf. S. Krell’s stabilization in DDFV for Stokes pb.)

Lemma (contributions of the penalization operator)

(i) Assume \(v^\overline{x} \) has zero DOF at boundary nodes. Then

\[
\left[P^\overline{x} u^\overline{x}, v^\overline{x} \right] = \sum_{K,K^*} \frac{(u_K - u_{K^*})(v_K - v_{K^*})}{\text{size}(\overline{x})}
\]

(ii) If \(\left[P^\overline{x} u^\overline{x}, u^\overline{x} \right] \leq C \) uniformly w.r.t \(h = \text{size}(\overline{x}_h) \to 0 \), then \(u^0 = \lim_h \Pi^0 u^\overline{x}_h \) and \(u^* = \lim_h \Pi^* u^\overline{x}_h \) coincide.
Many classical functional inequalities, etc. are transposed to the discrete DDFV setting.

- **Poincaré-Friedrichs:**
 A., Boyer, Hubert ’07 (weakest assumptions on Ω)

- **Poincaré-Wirtinger, Sobolev:**
 A., Bendahmane, Karlsen, Pierre ’11, Omnès, Le ’14, Bessemoulin-Chatard, Chainais, Filbet ’14

NB: The two meshes are treated separately (like TPFA)

- **Korn inequality:**
 Delcourte, Omnès – Krell, strongly uses DD property

- **tools for Stokes and elasticity:**
 duality formulas involving $\tilde{\mathbf{\nabla}} \tilde{u}$ for vector-valued \tilde{u}
 Delcourte, Domelevo, Omnès – Krell

- **inf – sup stability:** Boyer, Krell, Nabet ’15
Many classical functional inequalities, etc. are transposed to the discrete DDFV setting.

- **Poincaré-Friedrichs:**
 A., Boyer, Hubert ’07 (weakest assumptions on \mathcal{D})

- **Poincaré-Wirtinger, Sobolev:**
 A., Bendahmane, Karlsen, Pierre ’11, Omnès, Le ’14, Bessemoulin-Chatard, Chainais, Filbet ’14
 NB: The two meshes are treated separately (like TPFA)

- **Korn inequality:**
 Delcourt, Omnès – Krell, strongly uses DD property

- **Tools for Stokes and elasticity:**
 Duality formulas involving $\mathring{\nabla} \mathring{u}$ for vector-valued \mathring{u}
 Delcourt, Domelevo, Omnès – Krell

- **inf – sup stability:** Boyer, Krell, Nabet ’15
Maximum principle and entropy compatibility. 2D m-DDFV

- **Maximum principle**: true on orthogonal meshes.
 E.g., primal Delaunay triangulation and dual Voronoï mesh; cartesian meshes (relevant for image processing)
- (hyperbolic problems) compatibility with entropy inequalities: true on orthogonal meshes A., Bendahmane, Karlsen ’11.

Theoretical convergence orders:
- order h, for linear problems with smooth K, Domelevo, Omnès ’05
- possibility of keeping order h for $-\text{div } K \nabla u$ and piecewise constant K: m-DDFV extension of DDFV Boyer, Hubert ’08
- handling domain decomposition Boyer, Hubert, Krell, Gander
- order $h^{\min\{p^{-1}, \frac{1}{p-1}\}}$ for p-laplacian A., Boyer, Hubert ’07
- h^2 on uniform cartesian meshes? Cf. A., Boyer, Hubert ’06

Numerical convergence:
- in practice, particularly good approximation of gradients
- orders between h and h^2 for the solutions, depending on meshes

Details: Herbin, Hubert FVCA5 benchmark in 2D.
Maximum principle and entropy compatibility. 2D m-DDFV

- **Maximum principle**: true on orthogonal meshes.
 E.g., primal Delaunay triangulation and dual Voronoï mesh; cartesian meshes (relevant for image processing)
- (hyperbolic problems) compatibility with entropy inequalities: true on orthogonal meshes A., Bendahmane, Karlsen ’11.

