Formulation and well-posedness of a nonlinear parabolic problem with inhomogeneous absorption

Boris Andreianov1, Karima Sbihi1 and Petra Wittbold2

1Université de Franche-Comté, Besançon, France
2Universität Duisburg-Essen, Germany

\textbf{NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS - MAZÓN ’60}

Valencía – July 2013
Plan of the talk

1. Elliptic and parabolic absorption problems
2. Natural (and less natural) estimates for solutions
3. Diffuse measures, obstacles, notion(s) of solution
4. Uniqueness, contraction, comparison... Existence ?
5. Subsequent approximations and existence
Absorption problems

Goal: study diffusion problems with absorption terms:

\[u_t + \text{div} \ a(u, Du) + \mu = f, \quad \mu(\cdot) \in \beta(\cdot, u(\cdot)) \]

with initial condition \(u(0, \cdot) = u_0 \)
and boundary conditions (e.g., homogeneous Dirichlet).

Assumptions:

- diffusion \(\text{div} \ a(u, Du) \) of Leray-Lions type (laplacian, \(p \)-laplacian,...)
- \(\beta(x, r) = \partial j(x, r) \) with \(j(\cdot, r) \) proper convex l.s.c. functional on \(\mathbb{R} \)
 (and \(\beta(\cdot, 0) \ni 0 \)) \(\Rightarrow \) the term \(\mu \) of the eqn is an absorption term.
- data \(u_0, f \): first in \(L^\infty \) or in energy space; then in \(L^1 \).
Absorption problems

Goal: study diffusion problems with absorption terms:

\[u_t + \text{div} \, a(u, Du) + \mu = f, \quad \mu(\cdot) \in \beta(\cdot, u(\cdot)) \]

with initial condition \(u(0, \cdot) = u_0 \)
and boundary conditions (e.g., homogeneous Dirichlet).

Assumptions:
- diffusion \(\text{div} \, a(u, Du) \) of Leray-Lions type (laplacian, \(p \)-laplacian,...)
- \(\beta(x, r) = \partial j(x, r) \) with \(j(\cdot, r) \) proper convex l.s.c. functional on \(\mathbb{R} \)
 (and \(\beta(\cdot, 0) \ni 0 \)) \(\Rightarrow \) the term \(\mu \) of the eqn is an absorption term.
- data \(u_0, f \): first in \(L^\infty \) or in energy space; then in \(L^1 \).

Notions of solution:
- strong solution (M. Crandall and Ph. Bénilan):
 the absorption term \(\mu \) is an \(L^1 \) function
- generalized solution (P. Wittbold):
 the absorption term \(\mu \) is realized as a measure.
- both versions (strong/generalized) can be considered within variational, or renormalized, or entropy formulation.
Literature on the diffusion-absorption problems

- [Bénilan, Crandall’91], [Bénilan, Wittbold’93]: abstract approach, notion of completely accretive operator, framework of strong solutions: one has $\mu \ll f$, ... but the approach is limited to x-independent absorptions $\beta(u)$.

- [Wittbold’97]: elliptic case, framework of generalized solutions. Key ingredient: characterization of μ as a diffuse measure with singular part concentrated on the obstacle ([Bouchitté’86])
Absorption problems

Natural estimates

Solution notion

Uniqueness

Subsequent approximations, existence

Literature on the diffusion-absorption problems

• [Bénilan, Crandall’91], [Bénilan, Wittbold’93]:
 abstract approach, notion of completely accretive operator,
 framework of strong solutions: one has $\mu \ll f$, ...
 but the approach is limited to x-independent absorptions $\beta(u)$.

