Weak and entropy solutions to fractional conservation laws.

Nathaël Alibaud1,2 Boris Andreianov1

1Université de Franche-Comté, Besançon, France
2École Nationale Supérieure de Mécanique et Microtechniques

Parma, February 2010
Plan of the talk

1. Problem and notions of solution

2. Some of the known results

3. Construction of a non-entropy weak solution
 - Ideas of the construction
 - Fractional laplacian on the space of odd functions
 - Proof sketched
PROBLEM CONSIDERED
Problem considered

We look at the “fractal conservation laws”

\[
\partial_t u + \text{div}_x f(u) + \mathcal{L}_\lambda[u] = 0, \quad \text{in } (0, \infty) \times \mathbb{R}^N, \tag{1}
\]
\[
u(0, \cdot) = u_0, \quad \text{on } \mathbb{R}^N, \tag{2}
\]

\(\mathcal{L}_\lambda\) denotes the fractional power \((-\Delta)^{\lambda/2}\) of \(-\Delta\).

This is a non-local, pseudodifferential operator of order \(\lambda, 0 < \lambda < 2\).

Motivations:

- gaz detonation (Clavin-Denet-He 01), phenomenological; rather \(1 \leq \lambda < 2\)
- “abnormal diffusion” phenomena (Woyczynski 01, Biler et al. 1998), probabilistic connection; also \(\lambda < 1\)

Generalization of \(\mathcal{L}_\lambda\) : Lévi processes.

The two reference (limit) case, thoroughly studied:

- \(\lambda = 2\) : the parabolic case, similar to the heat equation
- \(\lambda = 0\) : the pure hyperbolic case (scalar conservation law)

The behaviour of generic solutions is very different in the two cases.
Problem considered

We look at the “fractal conservation laws”

\[
\partial_t u + \text{div}_x f(u) + \mathcal{L}_\lambda [u] = 0, \quad \text{in } (0, \infty) \times \mathbb{R}^N, \quad (1)
\]

\[
u(0, \cdot) = u_0, \quad \text{on } \mathbb{R}^N, \quad (2)
\]

\(\mathcal{L}_\lambda\) denotes the fractional power \((-\Delta)^{\lambda}/2\) of \(-\Delta\).

This is a non-local, pseudodifferential operator of order \(\lambda, 0 < \lambda < 2\).

Motivations:

- gaz detonation (Clavin-Denet-He 01), phenomenological; rather \(1 \leq \lambda < 2\)
- “abnormal diffusion” phenomena (Woyczynski 01, Biler et al. 1998), probabilistic connection; also \(\lambda < 1\)

Generalization of \(\mathcal{L}_\lambda\): Lévi processes.

The two reference (limit) case, thoroughly studied:

- \(\lambda = 2\): the parabolic case, similar to the heat equation
- \(\lambda = 0\): the pure hyperbolic case (scalar conservation law)

The behaviour of generic solutions is very different in the two cases.
Problem considered

We look at the “fractal conservation laws”

\[
\partial_t u + \text{div}_x f(u) + \mathcal{L}_\lambda [u] = 0, \quad \text{in } (0, \infty) \times \mathbb{R}^N, \tag{1}
\]

\[
u(0, \cdot) = u_0, \quad \text{on } \mathbb{R}^N, \tag{2}
\]

\(\mathcal{L}_\lambda\) denotes the fractional power \((-\Delta)^{\lambda/2}\) of \(-\Delta\).

This is a non-local, pseudodifferential operator of order \(\lambda, 0 < \lambda < 2\).

Motivations:

- gaz detonation (Clavin-Denet-He 01), phenomenological; rather \(1 \leq \lambda < 2\)
- “abnormal diffusion” phenomena (Woyczynski 01, Biler et al. 1998), probabilistic connection; also \(\lambda < 1\)

Generalization of \(\mathcal{L}_\lambda\): Lévi processes.

The two reference (limit) case, thoroughly studied:

- \(\lambda = 2\): the parabolic case, similar to the heat equation
- \(\lambda = 0\): the pure hyperbolic case (scalar conservation law)

The behaviour of generic solutions is very different in the two cases.
What is the fractional laplacian?

If \(\varphi \) is regular (e.g., for a function \(\varphi \) from the Schwartz class \(\mathcal{S} (\mathbb{R}) \)), \(\mathcal{L}_\lambda [\varphi] \) can be defined through the Fourier transform:

\[
\mathcal{F}(\mathcal{L}_\lambda [\varphi])(\xi) := |\xi|^{\lambda} \mathcal{F}(\varphi)(\xi).
\]

(3)

In absence of regularity, a more general definition is provided by the Lévi-Khinchine formula: (case \(0 < \lambda < 1 \): the integral is converent)

\[
\text{const } \mathcal{L}_\lambda [\varphi](x) := \text{v.p.} \int_{\mathbb{R}} \frac{\varphi(x + z) - \varphi(x)}{|z|^{N+\lambda}} \, dz.
\]

(4)

Hint: The kernel \(\frac{1}{|z|^{N+\lambda}} \) being singular at the origin, Droniou-Imbert 05 split (4) into regular (“order zero”) and singular (“order \(\lambda \)”) parts:

\[
\mathcal{L}_\lambda [\varphi] = -G_\lambda \left(\int_{\{|z|>r\}} \frac{\varphi(z) - \varphi(0)}{|z|^{N+\lambda}} \, dz + \int_{\{|z|<r\}} \frac{\varphi(z) - \varphi(0)}{|z|^{N+\lambda}} \, dz \right)
\]

=: \(\mathcal{R}_\lambda^r [\varphi] + \mathcal{S}_\lambda^r [\varphi] \).
What is the fractional laplacian?