Theoretical convergence orders:
- order h, for linear problems with smooth \mathbb{K} Domelevo, Omnès ’05
- possibility of keeping order h for $-\text{div} \mathbb{K} \vec{\nabla} u$ and piecewise constant \mathbb{K}: m-DDFV extension of DDFV Boyer, Hubert ’08
- handling domain decomposition Boyer, Hubert, Krell, Gander
- order $h^{\min\{p-1, \frac{1}{p-1}\}}$ for p-laplacian A., Boyer, Hubert ’07
- h^2 on uniform cartesian meshes? Cf. A., Boyer, Hubert ’06

Numerical convergence:
- in practice, particularly good approximation of gradients
- orders between h and h^2 for the solutions, depending on meshes

Details: Herbin, Hubert FVCA5 benchmark in 2D.
3D CeVe-DDFV Scheme
A primal mesh-oriented construction

Construction starting from a primal mesh

A first 3D construction (Pierre – Hermeline — A. et al.) uses primal+dual mesh

3D CeVe-DDFV gradient:

Diamond

Gradient reconstruction: one direction from x_K, x_L and two directions from the vertices of $K\cap L$.

$D^{K,L}$
If the face $\mathcal{K}\mathcal{L}$ is a triangle $D = D_{K^*,L^*,M^*}^{K,L}$, the reconstruction of all the components of the gradient is obvious:

$$\nabla^\mathcal{K} u^\mathcal{K} \big|_D = \text{the vector of } \mathbb{R}^3 \text{ with the projections}$$

$$\left\{ \begin{array}{l}
\frac{u_L - u_K}{d_{KL}}, \quad \text{on } \overrightarrow{X_KX_L} \\
\frac{u_{L^*} - u_{K^*}}{d_{K^*L^*}}, \quad \text{on } \overrightarrow{X_{K^*}X_{L^*}} \\
\frac{u_{K^*} - u_{M^*}}{d_{M^*K^*}}, \quad \text{on } \overrightarrow{X_{M^*}X_{K^*}} \\
\end{array} \right.$$

And what if it is a general polygon? (e.g., a quadrilateral, as for cartesian primal mesh)?
Let Θ be a plane in \mathbb{R}^3 with a unit normal vector \vec{n}, and $D \subset \Theta$ be a polygon.

Introduce the vertices x_i^*, $i = 1, \ldots, \ell$ (numbered counter-clockwise w.r.t. the orientation of Θ induced by \vec{n}).

Denote the area of σ by $|D|$, we have $|D| = \sum_{i=1}^{\ell} |D_{i,i+1}|$ (sub-areas are signed).

Let $x_0^* \in \Theta$ be a distinguished point.

Take $x_{i,i+1}^*$ the midpoints of the edges.

Lemma

$$\bar{r} = \frac{1}{|D|} \sum_{i=1}^{\ell} (\bar{r} \cdot x_i^* x_{i+1}^*) \left[\vec{n} \times x_i^* x_{i+1}^* \right] \equiv \frac{2}{|D|} \sum_{i=1}^{\ell} |D_{i,i+1}| (\bar{r} \cdot \vec{e}_{i,i+1}) \vec{e}_{i,i+1}',$$

where $\vec{e}_{i,i+1} := x_i^* x_{i+1}^* / \|x_i^* x_{i+1}^*\|$ and $\vec{e}_{i,i+1}' := \left[\vec{n} \times x_i^* x_{i+1}^* \right] / \| \vec{n} \times x_i^* x_{i+1}^* \|$.

The formula can be derived from the “magical formula” of Droniou, Eymard.

NB: if $\ell > 3$, this is one of infinitely many affine reconstruction formulas!
Corollary (Consistency of the gradient reconstruction)

Take \((w_i^*)_{i=1}^\ell \subset \mathbb{R}\), \(w_{\ell+1} := w_1^*\). If \(w_i^*\) are the values of an affine function \(w\) at the vertices \(x_i^*\) of the polygon \(\sigma\), then

\[
\nabla w = \frac{1}{|D|} \sum_{i=1}^\ell (w_{i+1}^* - w_i^*) \left[\vec{n} \times \overrightarrow{x_i^* x_{i+1}^*} \right] = \frac{2}{|D|} \sum_{i=1}^\ell |D_{i,i+1}| \frac{w_{i+1}^* - w_i^*}{d_{i,i+1}} \vec{e}_{i,i+1}',
\]

where \(d_{i,i+1} := \|\overrightarrow{x_i^* x_{i+1}^*}\|\) and \(\vec{e}_{i,i+1}' := \left[\vec{n} \times \overrightarrow{x_i^* x_{i+1}^*} \right] / \|\vec{n} \times \overrightarrow{x_i^* x_{i+1}^*}\|\)

\(\vec{n}\) signed area

\(x_{1,2} \equiv x_1^*\)

\(x_{4,5} \equiv x_5^*\)
There are infinitely many possibilities of reconstructing tangential components of $\vec{\nabla}_D$. One leads to Discrete Duality property.