• [Wittbold’97]: elliptic case, framework of generalized solutions.
 Key ingredient: characterization of μ as a diffuse measure
 with singular part concentrated on the obstacle ([Bouchitté’86])

• [A., Sbihi, Wittbold ’08]: will be discussed in this talk.
 Attempt to extend the approach of Wittbold to parabolic case.
 Idea: we manage to prove that μ is diffuse in x, for a.e. t.
Literature on the diffusion-absorption problems

- [Bénilan, Crandall’91], [Bénilan, Wittbold’93]: abstract approach, notion of completely accretive operator, framework of strong solutions: one has $\mu \ll f$, ..., but the approach is limited to x-independent absorptions $\beta(u)$.

- [Wittbold’97]: elliptic case, framework of generalized solutions. Key ingredient: characterization of μ as a diffuse measure with singular part concentrated on the obstacle ([Bouchitté’86])

- [A., Sbihi, Wittbold ’08]: will be discussed in this talk. Attempt to extend the approach of Wittbold to parabolic case. Idea: we manage to prove that μ is diffuse in x, for a.e. t.

- [Petitta, Ponce, Porretta’11]: a way to use “parabolic diffuse measures” based upon parabolic p-capacities of [Droniou, Porretta, Prignet’03]

- [Karami, Igbida]: an elegant way to avoid looking at the singular part of the measure μ (only test functions obeying the obstacle conditions are allowed)
Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div} a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$
Natural estimates and comparison of solutions

Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div } a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$

Order-preservation, contraction properties: (test fct. $\text{sign}^+(u - \hat{u}), \ldots$)

- $\|u(t, \cdot) - \hat{u}(t, \cdot)\|_{L^1(\Omega)}(t) \leq \|u_0 - \hat{u}_0\|_{L^1(\Omega)} + \int_0^t \|f(\tau, \cdot) - \hat{f}(\tau, \cdot)\|_{L^1(\Omega)} d\tau$
- $u_0 \leq \hat{u}_0$, $f \leq \hat{f} \Rightarrow$ solutions verify $u \leq \hat{u}$
- $\psi \geq \hat{\psi} \Rightarrow$ solutions verify $u \leq \hat{u}$
Natural estimates and comparison of solutions

Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div} a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$

Order-preservation, contraction properties: (test fct. $\text{sign}^+(u - \hat{u}), \ldots$)

- $\|u(t, \cdot) - \hat{u}(t, \cdot)\|_{L^1(\Omega)}(t) \leq \|u_0 - \hat{u}_0\|_{L^1(\Omega)} + \int_0^t \|f(\tau, \cdot) - \hat{f}(\tau, \cdot)\|_{L^1(\Omega)} \, d\tau$
- $u_0 \leq \hat{u}_0, \ f \leq \hat{f} \Rightarrow$ solutions verify $u \leq \hat{u}$
- $\psi \geq \hat{\psi} \Rightarrow$ solutions verify $u \leq \hat{u}$

Main estimates (formal; can be made rigorous):

- $f \in L^{p'}(0, T; W^{-1,p'})$ and $u_0 \in L^2 \Rightarrow$ solution u is in the energy space $L^p(0, T; W^{1,p}_0)$ (use u itself as test function)
Natural estimates and comparison of solutions

Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div} a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$

Order-preservation, contraction properties: (test fct. $\text{sign}^+(u - \hat{u}),…$)

- $\|u(t, \cdot) - \hat{u}(t, \cdot)\|_{L^1(\Omega)}(t) \leq \|u_0 - \hat{u}_0\|_{L^1(\Omega)} + \int_0^t \|f(\tau, \cdot) - \hat{f}(\tau, \cdot)\|_{L^1(\Omega)} d\tau$
- $u_0 \leq \hat{u}_0, f \leq \hat{f} \Rightarrow$ solutions verify $u \leq \hat{u}$
- $\psi \geq \hat{\psi} \Rightarrow$ solutions verify $u \leq \hat{u}$

Main estimates (formal; can be made rigorous):

- $f \in L^{p'}(0, T; W^{-1,p'})$ and $u_0 \in L^2 \Rightarrow$ solution u is in the energy space $L^p(0, T; W^{1,p}_0)$ (use u itself as test function)
- f, u_0 in $L^1 \Rightarrow$ solution u is in L^1 and $\beta \circ u$ is in L^1 (test fct. $\text{sign}(u)$)
Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div} a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$