If φ is regular (e.g., for a function φ from the Schwartz class $\mathcal{S}(\mathbb{R})$), $\mathcal{L}_\lambda[\varphi]$ can be defined through the Fourier transform:

$$\mathcal{F}(\mathcal{L}_\lambda[\varphi])(\xi) := |\xi|^{\lambda} \mathcal{F}(\varphi)(\xi). \quad (3)$$

In absence of regularity, a more general definition is provided by the Lévi-Khinchine formula: (case $0 < \lambda < 1$: the integral is converent)

$$\text{const } \mathcal{L}_\lambda[\varphi](x) := \text{v.p. } \int_{\mathbb{R}} \frac{\varphi(x+z) - \varphi(x)}{|z|^{N+\lambda}} \, dz. \quad (4)$$

Hint: The kernel $\frac{1}{|z|^{N+\lambda}}$ being singular at the origin, Droniou-Imbert 05 split (4) into regular (“order zero”) and singular (“order λ”) parts:

$$\mathcal{L}_\lambda[\varphi] = -G_\lambda \left(\int_{\{|z|>r\}} \frac{\varphi(\cdot + z) - \varphi(\cdot)}{|z|^{N+\lambda}} \, dz + \int_{\{|z|<r\}} \frac{\varphi(\cdot + z) - \varphi(\cdot)}{|z|^{N+\lambda}} \, dz \right) =: \mathcal{R}_\lambda^r[\varphi] + \mathcal{S}_\lambda^r[\varphi].$$
What is the fractional laplacian?

If \(\varphi \) is regular (e.g., for a function \(\varphi \) from the Schwartz class \(\mathcal{S}(\mathbb{R}) \)), \(L_\lambda[\varphi] \) can be defined through the Fourier transform:

\[
\mathcal{F}(L_\lambda[\varphi])(\xi) := |\xi|^\lambda \mathcal{F}(\varphi)(\xi). \tag{3}
\]

In absence of regularity, a more general definition is provided by the Lévi-Khinchine formula: (case \(0 < \lambda < 1 \): the integral is converent)

\[
\text{const } L_\lambda[\varphi](x) := \text{v.p. } \int_{\mathbb{R}} \frac{\varphi(x + z) - \varphi(x)}{|z|^{N+\lambda}} dz. \tag{4}
\]

Hint: The kernel \(\frac{1}{|z|^{N+\lambda}} \) being singular at the origin, Droniou-Imbert 05 split (4) into regular (“order zero”) and singular (“order \(\lambda \)”) parts:

\[
L_\lambda[\varphi] = -G_\lambda \left(\int_{\{|z|>r\}} \frac{\varphi(\cdot + z) - \varphi(\cdot)}{|z|^{N+\lambda}} dz + \int_{\{|z|<r\}} \frac{\varphi(\cdot + z) - \varphi(\cdot)}{|z|^{N+\lambda}} dz \right) =: \mathcal{R}'_\lambda[\varphi] + S'_\lambda[\varphi].
\]
Heuristics: competition of regularizing and de-regularizing effects

Heuristically, the knowledge of the purely hyperbolic ($\lambda = 0$) and of the parabolic ($\lambda = 2$) cases permits to set up a few conjectures:

- In the case $0 < \lambda < 1$, the fractional diffusion term $\mathcal{L}[u]$ is dominated by the term $\text{div}_x f(u)$. In particular:
 - one expects that even for very smooth initial data, there is no globally defined in time classical solution
 - the notion of a weak (distributional) solution permits to get existence for rather general data
 - the notion of a weak solution leads to non-uniquness
 - a “good” notion of solution should be inspired by the kinetic solutions/entropy solutions coming from conservation laws.

- In the case $1 < \lambda < 2$, the fractional diffusion operator $\mathcal{L}[u]$ is the leading term. In particular:
 - smooth data give rise to globally defined smooth solutions
 - non-smooth data undergo an instantaneous regularizing effect
 - there is well-posedness in the framework of weak solutions.

- Case $\lambda = 1$. Hmmmm... no *a priori* conjectures!
 For some applications, one needs techniques that allow for a wide range of values of λ, including $\lambda = 1$...
Heuristics: competition of regularizing and de-regularizing effects

Heuristically, the knowledge of the purely hyperbolic ($\lambda = 0$) and of the parabolic ($\lambda = 2$) cases permits to set up a few conjectures:

- **in the case $0 < \lambda < 1$, the fractional diffusion term $\mathcal{L}[u]$ is dominated by the term $\text{div}_x f(u)$.** In particular:
 - one expects that even for very smooth initial data, there is no globally defined in time classical solution
 - the notion of a weak (distributional) solution permits to get existence for rather general data
 - the notion of a weak solution leads to non-uniqueness
 - a “good” notion of solution should be inspired by the kinetic solutions/entropy solutions coming from conservation laws.

- **in the case $1 < \lambda < 2$, the fractional diffusion operator $\mathcal{L}[u]$ is the leading term.** In particular:
 - smooth data give rise to globally defined smooth solutions
 - non-smooth data undergo an instantaneous regularizing effect
 - there is well-posedness in the framework of weak solutions.

- **Case $\lambda = 1$.** Hmmmm... no *a priori* conjectures!
 For some applications, one needs techniques that allow for a wide range of values of λ, including $\lambda = 1$...
Heuristics: competition of regularizing and de-regularizing effects

Heuristically, the knowledge of the purely hyperbolic ($\lambda = 0$) and of the parabolic ($\lambda = 2$) cases permits to set up a few conjectures:

- **in the case $0 < \lambda < 1$, the fractional diffusion term $L[u]$ is dominated by the term $\text{div}_x f(u)$.** In particular:
 - one expects that even for very smooth initial data, there is no globally defined in time classical solution
 - the notion of a weak (distributional) solution permits to get existence for rather general data
 - the notion of a weak solution leads to non-uniqueness
 - a “good” notion of solution should be inspired by the kinetic solutions/entropy solutions coming from conservation laws.