The 3D CeVe-DDFV gradient reconstruction:
use the 2D co-volume reconstruction (cf. Part I of these lectures) in the polygon KL which vertices are dual centers $x_K^*, x_L^*, x_M^*, ...$

Coercivity concern:
is the kernel of $\vec{\nabla}$ reduced to constants, i.e.,

$$\vec{\nabla} = 0 \quad \Rightarrow \quad \Pi^0 u^{\nabla} \equiv \text{const}, \quad \Pi^* u^{\nabla} \equiv \text{const} ?$$

Yes, if $\ell = 3$, e.g. for tetrahedral primal meshes.
Yes, on cartesian meshes ($\ell = 4$) or topologically equivalent to them.
No coercivity, in general.

NB: 3D CeVeFE-DDFV scheme fixes the coercivity issue
Coercivity or lack of coercivity of CeVe-DDFV

There are infinitely many possibilities of reconstructing tangential components of $\vec{\nabla}_D$. One leads to Discrete Duality property.

The 3D CeVe-DDFV gradient reconstruction:
use the 2D co-volume reconstruction (cf. Part I of these lectures) in the polygon κL which vertices are dual centers $x_{K^*}, x_{L^*}, x_{M^*}, \ldots$

Coercivity concern:
is the kernel of $\vec{\nabla}_x$ reduced to constants, i.e.,

$$\vec{\nabla}_x \equiv \vec{0} \quad \Rightarrow \quad \Pi^0 u^x \equiv const, \quad \Pi^* u^x \equiv const ?$$

Yes, if $\ell = 3$, e.g. for tetrahedral primal meshes.
Yes, on cartesian meshes ($\ell = 4$) or topologically equivalent to them.
No coercivity, in general.

NB: 3D CeVeFE-DDFV scheme fixes the coercivity issue
Scalar products, discrete duality, reconstruction.

- For 3D discrete fields \(\vec{F}^x, \vec{G}^x \in (\mathbb{R}^#)^3 \),
 \[
 \left\{ \vec{F}^x, \vec{G}^x \right\} = \sum_{D \in D} m_D \vec{F}_D \cdot \vec{G}_D
 \]

- For 3D discrete functions \(u^x, v^x \in \mathbb{R}^#M + #M^* \),
 \[
 \left[u^x, v^x \right] = \frac{1}{3} \sum_{K \in M} m_K u_K v_K + \frac{2}{3} \sum_{K^* \in M^*} m_{K^*} u_{K^*} v_{K^*};
 \]

- Lift of discrete functions in 3D CeVE-DDFV:
 \[
 \Pi u^x := \frac{1}{3} \Pi^o u^x + \frac{2}{3} \Pi^* u^x,
 \]
 \[
 \Pi^o := u^x(x) \sum_{K \in M} u_K \mathbf{1}_K(x), \quad \Pi^* u^x(x) := \sum_{K^* \in M^*} u_{K^*} \mathbf{1}_{K^*}(x)
 \]

Proposition (3D CeVe Discrete Duality property, Dirichlet BC)

\[
\left[\text{div}^x [\vec{F}^x], u^x \right] + \left\{ \vec{F}^x, \nabla^x u^x \right\} = 0
\]
3D CeVeFE-DDFV scheme
An alternative: 3D CeVeFE-DDFV aka “new DDFV” scheme

There is an alternative to 3D CeVe-DDFV which is always coercive. Moreover, the construction can naturally be started from an arbitrary octahedral diamond mesh.

3D octahedron has 3 pairs of “opposite” vertices per diamond. The vertices are sorted pairwise into three classes and each pair of vertices is used to reconstruct a direction of the gradient.

Each of the three types of the vertices determines a partition of Ω

\Rightarrow CeVeFE-DDFV involves integration on three meshes

Differences w.r.t. CeVe-DDFV:

meshes weights $\frac{1}{3}$ (primal), $\frac{2}{3}$ (dual) are replaced by $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$.