Order-preservation, contraction properties: (test fct. $\text{sign}^+(u - \hat{u}),...$)

$$\|u(t, \cdot) - \hat{u}(t, \cdot)\|_{L^1(\Omega)}(t) \leq \|u_0 - \hat{u}_0\|_{L^1(\Omega)} + \int_0^t \|f(\tau, \cdot) - \hat{f}(\tau, \cdot)\|_{L^1(\Omega)} d\tau$$

$u_0 \leq \hat{u}_0, f \leq \hat{f} \Rightarrow$ solutions verify $u \leq \hat{u}$

$\psi \geq \hat{\psi} \Rightarrow$ solutions verify $u \leq \hat{u}$

Main estimates (formal; can be made rigorous):

- $f \in L^{p'}(0, T; W^{-1,p'})$ and $u_0 \in L^2 \Rightarrow$ solution u is in the energy space $L^p(0, T; W^{1,p}_0)$ (use u itself as test function)
- f,u_0 in $L^1 \Rightarrow$ solution u is in L^1 and $\beta \circ u$ is in L^1 (test fct. $\text{sign}(u)$)
- f,u_0 in $L^\infty \Rightarrow$ solution u is in L^∞ (test fct. $\text{sign}(u - M)^+$,...)
Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div} \, a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$

Order-preservation, contraction properties: (test fct. $\text{sign}^+(u - \hat{u}),\ldots$)

- $\|u(t, \cdot) - \hat{u}(t, \cdot)\|_{L^1(\Omega)}(t) \leq \|u_0 - \hat{u}_0\|_{L^1(\Omega)} + \int_0^t \|f(\tau, \cdot) - \hat{f}(\tau, \cdot)\|_{L^1(\Omega)} \, d\tau$

- $u_0 \leq \hat{u}_0, \, f \leq \hat{f} \Rightarrow$ solutions verify $u \leq \hat{u}$

- $\psi \geq \hat{\psi} \Rightarrow$ solutions verify $u \leq \hat{u}$

Main estimates (formal; can be made rigorous):

- $f \in L^{p'}(0, T; W^{-1,p'})$ and $u_0 \in L^2 \Rightarrow$ solution u is in the energy space $L^p(0, T; W_0^{1,p})$ (use u itself as test function)

- f, u_0 in $L^1 \Rightarrow$ solution u is in L^1 and $\beta \circ u$ is in L^1 (test fct. $\text{sign}(u)$)

- f, u_0 in $L^\infty \Rightarrow$ solution u is in L^∞ (test fct. $\text{sign}(u - M)^+$,...)

- f, u_0 in $L^1 \Rightarrow$ truncations $T_k(u)$ are in the energy space and in addition, $\int_{|k<|u|<k+1|} |Du|^p$ vanishes as $k \to \infty$.
Natural estimates and comparison of solutions

Consider absorption problems (with penalization term $\psi(u)$):

$$u_t + \text{div} a(u, Du) + \psi(u) + \beta \circ u = f, \quad u(0, \cdot) = u_0.$$

Order-preservation, contraction properties: (test fct. sign $^+(u - \hat{u})$,...)

- $\|u(t, \cdot) - \hat{u}(t, \cdot)\|_{L^1(\Omega)}(t) \leq \|u_0 - \hat{u}_0\|_{L^1(\Omega)} + \int_0^t \|f(\tau, \cdot) - \hat{f}(\tau, \cdot)\|_{L^1(\Omega)} d\tau$
- $u_0 \leq \hat{u}_0, f \leq \hat{f} \Rightarrow$ solutions verify $u \leq \hat{u}$
- $\psi \geq \hat{\psi} \Rightarrow$ solutions verify $u \leq \hat{u}$