- **in the case $1 < \lambda < 2$, the fractional diffusion operator $L[u]$ is the leading term.** In particular:
 - smooth data give rise to globally defined smooth solutions
 - non-smooth data undergo an instantaneous regularizing effect
 - there is well-posedness in the framework of weak solutions.

Case $\lambda = 1$. Hmmmm... no *a priori* conjectures!

For some applications, one needs techniques that allow for a wide range of values of λ, including $\lambda = 1$...
Heuristics: competition of regularizing and de-regularizing effects

Heuristically, the knowledge of the purely hyperbolic ($\lambda = 0$) and of the parabolic ($\lambda = 2$) cases permits to set up a few conjectures:

- in the case $0 < \lambda < 1$, the fractional diffusion term $\mathcal{L}[u]$ is dominated by the term $\text{div}_x f(u)$. In particular:
 - one expects that even for very smooth initial data, there is no globally defined in time classical solution
 - the notion of a weak (distributional) solution permits to get existence for rather general data
 - the notion of a weak solution leads to non-uniqueness
 - a “good” notion of solution should be inspired by the kinetic solutions/entropy solutions coming from conservation laws.

- in the case $1 < \lambda < 2$, the fractional diffusion operator $\mathcal{L}[u]$ is the leading term. In particular:
 - smooth data give rise to globally defined smooth solutions
 - non-smooth data undergo an instantaneous regularizing effect
 - there is well-posedness in the framework of weak solutions.

Case $\lambda = 1$. Hmmmm... no a priori conjectures!

For some applications, one needs techniques that allow for a wide range of values of λ, including $\lambda = 1$...
Heuristically, the knowledge of the purely hyperbolic ($\lambda = 0$) and of the parabolic ($\lambda = 2$) cases permits to set up a few conjectures:

- **in the case $0 < \lambda < 1$**, the fractional diffusion term $L[u]$ is dominated by the term $\text{div}_x f(u)$. In particular:
 - one expects that even for very smooth initial data, there is no globally defined in time classical solution
 - the notion of a weak (distributional) solution permits to get existence for rather general data
 - the notion of a weak solution leads to non-uniqueness
 - a “good” notion of solution should be inspired by the kinetic solutions/entropy solutions coming from conservation laws.

- **in the case $1 < \lambda < 2$**, the fractional diffusion operator $L[u]$ is the leading term. In particular:
 - smooth data give rise to globally defined smooth solutions
 - non-smooth data undergo an instanteneous regularizing effect
 - there is well-posedness in the framework of weak solutions.

Case $\lambda = 1$. Hmmm... no a priori conjectures!
For some applications, one needs techniques that allow for a wide range of values of λ, including $\lambda = 1$...
Notions of solution: weak solutions

Definition (Weak solution)

Let $u_0 \in L^\infty(\mathbb{R}^N)$. A function $u \in L^\infty((0, \infty) \times \mathbb{R}^N)$ is said to be a weak solution to (1),(2) if for all $\varphi \in \mathcal{D}([0, \infty) \times \mathbb{R}^N)$,

$$
\int_0^\infty \int_{\mathbb{R}^N} (u \partial_t \varphi + f(u) \cdot \nabla_x \varphi - u \mathcal{L}_\lambda[\varphi]) + \int_{\mathbb{R}^N} u_0 \varphi(0) = 0.
$$

Remark: for regular u and v there holds the integration-by-parts formula

$$
\int \mathcal{L}_\lambda[u] v = \int u \mathcal{L}_\lambda[v] = \text{const} \int \int (u(x) - u(y)) (v(x) - v(y)) \frac{dxdy}{|x - y|^{N+\lambda}}.
$$

Therefore the definition just says,

$$
\partial_t u + \text{div}_x f(u) + \mathcal{L}_\lambda[u] = 0, \quad u|_{t=0} = u_0 \quad \text{in } \mathcal{D}'.
$$
Notions of solution: weak solutions

Definition (Weak solution)

Let \(u_0 \in L^\infty(\mathbb{R}^N) \). A function \(u \in L^\infty((0, \infty) \times \mathbb{R}^N) \) is said to be a weak solution to (1),(2) if for all \(\varphi \in \mathcal{D}([0, \infty) \times \mathbb{R}^N) \),

\[
\int_0^\infty \int_{\mathbb{R}^N} (u \partial_t \varphi + f(u) \cdot \nabla_x \varphi - u \mathcal{L}_\lambda[\varphi]) + \int_{\mathbb{R}^N} u_0 \varphi(0) = 0.
\]

Remark: for regular \(u \) and \(v \) there holds the integration-by-parts formula

\[
\int \mathcal{L}_\lambda[u]v = \int u \mathcal{L}_\lambda[v] = \text{const} \int \int (u(x) - u(y)) (v(x) - v(y)) \frac{dx dy}{|x - y|^{N+\lambda}}.
\]

Therefore the definition just says,

\[
\partial_t u + \text{div}_x f(u) + \mathcal{L}_\lambda[u] = 0, \quad u|_{t=0} = u_0 \quad \text{in } \mathcal{D}'.
\]
Notions of solution: entropy solutions

The following definition (case $0 < \lambda < 1$) is due to Alibaud 06:

Definition (Entropy solution)

Let $\lambda \in (0, 2)$ and $u_0 \in L^\infty(\mathbb{R}^N)$. A function $u \in L^\infty((0, \infty) \times \mathbb{R}^N)$ is said to be an entropy solution to (1),(2) if for all $\varphi \in \mathcal{D}([0, \infty) \times \mathbb{R}^N)$ non-negative, $\eta \in C^2(\mathbb{R})$ convex, q given by $q' = \eta' f'$, and for all $r > 0$

$$
\partial_t \eta(u) + \text{div}_x q(u) + \eta'(u) R^r_\lambda [u] + S^r_\lambda [\eta(u)] \leq 0 \quad \text{in } \mathcal{D}'.
$$

Here η is an “entropy”, q is the associated “entropy flux”; these notions are inherited from the Kruzhkov theory of conservation laws.