- **CeVeFE scalar product:**

 $\left[u^\times, v^\times\right] = \frac{1}{3} \sum_{K \in \mathcal{M}} m_K u_K v_K + \frac{1}{3} \sum_{K^* \in \mathcal{M}^*} m_{K^*} u_{K^*} v_{K^*} + \frac{1}{3} \mathcal{M}^\#$ mesh term

- **CeVeFE reconstruction of solution:**

 $\Pi u^\times := \frac{1}{3} \Pi^0 u^\times + \frac{1}{3} \Pi^* u^\times + \frac{1}{3} \Pi^\# u^\times$

Details: the “Part-III.pdf” (by the courtesy of F. Hubert)
An alternative: 3D CeVeFE-DDFV aka “new DDFV” scheme

There is an alternative to 3D CeVe-DDFV which is always coercive. Moreover, the construction can naturally be started from an arbitrary octahedral diamond mesh.

3D octahedron has 3 pairs of “opposite” vertices per diamond. The vertices are sorted pairwise into three classes and each pair of vertices is used to reconstruct a direction of the gradient.

Each of the three types of the vertices determines a partition of Ω

\Rightarrow CeVeFE-DDFV involves integration on three meshes

Differences w.r.t. CeVe-DDFV:

- meshes weights $\frac{1}{3}$ (primal), $\frac{2}{3}$ (dual) are replaced by $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$.

 - CeVeFE scalar product:
 \[
 \left[u^\Sigma, v^\Sigma\right] = \frac{1}{3} \sum_{K \in \mathcal{M}} m_K u_K v_K + \frac{1}{3} \sum_{K^* \in \mathcal{M}^*} m_{K^*} u_{K^*} v_{K^*} + \frac{1}{3} \mathcal{M}^\# \text{ mesh term}
 \]

 - CeVeFE reconstruction of solution:
 \[
 \Pi u^\Sigma := \frac{1}{3} \Pi^0 u^\Sigma + \frac{1}{3} \Pi^* u^\Sigma + \frac{1}{3} \Pi^\# u^\Sigma
 \]

Details: the “Part-III.pdf” (by the courtesy of F. Hubert)
An alternative: 3D CeVeFE-DDFV aka “new DDFV” scheme

There is an alternative to 3D CeVe-DDFV which is always coercive. Moreover, the construction can naturally be started from an arbitrary octahedral diamond mesh.

3D octahedron has 3 pairs of “opposite” vertices per diamond. The vertices are sorted pairwise into three classes and each pair of vertices is used to reconstruct a direction of the gradient. Each of the three types of the vertices determines a partition of Ω

\Rightarrow CeVeFE-DDFV involves integration on three meshes

Differences w.r.t. CeVe-DDFV:

- meshes weights $\frac{1}{3}$ (primal), $\frac{2}{3}$ (dual) are replaced by $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$.

 - CeVeFE scalar product:
 \[
 \left[u^\text{x}, v^\text{x}\right] = \frac{1}{3} \sum_{K \in \mathcal{M}} m_K u_K v_K + \frac{1}{3} \sum_{K^* \in \mathcal{M}^*} m_{K^*} u_{K^*} v_{K^*} + \frac{1}{3} \mathcal{M}^\# \text{ mesh term}
 \]

 - CeVeFE reconstruction of solution:
 \[
 \Pi u^\text{x} := \frac{1}{3} \Pi^0 u^\text{x} + \frac{1}{3} \Pi^* u^\text{x} + \frac{1}{3} \Pi^\# u^\text{x}
 \]

Details: the “Part-III.pdf” (by the courtesy of F. Hubert)
APPLICATIONS OF DDFV SCHEMES
Problems discretized with DDFV

- Linear anisotropic and heterogeneous elliptic equations:
 Hermeline – Domelevo, Omnès – ...

- Flows in porous media:
 Boyer, Hubert – Chainais, Krell, Mouton – ...

- Nonlinear elliptic and elliptic-parabolic equations:
 A., Boyer, Hubert – Coudière, Hubert – A., Bendahmane, Hubert

- Nonlinear convection-diffusion equations:
 Coudière, Manzini – A., Bendahmane, Karlsen

- Electrocardiology (elliptic-parabolic reaction-diffusion system):
 Pierre – Coudière, Pierre, Turpault – A., Bendahmane, Karlsen, Pierre

- Stokes and Navier-Stokes problems:
 Delcourte, Domelevo, Omnès – Krell – Krell, Manzini – Goudon, Krell –
 Le, Omnès – Delcourte, Omnès – Boyer, Krell, Nabet – ...

- Linear elasticity:
 F. Pascal, B. Martin

- Image restoration, level-set curvature driven eqn.:
 Handlovičová, Kotorová – Handlovičová, Frolkovič – Hartung, Hubert
That’s all… thank you — merci !