Main estimates (formal; can be made rigorous):
- $f \in L^{p'}(0, T; W^{-1,p'})$ and $u_0 \in L^2 \Rightarrow$ solution u is in the energy space $L^p(0, T; W^{1,p})$ (use u itself as test function)
- f, u_0 in $L^1 \Rightarrow$ solution u is in L^1 and $\beta \circ u$ is in L^1 (test fct. sign (u))
- f, u_0 in $L^\infty \Rightarrow$ solution u is in L^∞ (test fct. sign $(u - M)^+$,...)
- f, u_0 in $L^1 \Rightarrow$ truncations $T_k(u)$ are in the energy space and in addition, $\int_{[k < |u| < k+1]} |Du|^p$ vanishes as $k \to \infty$.

One finer estimate:
- u_0, f in L^∞ and $\psi'(r) \geq \kappa > 0 \Rightarrow \beta \circ u \in L^\infty(0, T; L^1(\Omega))$
Characterization of measure μ: elliptic case

Let $\mathcal{J} : W^{1,p}_0(\Omega) \cap L^\infty(\Omega) \mapsto [0, +\infty]$, $\mathcal{J}[w] = \int\limits_{\Omega} j(x, w(x)) \, dx \leq +\infty$.

Then ([Bouchitté'86]) there exist $\gamma_-(x) \leq 0 \leq \gamma_+(x)$ such that $\overline{\text{Dom}(\mathcal{J})}^{\|\cdot\|_W^{1,p}} = \{ w \in W^{1,p}_0 | \gamma_- \leq w \leq \gamma_+ \}$.

All the relations (equalities,...) are understood quasi-everywhere.
Characterization of measure μ: elliptic case

Let $\mathcal{J} : W^{1,p}_0(\Omega) \cap L^\infty(\Omega) \mapsto [0, +\infty]$, $$\mathcal{J}[w] = \int_{\Omega} j(x, w(x)) \, dx \leq +\infty.$$ Then ([Bouchitté’86]) there exist $\gamma_-(x) \leq 0 \leq \gamma_+(x)$ such that $$\overline{\text{Dom}(\mathcal{J})} = \{ w \in W^{1,p}_0 \mid \gamma_- \leq w \leq \gamma_+ \}.$$ All the relations (equalities,...) are understood quasi-everywhere .

$\mathcal{M}_0(\Omega)$ is space of diffuse measures on Ω (zero on sets of null p-capacity). [Boccardo, Gallouët, Orsina’96]: $\mathcal{M}_0 \subset L^1 + W^{-1,p}$
Characterization of measure μ: elliptic case

Let $\mathcal{J} : W^1_0, p(\Omega) \cap L^\infty(\Omega) \mapsto [0, +\infty]$,

$$
\mathcal{J}[w] = \int_{\Omega} j(x, w(x)) \, dx \leq +\infty.
$$

Then ([Bouchitté'86]) there exist $\gamma_-(x) \leq 0 \leq \gamma_+(x)$ such that

$$
\text{Dom}(\mathcal{J})^{\|\cdot\|_{W^1, p}} = \{ w \in W^1_0, p | \gamma_- \leq w \leq \gamma_+ \}.
$$

All the relations (equalities,...) are understood quasi-everywhere .

$\mathcal{M}_0(\Omega)$ is space of diffuse measures on Ω (zero on sets of null p-capacity). [Boccardo, Gallouët, Orsina'96] : $\mathcal{M}_0 \subset L^1 + W^{-1, p}$

Definition (Variational solution, elliptic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in W^{1, p}(\Omega) \cap L^1(\Omega)$ is a solution of

$$
\text{u} + \text{div } a(u, Du) + \mu = g \text{ in } \mathcal{D}', \quad \text{“}\mu \in \beta \circ u\text{“},
$$

if $\mu \in \mathcal{M}_0(\Omega)$...
Characterization of measure μ: elliptic case

Let $\mathcal{J} : W_0^{1,p}(\Omega) \cap L^\infty(\Omega) \mapsto [0, +\infty]$,

$$\mathcal{J}[w] = \int_{\Omega} j(x, w(x)) \, dx \leq +\infty.$$

Then ([Bouchitté’86]) there exist $\gamma^-(x) \leq 0 \leq \gamma^+(x)$ such that

$$\overline{\text{Dom}(\mathcal{J})}^{\| \cdot \|_{W^{1,p}}} = \{ w \in W_0^{1,p} | \gamma^- \leq w \leq \gamma^+ \}.$$

All the relations (equalities,...) are understood quasi-everywhere.