The definition of Alibaud is based upon the fractional Kato inequality:

$$
\forall r > 0 \quad \eta'(u) R^r_\lambda [u] + S^r_\lambda [\eta(u)] \leq \eta'(u) L_\lambda [u].
$$

To be compared with the Kato inequality used in the Kruzhkov theory:

$$
-\varepsilon \Delta \eta(u) \leq -\varepsilon \Delta \eta(u) + \varepsilon \eta''(u)|\nabla u|^2 = \eta'(u) (-\varepsilon \Delta u).
$$

Remark: smaller is the parameter r, less information is lost.
Notions of solution: entropy solutions

The following definition (case $0 < \lambda < 1$) is due to Alibaud 06:

Definition (Entropy solution)

Let $\lambda \in (0, 2)$ and $u_0 \in L^\infty(\mathbb{R}^N)$. A function $u \in L^\infty((0, \infty) \times \mathbb{R}^N)$ is said to be an entropy solution to (1),(2) if for all $\varphi \in \mathcal{D}([0, \infty) \times \mathbb{R}^N)$ non-negative, $\eta \in C^2(\mathbb{R})$ convex, q given by $q' = \eta'f'$, and for all $r > 0$

$$
\partial_t \eta(u) + \text{div}_x q(u) + \eta'(u) \mathcal{R}_\lambda^r[u] + \mathcal{S}_\lambda^r[\eta(u)] \leq 0 \quad \text{in } \mathcal{D}'.
$$

Here η is an “entropy”, q is the associated “entropy flux”; these notions are inherited from the Kruzhkov theory of conservation laws.

The definition of Alibaud is based upon the fractional Kato inequality:

$$
\forall r > 0 \quad \eta'(u) \mathcal{R}_\lambda^r[u] + \mathcal{S}_\lambda^r[\eta(u)] \leq \eta'(u) \mathcal{L}_\lambda[u].
$$

To be compared with the Kato inequality used in the Kruzhkov theory:

$$
-\varepsilon \Delta \eta(u) \leq -\varepsilon \Delta \eta(u) + \varepsilon \eta''(u)|\nabla u|^2 = \eta'(u)(-\varepsilon \Delta u).
$$

Remark: smaller is the parameter r, less information is lost.
Notions of solution: entropy solutions

The following definition (case $0 < \lambda < 1$) is due to Alibaud 06:

Definition (Entropy solution)

Let $\lambda \in (0, 2)$ and $u_0 \in L^\infty(\mathbb{R}^N)$. A function $u \in L^\infty((0, \infty) \times \mathbb{R}^N)$ is said to be an entropy solution to (1),(2) if for all $\varphi \in \mathcal{D}([0, \infty) \times \mathbb{R}^N)$ non-negative, $\eta \in C^2(\mathbb{R})$ convex, q given by $q' = \eta' f'$, and for all $r > 0$

$$
\partial_t \eta(u) + \text{div}_x q(u) + \eta'(u) \mathcal{R}^r_\lambda[u] + \mathcal{S}^r_\lambda[\eta(u)] \leq 0 \quad \text{in } \mathcal{D}'.
$$

Here η is an “entropy”, q is the associated “entropy flux”; these notions are inherited from the Kruzhkov theory of conservation laws.

The definition of Alibaud is based upon the fractional Kato inequality:

$$
\forall r > 0 \quad \eta'(u) \mathcal{R}^r_\lambda[u] + \mathcal{S}^r_\lambda[\eta(u)] \leq \eta'(u) \mathcal{L}_\lambda[u].
$$

To be compared with the Kato inequality used in the Kruzhkov theory:

$$
-\varepsilon \Delta \eta(u) \leq -\varepsilon \Delta \eta(u) + \varepsilon \eta''(u)|\nabla u|^2 = \eta'(u) (-\varepsilon \Delta u).
$$

Remark: smaller is the parameter r, less information is lost.
WELL- AND ILL-POSEDNESS RESULTS
Well and ill-posedness results

- for the case $1/2 < \lambda < 2$, an H^1 solution exists globally and is unique for small H^1 data (Biler-Funaki-Woyczynski 98)
- for $1 < \lambda < 2$, there exists a unique weak solution for L^∞ data, and $u(t, \cdot)$ falls within C^∞ for $t > 0$ (Droniou-Gallouët-Vovelle 02)
- for $0 < \lambda < 2$, there exists a unique entropy solution (Alibaud 06);
 tools: doubling of var. with R^λ, S^λ in the entropy formulation;
 kernel $K_t(x) = \mathcal{F}^{-1}(e^{-t|\cdot|^\lambda})$ associated with \mathcal{L}_λ; time splitting

Further, or $0 < \lambda < 1$ and the Burgers flux $f(u) = \frac{u^2}{2}$ in dim. one:
- assume the initial datum u_0 presents an initial discontinuity (say, at zero) with $u_0(0-) > u_0(0+)$ and belongs to a class C \implies the discontinuity is persistent, at least for small times
- specially selected smooth initial data in C \implies the unique entropy solution, which becomes discontinuous (but not instantly)
- small Lipschitz data in the class C \implies global Lipschitz solutions (Alibaud-Droniou-Vovelle 07; the main tool: characteristics)

For the same fractional Burgers equation in the “hyperbolic regime”,
- Non-entropy weak solutions can be constructed
- Consequently, uniqueness of a weak solution may fail.
Well and ill-posedness results

- for the case $1/2 < \lambda < 2$, an H^1 solution exists globally and is unique for small H^1 data (Biler-Funaki-Woyczynski 98)
- for $1 < \lambda < 2$, there exists a unique weak solution for L^∞ data, and $u(t, \cdot)$ falls within C^∞ for $t > 0$ (Droniou-Gallouët-Vovelle 02)
- for $0 < \lambda < 2$, there exists a unique entropy solution (Alibaud 06); tools: doubling of var. with $\mathcal{R}_\lambda^r, \mathcal{S}_\lambda^r$ in the entropy formulation; kernel $K_t(x) = \mathcal{F}^{-1}(e^{-t|\cdot|^\lambda})$ associated with \mathcal{L}_λ; time splitting

Further, or $0 < \lambda < 1$ and the Burgers flux $f(u) = \frac{u^2}{2}$ in dim. one:
- assume the initial datum u_0 presents an initial discontinuity (say, at zero) with $u_0(0-) > u_0(0+)$ and belongs to a class \mathcal{C} \implies the discontinuity is persistent, at least for small times
- specially selected smooth initial data in \mathcal{C} \implies the unique entropy solution, which becomes discontinuous (but not instantly)
- small Lipschitz data in the class \mathcal{C} \implies global Lipschitz solutions (Alibaud-Droniou-Vovelle 07; the main tool: characteristics)

For the same fractional Burgers equation in the “hyperbolic regime”,
- Non-entropy weak solutions can be constructed
- Consequently, uniqueness of a weak solution may fail.
Well and ill-posedness results

- for the case $1/2 < \lambda < 2$, an H^1 solution exists globally and is unique for small H^1 data (Biler-Funaki-Woyczynski 98)
- for $1 < \lambda < 2$, there exists a unique weak solution for L^∞ data, and $u(t, \cdot)$ falls within C^∞ for $t > 0$ (Droniou-Gallouët-Vovelle 02)
- for $0 < \lambda < 2$, there exists a unique entropy solution (Alibaud 06);
 tools : doubling of var. with R_λ, S_λ in the entropy formulation;
 kernel $K_t(x) = F^{-1}(e^{-t|\cdot|^\lambda})$ associated with L_λ; time splitting

Further, or $0 < \lambda < 1$ and the Burgers flux $f(u) = \frac{u^2}{2}$ in dim. one:
- assume the initial datum u_0 presents an initial discontinuity (say, at zero) with $u_0(0-) > u_0(0+)$ and belongs to a class C
 \implies the discontinuity is persistent, at least for small times
- specially selected smooth initial data in C \implies the unique entropy solution, which becomes discontinuous (but not instantly)
- small Lipschitz data in the class C \implies global Lipschitz solutions (Alibaud-Droniou-Vovelle 07; the main tool : characteristics)

For the same fractional Burgers equation in the “hyperbolic regime”,
- Non-entropy weak solutions can be constructed
- Consequently, uniqueness of a weak solution may fail.
Well and ill-posedness results

- for the case $1/2 < \lambda < 2$, an H^1 solution exists globally and is unique for small H^1 data (Biler-Funaki-Woyczynski 98)
- for $1 < \lambda < 2$, there exists a unique weak solution for L^∞ data, and $u(t, \cdot)$ falls within C^∞ for $t > 0$ (Droniou-Gallouët-Vovelle 02)
- for $0 < \lambda < 2$, there exists a unique entropy solution (Alibaud 06);
 tools: doubling of var. with R'_λ, S'_λ in the entropy formulation;
 kernel $K_t(x) = \mathcal{F}^{-1}(e^{-t|x|^\lambda})$ associated with L_λ; time splitting

Further, or $0 < \lambda < 1$ and the Burgers flux $f(u) = \frac{u^2}{2}$ in dim. one:
- assume the initial datum u_0 presents an initial discontinuity (say, at zero) with $u_0(0-) > u_0(0+)$ and belongs to a class C \implies the discontinuity is persistent, at least for small times
- specially selected smooth initial data in C \implies the unique entropy solution, which becomes discontinuous (but not instantly)
- small Lipschitz data in the class C \implies global Lipschitz solutions (Alibaud-Droniou-Vovelle 07; the main tool: characteristics)

For the same fractional Burgers equation in the “hyperbolic regime”,
- Non-entropy weak solutions can be constructed
- Consequently, uniqueness of a weak solution may fail.
CONSTRUCTION OF A “WRONG” WEAK SOLUTION
ide of the construction

We try to mimic the simplest “wrong” weak solution of the Burgers conservation law \(\partial_t u + \left(\frac{u^2}{2} \right) = 0 \). This is the discontinuous stationary solution

\[
u(t, x) := \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}
\]

One simple reason why this is not an entropy solution is that it fails to satisfy the Ole\v{n}ik inequality \(\partial_x u(t, x) \leq \frac{\text{const}}{t} \) in \(\mathcal{D}' \).

We prove that the Ole\v{n}ik inequality still holds for entropy solutions of the fractional Burgers equation.

We work in the space of odd in \(x \) functions discontinuous at zero. If we ensure that \(u(0+) = -u(0-) > 0 \), then the Ole\v{n}ik condition is violated.