$\mathcal{M}_0(\Omega)$ is space of diffuse measures on Ω (zero on sets of null p-capacity). [Boccardo, Gallouët, Orsina’96]: $\mathcal{M}_0 \subset L^1 + W^{-1,p}$

Definition (Variational solution, elliptic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in W^{1,p}(\Omega) \cap L^1(\Omega)$ is a solution of

$$u + \text{div} \, a(u, Du) + \mu = g \quad \text{in } \mathcal{D}', \quad \text{“} \mu \in \beta \circ u \text{”},$$

if $\mu \in \mathcal{M}_0(\Omega)$...and its Jordan decomposition $\mu = \mu_r + \mu_s$ fulfills

$\mu_r \in \beta \circ u + \partial \Pi_{[\gamma^-, \gamma^+]} ...$
Characterization of measure μ: elliptic case

Let $\mathcal{J} : W_0^1,p(\Omega) \cap L^\infty(\Omega) \mapsto [0, +\infty]$,

$$\mathcal{J}[w] = \int_{\Omega} j(x, w(x)) \, dx \leq +\infty.$$

Then ([Bouchitté’86]) there exist $\gamma_-(x) \leq 0 \leq \gamma_+(x)$ such that

$$\overline{\text{Dom}(\mathcal{J})}_{\|\cdot\|_{W^1,p}} = \{ w \in W_0^1,p \mid \gamma_- \leq w \leq \gamma_+ \}.$$

All the relations (equalities,...) are understood quasi-everywhere.

$M_0(\Omega)$ is space of diffuse measures on Ω (zero on sets of null p-capacity). [Boccardo, Gallouët, Orsina’96]: $M_0 \subset L^1 + W^{-1,p}$

Definition (Variational solution, elliptic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in W^{1,p}(\Omega) \cap L^1(\Omega)$ is a solution of

$$u + \text{div} \, a(u, Du) + \mu = g \text{ in } \mathcal{D}', \quad \mu \in \beta \circ u',$$

if $\mu \in M_0(\Omega)$...and its Jordan decomposition $\mu = \mu_r + \mu_s$ fulfills $\mu_r \in \beta \circ u + \partial \Pi_{[\gamma_-, \gamma_+]} ...$ and $u = \gamma_\pm$ on the support of μ_\pm.
The space of “Lebesque in t, diffuse in x” measures

In the parabolic case, the PDE in \mathcal{D}' ensures that

$$u_t + \mu \in L^{p'}(0,T; W^{-1,p'}) + L^1((0,T) \times \Omega)).$$

Difficulty: separate the two terms in order to give sense to the equation using standard tools (J.-L. Lions, Alt and Luckhaus,...).
The space of “Lebesque in t, diffuse in x” measures

In the parabolic case, the PDE in \mathcal{D}' ensures that

$$u_t + \mu \in L^{p'}(0, T; W^{-1,p'}) + L^1((0, T) \times \Omega)).$$

Difficulty: separate the two terms in order to give sense to the equation using standard tools (J.-L. Lions, Alt and Luckhaus,...). Key ingredient:

the space $L^1(0, T; w - \mathcal{M}_0(\Omega))$ and “maximal regularity” for $u_t + \mu$

Lemma (regularity of “Lebesgue in t, diffuse in x” measures)

The space $L^1(0, T; w - \mathcal{M}_0(\Omega))$ is continuously embedded into $L^{p'}(0, T; W^{-1,p'}) + (L^\infty)^*((0, T) \times \Omega)) = (L^p(0, T; W^{1,p}_0) \cap L^\infty((0, T) \times \Omega)))^*$

Proof: define $<\mu, \phi>$ by approximation of ϕ with $\phi_n \in C^0$. Prove that $<\mu, \phi_n>$ is a Cauchy sequence combining absolute continuity of the integral in t for μ with capacitary estimates in x for $(\phi - \phi_n)$.