A comparison principle for odd “sub-super-solutions” holds; to prove it, we use adapted entropies

\[
\eta(x; u, k) = (u - k)^+ 1_{\{x > 0\}} + (u - k)^- 1_{\{x < 0\}}.
\]
Ideas of the construction

- We try to mimic the simplest “wrong” weak solution of the Burgers conservation law $\partial_t u + \left(\frac{u^2}{2} \right) = 0$. This is the discontinuous stationary solution

 $$u(t, x) := \begin{cases}
 -1 & x < 0 \\
 1 & x > 0
 \end{cases}$$

- One simple reason why this is not an entropy solution is that it fails to satisfy the Oleĭnik inequality $\partial_x u(t, x) \leq \frac{\text{const}}{t}$ in \mathcal{D}'.

- We prove that the Oleĭnik inequality still holds for entropy solutions of the fractional Burgers equation.

- We work in the space of odd in x functions discontinuous at zero. If we ensure that $u(0+) = -u(0-) > 0$, then the Oleĭnik condition is violated.

- A comparison principle for odd “sub-super-solutions” holds; to prove it, we use adapted entropies

 $$\eta(x; u, k) = (u - k)^+ 1_{\{x > 0\}} + (u - k)^- 1_{\{x < 0\}}.$$
Ideas of the construction

- We try to mimic the simplest “wrong” weak solution of the Burgers conservation law $\partial_t u + \left(\frac{u^2}{2} \right) = 0$. This is the discontinuous stationary solution
 $$u(t, x) := \begin{cases}
-1 & x < 0 \\
1 & x > 0
\end{cases}$$

- One simple reason why this is not an entropy solution is that it fails to satisfy the Olešnik inequality $\partial_x u(t, x) \leq \frac{\text{const}}{t}$ in \mathcal{D}'.

- We prove that the Olešnik inequality still holds for entropy solutions of the fractional Burgers equation.

- We work in the space of odd in x functions discontinuous at zero. If we ensure that $u(0+) = -u(0-) > 0$, then the Olešnik condition is violated.

- A comparison principle for odd “sub-super-solutions” holds; to prove it, we use adapted entropies
 $$\eta(x; u, k) = (u - k)^+ 1_{\{x > 0\}} + (u - k)^- 1_{\{x < 0\}}.$$
Let H^1_* be the space of functions u on $\mathbb{R}_* = \mathbb{R}^- \cup \mathbb{R}^+$ such that $u1_{\{x>0\}} \in H^1(\mathbb{R}^+)$, $u1_{\{x<0\}} \in H^1(\mathbb{R}^-)$.

Note the existence of traces $u(0+), u(0-)$.

Let H^1_{odd} be the subspace of odd functions in H^1_*; we have in particular $u(0+) = -u(0-)$ if $u \in H^1_{odd}$.

Lemma (Fract. lapl. on the space of piecewise H^1 functions)

Let $\lambda \in (0, 1)$ and \mathcal{L}_λ defined by the Lévi-Khinchine formula. Then

- **The linear operators** \mathcal{L}_λ and $\mathcal{L}_{\lambda/2}$ **are bounded as operators:**

 - a) $\mathcal{L}_\lambda : C_b(\mathbb{R}_*) \cap C^1(\mathbb{R}_*) \rightarrow C(\mathbb{R}_*)$;
 - b) $\mathcal{L}_\lambda : H^1_* \rightarrow L^1_{loc}(\mathbb{R}) \cap L^2_{loc}(\mathbb{R} \setminus \{0\})$;
 - c) $\mathcal{L}_{\lambda/2} : H^1_* \rightarrow L^2(\mathbb{R})$.

- Moreover, \mathcal{L}_λ is sequentially continuous as an operator:

 - d) $\mathcal{L}_\lambda : L^1(\mathbb{R}) \cap (BV(\mathbb{R}))_{w-} \rightarrow L^1(\mathbb{R})$.

- If $v \in H^1_*$, the definition of \mathcal{L}_λ by Fourier transform makes sense.

- For $v, w \in H^1_*$, $\int_{\mathbb{R}} \mathcal{L}_\lambda[v] w = \int_{\mathbb{R}} v \mathcal{L}_\lambda[w] = \int_{\mathbb{R}} \mathcal{L}_{\lambda/2}[v] \mathcal{L}_{\lambda/2}[w]$.
Fractional laplacian on the space of odd functions...

Let H^1_* be the space of functions u on $\mathbb{R}_* = \mathbb{R}^- \cup \mathbb{R}^+$ such that $u1_{\{x>0\}} \in H^1(\mathbb{R}^+)$, $u1_{\{x<0\}} \in H^1(\mathbb{R}^-)$.

Note the existence of traces $u(0+), u(0-)$. Let H^1_{odd} be the subspace of odd functions in H^1_*; we have in particular $u(0+) = -u(0-)$ if $u \in H^1_{odd}$.

Lemma (Fract. lapl. on the space of piecewise H^1 functions)

Let $\lambda \in (0,1)$ and \mathcal{L}_λ defined by the Lévi-Khinchine formula. Then

- The linear operators \mathcal{L}_λ and $\mathcal{L}_{\lambda/2}$ are bounded as operators:
 - a) $\mathcal{L}_\lambda : C_b(\mathbb{R}_*) \cap C^1(\mathbb{R}_*) \rightarrow C(\mathbb{R}_*)$;
 - b) $\mathcal{L}_\lambda : H^1_* \rightarrow L^1_{loc}(\mathbb{R}) \cap L^2_{loc}(\mathbb{R} \setminus \{0\})$;
 - c) $\mathcal{L}_{\lambda/2} : H^1_* \rightarrow L^2(\mathbb{R})$.

Moreover, \mathcal{L}_λ is sequentially continuous as an operator:

- d) $\mathcal{L}_\lambda : L^1(\mathbb{R}) \cap (BV(\mathbb{R}))_{w-\star} \rightarrow L^1(\mathbb{R})$.

- If $v \in H^1_*$, the definition of \mathcal{L}_λ by Fourier transform makes sense.
- For $v, w \in H^1_*$, $\int_{\mathbb{R}} \mathcal{L}_\lambda[v] w = \int_{\mathbb{R}} v \mathcal{L}_\lambda[w] = \int_{\mathbb{R}} \mathcal{L}_{\lambda/2}[v] \mathcal{L}_{\lambda/2}[w]$.
Fractional Laplacian on the space of odd functions

Let H^1_* be the space of functions u on $\mathbb{R}_* = \mathbb{R}^- \cup \mathbb{R}^+$ such that
$u1_{\{x>0\}} \in H^1(\mathbb{R}^+)$, $u1_{\{x<0\}} \in H^1(\mathbb{R}^-)$.

Note the existence of traces $u(0+), u(0-)$. Let H^1_{odd} be the subspace of odd functions in H^1_*; we have in particular $u(0+) = -u(0-)$ if $u \in H^1_{\text{odd}}$.

Lemma (Fract. lapl. on the space of piecewise H^1 functions)

Let $\lambda \in (0, 1)$ and \mathcal{L}_λ defined by the Lévi-Khinchine formula. Then

- The linear operators \mathcal{L}_λ and $\mathcal{L}_{\lambda/2}$ are bounded as operators:

 a) $\mathcal{L}_\lambda : C_b(\mathbb{R}_*) \cap C^1(\mathbb{R}_*) \rightarrow C(\mathbb{R}_*)$;
 b) $\mathcal{L}_\lambda : H^1_* \rightarrow L^1_{\text{loc}}(\mathbb{R}) \cap L^2_{\text{loc}}(\mathbb{R} \setminus \{0\})$;
 c) $\mathcal{L}_{\lambda/2} : H^1_* \rightarrow L^2(\mathbb{R})$.

 Moreover, \mathcal{L}_λ is sequentially continuous as an operator:

 d) $\mathcal{L}_\lambda : L^1(\mathbb{R}) \cap (BV(\mathbb{R}))_{w-*} \rightarrow L^1(\mathbb{R})$.

- *If $v \in H^1_*$, the definition of \mathcal{L}_λ by Fourier transform makes sense.*

- For $v, w \in H^1_*$, $\int_{\mathbb{R}} \mathcal{L}_\lambda[v] w = \int_{\mathbb{R}} v \mathcal{L}_\lambda[w] = \int_{\mathbb{R}} \mathcal{L}_{\lambda/2}[v] \mathcal{L}_{\lambda/2}[w]$.
Fractional laplacian on the space of odd functions...

Let H^1_* be the space of functions u on $\mathbb{R}_* = \mathbb{R}^- \cup \mathbb{R}^+$ such that $u1_{\{x>0\}} \in H^1(\mathbb{R}^+)$, $u1_{\{x<0\}} \in H^1(\mathbb{R}^-)$.

Note the existence of traces $u(0+), u(0-)$. Let H^1_{odd} be the subspace of odd functions in H^1_*; we have in particular $u(0+) = -u(0-)$ if $u \in H^1_{odd}$.

Lemma (Fract. lapl. on the space of piecewise H^1 functions)

Let $\lambda \in (0, 1)$ and \mathcal{L}_λ defined by the Lévi-Khinchine formula. Then

- The linear operators \mathcal{L}_λ and $\mathcal{L}_{\lambda/2}$ are bounded as operators:
 - a) $\mathcal{L}_\lambda : C_b(\mathbb{R}_*) \cap C^1(\mathbb{R}_*) \longrightarrow C(\mathbb{R}_*)$;
 - b) $\mathcal{L}_\lambda : H^1_* \longrightarrow L^1_{loc}(\mathbb{R}) \cap L^2_{loc}(\mathbb{R} \setminus \{0\})$;
 - c) $\mathcal{L}_{\lambda/2} : H^1_* \longrightarrow L^2(\mathbb{R})$.

Moreover, \mathcal{L}_λ is sequentially continuous as an operator:

- d) $\mathcal{L}_\lambda : L^1(\mathbb{R}) \cap (BV(\mathbb{R}))_{w-*} \longrightarrow L^1(\mathbb{R})$.

- If $v \in H^1_*$, the definition of \mathcal{L}_λ by Fourier transform makes sense.

- For $v, w \in H^1_*$, $\int_\mathbb{R} \mathcal{L}_\lambda[v] w = \int_\mathbb{R} v \mathcal{L}_\lambda[w] = \int_\mathbb{R} \mathcal{L}_{\lambda/2}[v] \mathcal{L}_{\lambda/2}[w]$.
Lemma (continued)

- If $v \in H^1_\ast$ is odd (resp., even), then $\mathcal{L}_\lambda[v]$ is odd (resp., even).

- Let $0 \neq v \in C_b(\mathbb{R}_\ast) \cap C^1(\mathbb{R}_\ast)$ be odd. Assume that $x_\ast > 0$ is such that
 \[v(x_\ast) = \sup_{\mathbb{R}_\ast^+} v \geq 0 \quad (\text{resp. } = \inf_{\mathbb{R}_\ast^+} \leq 0). \]

 Then $\mathcal{L}_\lambda[v](x_\ast) > 0$ (resp. < 0) (“strong max. principle”).