Corollary (“Maximal regularity”)

$\mu \in L^1(0, T; w - \mathcal{M}_0(\Omega)) \Rightarrow \mu, u_t \in (L^p(0, T; W^{1,p}_0) \cap L^\infty((0, T) \times \Omega)))^*$
Characterization of measure μ: parabolic case

Definition (Variational solution, parabolic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in L^p(0,T; W^{1,p}(\Omega)) \cap L^1((0,T) \times \Omega)$ is a solution of

$$u_t + \text{div} a(u, Du) + \mu = g \text{ in } \mathcal{D}', \quad \mu \in \beta \circ u,$$

if $\mu \in L^1(0,T; w - \mathcal{M}_0(\Omega))$.
Characterization of measure μ: parabolic case

Definition (Variational solution, parabolic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in L^p(0,T; W^{1,p}(\Omega)) \cap L^1((0,T) \times \Omega)$ is a solution of $u_t + \text{div} \ a(u, Du) + \mu = g$ in \mathcal{D}', “$\mu \in \beta \circ u$”,

if $\mu \in L^1(0,T; w - \mathcal{M}_0(\Omega))$ and for a.e. t, $\mu(t) = \mu_r(t) + \mu_s(t)$ fulfills

- $\mu_r(t, \cdot) \in \beta(\cdot, u(t, \cdot)) + \partial \mathcal{I}_{[\gamma^-(\cdot), \gamma^+(\cdot)]}$
- and $u(t, \cdot) = \gamma^\pm(\cdot)$ on the support of $\mu^{\pm}_s(t)$.

Characterization of measure μ: parabolic case

Definition (Variational solution, parabolic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in L^p(0,T; W^{1,p}(\Omega)) \cap L^1((0,T) \times \Omega)$ is a solution of $u_t + \text{div } a(u, Du) + \mu = g$ in \mathcal{D}', $\mu \in \beta \circ u$,

if $\mu \in L^1(0,T; w - M_0(\Omega))$ and for a.e. t, $\mu(t) = \mu_r(t) + \mu_s(t)$ fulfills

- $\mu_r(t, \cdot) \in \beta(\cdot, u(t, \cdot)) + \partial \Pi_{[\gamma_-, \gamma_+]}$
- $\mu_s(t, \cdot) \in \beta(\cdot, u(t, \cdot)) + \partial \Pi_{[\gamma_-, \gamma_+]}$

and $u(t, \cdot) = \gamma_{\pm}(\cdot)$ on the support of $\mu_{\pm}(t)$.

For L^1 data, one defines entropy solutions following [Bénilan, Boccardo, Gallouët, Gariepy, Pierre, Vázquez’95] by requiring variational inequalities on $T_k(u - \phi)$ where

- T_k is truncation of levels $\pm k$
- ϕ is a test function chosen in $L^p(0,T; W^{1,p}_0) \cap L^\infty$.
Characterization of measure μ: parabolic case

Definition (Variational solution, parabolic case)

Assume $f \in L^1 \cap L^\infty$. Then $u \in L^p(0,T; W^{1,p}(\Omega)) \cap L^1((0,T) \times \Omega)$ is a solution of

$$u_t + \text{div} \ a(u, Du) + \mu = g \text{ in } \mathcal{D}', \quad \mu \in \beta \circ u,$$

if $\mu \in L^1(0,T; w - \mathcal{M}_0(\Omega))$ and for a.e. t, $\mu(t) = \mu_r(t) + \mu_s(t)$ fulfills

- $\mu_r(t, \cdot) \in \beta(\cdot, u(t, \cdot)) + \partial \mathcal{H}_{[\gamma_-(\cdot), \gamma_+(\cdot)]}$
- and $u(t, \cdot) = \gamma_{\pm}(\cdot)$ on the support of $\mu_{\pm}^{\pm}(t)$.

For L^1 data, one defines entropy solutions following [Bénilan, Boccardo, Gallouët, Gariepy, Pierre, Vázquez’95] by requiring variational inequalities on $T_k(u - \phi)$ where

- T_k is truncation of levels $\pm k$
- ϕ is a test function chosen in $L^p(0,T; W^{1,p}_0(\Omega)) \cap L^\infty$.

Theorem (Well-posedness, [A., Sbihi, Wittbold’08])

Parabolic problem with absorption is well-posed for entropy solutions

Remark: looks nice, but... limited to t-independent absorptions $\beta(x, \cdot)$.
Uniqueness, contraction and comparison principle

Contraction results: standard for this type of equations

The technique is also rather standard by now:
- use of the definition of entropy solution
- doubling of the time variable ([Kruzhkov’69],[Otto’96])
Uniqueness, contraction and comparison principle

Contraction results: standard for this type of equations

The technique is also rather standard by now:
- use of the definition of entropy solution
- doubling of the time variable ([Kruzhkov’69],[Otto’96])

NB: actually, the proof of comparison between u and \hat{u} goes by
- comparing a solution u to a solution $u_{m,n}$ of the penalized problem
 with penalization $\psi_{m,n} : r \mapsto \frac{1}{m} r^+ - \frac{1}{n} r^-$
- comparing solutions $u_{m,n}$ and $\hat{u}_{m,n}$
Uniqueness, contraction and comparison principle

Contraction results: standard for this type of equations

The technique is also rather standard by now:
- use of the definition of entropy solution
- doubling of the time variable ([Kruzhkov’69],[Otto’96])

NB: actually, the proof of comparison between u and \hat{u} goes by

- comparing a solution u to a solution $u_{m,n}$ of the penalized problem
 with penalization $\psi_{m,n} : r \mapsto \frac{1}{m}r^+ - \frac{1}{n}r^-$
- comparing solutions $u_{m,n}$ and $\hat{u}_{m,n}$

Difficulty: existence.
Why the $L^1(0,T; w - \mathcal{M}_0(\Omega))$ space is appropriate?
Uniqueness, contraction and comparison principle

Contraction results: standard for this type of equations

The technique is also rather standard by now:
- use of the definition of entropy solution
- doubling of the time variable ([Kruzhkov’69],[Otto’96])

NB: actually, the proof of comparison between u and \hat{u} goes by
- comparing a solution u to a solution $u_{m,n}$ of the penalized problem
 with penalization $\psi_{m,n} : r \mapsto \frac{1}{m} r^+ - \frac{1}{n} r^-$
- comparing solutions $u_{m,n}$ and $\hat{u}_{m,n}$

Difficulty: existence.
Why the $L^1(0,T; w - M_0(\Omega))$ space is appropriate?
The proof is a multi-step approximation. Ingredients:
Yosida regularization, nonlinear semigroups,
penalization, control of concentrations in $\mu = \beta \circ u$,
bi-monotone penalization & data approximation [Ammar, Wittbold’03]
Scheme of the existence proof

- Start by bi-parameter Yosida approximation of β by $\beta_\lambda^+ - \beta^-\nu$. Then there exist strong solutions $u_{\lambda,\nu}(\lambda)$ to the elliptic problem.
- Use Crandall-Liggett theorem to construct a mild solution of the evolution problem; show it is variational strong solution ($\mu_\lambda \in L^1((0,T) \times \Omega)$) to the PDE.
Scheme of the existence proof

- Start by bi-parameter Yosida approximation of β by $\beta_\lambda^+ - \beta_\nu^-$. Then there exist strong solutions $u_{\lambda,\nu}(\lambda)$ to the elliptic problem.
- Use Crandall-Liggett theorem to construct a mild solution of the evolution problem; show it is variational strong solution ($\mu_\lambda \in L^1((0,T) \times \Omega)$) to the PDE.
- **Difficulty:** control of concentrations of μ_λ.
 In space: desperate (concentration “on the obstacles” γ^\pm).
 And in time? Add penalization $\psi_{m,n}(u) = \frac{1}{m} u^+ - \frac{1}{n} u^-$. Its role: dominate u_λ^\pm by constructed *ad hoc* solutions v_λ^\pm of auxiliary stationary problem (⇒ the “fine estimate”).
Scheme of the existence proof

- Start by bi-parameter Yosida approximation of β by $\beta^+ - \beta^-$. Then there exist strong solutions $u_{\lambda,\nu(\lambda)}$ to the elliptic problem.

- Use Crandall-Liggett theorem to construct a mild solution of the evolution problem; show it is variational strong solution ($\mu_{\lambda} \in L^1((0,T) \times \Omega)$) to the PDE.

- **Difficulty**: control of concentrations of μ_{λ}.
 - In space: desperate (concentration “on the obstacles” γ^{\pm}).
 - And in time? Add penalization $\psi_{m,n}(u) = \frac{1}{m}u^+ - \frac{1}{n}u^-$. Its role: dominate u_{λ}^{\pm} by constructed ad hoc solutions v_{λ}^{\pm} of auxiliary stationary problem (\Rightarrow the “fine estimate”).

- Fix m, n; pass to the limit with parameter λ.
 - Passage in u_{λ}: $L^p(0,T; W^{1,p}_0)$ bound, Minty, Landes...
 - Passage in μ_{λ}: the “fine estimate” on μ_{λ} in $L^\infty(0,T; \mathcal{M}_b(\Omega))$ obtained using sub/super-solutions [Barthélemy, Bénilan’92]; subdifferential relation $j_{\lambda}(v) \geq j_{\lambda}(u_{\lambda}) + \mu_{\lambda}(v - u_{\lambda})$.

Scheme of the existence proof

- Start by bi-parameter Yosida approximation of β by $\beta^+ - \beta^-$. Then there exist strong solutions $u_{\lambda,\nu(\lambda)}$ to the elliptic problem.
- Use Crandall-Liggett theorem to construct a mild solution of the evolution problem; show it is variational strong solution ($\mu_\lambda \in L^1((0, T) \times \Omega)$) to the PDE.
- **Difficulty:** control of concentrations of μ_λ.
 - In space: desperate (concentration “on the obstacles” γ_{\pm}).
 - And in time? Add penalization $\psi_{m,n}(u) = \frac{1}{m} u^+ - \frac{1}{n} u^-$. Its role: dominate u^\pm_λ by constructed *ad hoc* solutions v^\pm_λ of auxiliary stationary problem (\Rightarrow the “fine estimate”).
- Fix m, n; pass to the limit with parameter λ.
 - Passage in u_λ: $L^p(0, T; W^{1,p}_0)$ bound, Minty, Landes...
 - Passage in μ_λ: the “fine estimate” on μ_λ in $L^\infty(0, T; M_b(\Omega))$ obtained using sub/super-solutions [Barthélemy, Bénilan’92]; subdifferential relation $j_\lambda(v) \geq j_\lambda(u_\lambda) + \mu_\lambda(v - u_\lambda)$.
- Finally, use monotonicity in m, n \Rightarrow strong convergence of $u_{m,n}$ and also strong convergence of $\mu_{m,n}$ because the space $L^1(0, T; w - M_0(\Omega))$ is closed in $M_b((0, T) \times \Omega)$.
GRACÍAS — THANK YOU FOR YOUR ATTENTION
GRACÍAS — THANK YOU FOR YOUR ATTENTION

FELIZ CUMPLEAÑOS, MAZÓN!