- For $k \in \mathbb{R}$, let $\eta(x; \cdot, k) = (\cdot - k)^+ 1_{\{x > 0\}} + (\cdot - k)^- 1_{\{x < 0\}}$. Then, for all odd $v \in C_b(\mathbb{R}_\ast) \cap C^1(\mathbb{R}_\ast)$, for all $x > 0$
 \[\eta'(x; v(x), k) \mathcal{L}_\lambda[v](x) \geq \mathcal{L}_\lambda[\eta(x; v(x), k)](x). \]
 (adapted entropy) ; the same holds with S^λ_χ in the place of \mathcal{L}_λ.

Proof: essentially, by looking at the Lévi-Khinchine formula.
Lemma (continued)

- If $v \in H^1_*$ is odd (resp., even), then $\mathcal{L}_\lambda[v]$ is odd (resp., even).
- Let $0 \neq v \in C_b(\mathbb{R}_*) \cap C^1(\mathbb{R}_*)$ be odd. Assume that $x_* > 0$ is such that
 $$v(x_*) = \sup_{\mathbb{R}_+^*} v \geq 0 \quad (\text{resp. } = \inf_{\mathbb{R}_+^*} \leq 0).$$
 Then $\mathcal{L}_\lambda[v](x_*) > 0$ (resp. < 0) ("strong max. principle").
- For $k \in \mathbb{R}$, let $\eta(x; \cdot, k) = (\cdot - k)^+ 1_{\{x > 0\}} + (\cdot - k)^- 1_{\{x < 0\}}$.
 Then, for all odd $v \in C_b(\mathbb{R}_*) \cap C^1(\mathbb{R}_*)$, for all $x > 0$
 $$\eta'(x; v(x), k) \mathcal{L}_\lambda[v](x) \geq \mathcal{L}_\lambda[\eta(x; v(x), k)](x).$$
 (adapted entropy); the same holds with S'_λ in the place of \mathcal{L}_λ.

Proof: essentially, by looking at the Lévi-Khinchine formula.
Lemma (continued)

- If $v \in H^1_{\ast}$ is odd (resp., even), then $\mathcal{L}_\lambda[v]$ is odd (resp., even).
- Let $0 \not\equiv v \in C_b(\mathbb{R}_{\ast}) \cap C^1(\mathbb{R}_{\ast})$ be odd. Assume that $x_{\ast} > 0$ is such that

$$v(x_{\ast}) = \sup_{\mathbb{R}^+} v \geq 0 \quad (\text{resp. } = \inf_{\mathbb{R}^+} \leq 0).$$

Then $\mathcal{L}_\lambda[v](x_{\ast}) > 0$ (resp. < 0) ("strong max. principle").
- For $k \in \mathbb{R}$, let $\eta(x; \cdot, k) = (\cdot - k)^+ 1_{\{x>0\}} + (\cdot - k)^- 1_{\{x<0\}}$.

Then, for all odd $v \in C_b(\mathbb{R}_{\ast}) \cap C^1(\mathbb{R}_{\ast})$, for all $x > 0$

$$\eta'(x; v(x), k) \mathcal{L}_\lambda[v](x) \geq \mathcal{L}_\lambda[\eta(x; v(x), k)](x).$$

(adapted entropy); the same holds with S'_λ in the place of \mathcal{L}_λ.

Proof: essentially, by looking at the Lévi-Khinchine formula.
We construct solutions in the space H^1_{odd} of the regularized stationary problem

$$\varepsilon (u - \Delta u) + \left(\frac{u^2}{2} \right)_x + \mathcal{L}[u] = 0, \quad u(0\pm) = \pm 1.$$

(they are $\mathcal{D}'(\mathbb{R}_\ast)$ solutions; in $\mathcal{D}'(\mathbb{R})$, the singular source term $-2\varepsilon (\delta_0)_x$ appears in the rhs !)

Techniques:
- “Freeze” the convection term, truncate the nonlinearity (in u) and its support (in x):

 replace $\left(\frac{u^2}{2} \right)_x$ by $\rho_n(x) \left(\frac{\rho_n(x) T_n(\bar{u})^2}{2} \right)_x$.

- The problem obtained in this way is the Euler-Lagrange equation for a quite standard convex minimization problem.
- Obtain a priori estimates to ensure boundedness; the strict convexity enforces compactness.
- One can use the Schauder fixed-point theorem.
- A maximum principle permits to get rid of the truncation T_n in u; a passage to the limit removes the truncation ρ_n in space.
Proof I

We construct solutions in the space H^1_{odd} of the regularized stationary problem

$$
\varepsilon(u - \Delta u) + \left(\frac{u^2}{2} \right)_x + \mathcal{L}[u] = 0, \quad u(0\pm) = \pm 1.
$$

(they are $\mathcal{D}'(\mathbb{R}_\ast)$ solutions; in $\mathcal{D}'(\mathbb{R})$, the singular source term $-2\varepsilon(\delta_0)_x$ appears in the rhs !)

Techniques:

- “Freeze” the convection term, truncate the nonlinearity (in u) and its support (in x):

 replace $\left(\frac{u^2}{2} \right)_x$ by $\rho_n(x) \left(\frac{(\rho_n(x) T_n(\bar{u}))^2}{2} \right)_x$.

- The problem obtained in this way is the Euler-Lagrange equation for a quite standard convex minimization problem.

- Obtain a priori estimates to ensure boundedness; the strict convexity enforces compactness.

- One can use the Schauder fixed-point theorem.

- A maximum principle permits to get rid of the truncation T_n in u; a passage to the limit removes the truncation ρ_n in space.
We construct solutions in the space H^1_{odd} of the regularized stationary problem

$$\varepsilon(u - \Delta u) + \left(\frac{u^2}{2}\right)_x + \mathcal{L}[u] = 0, \quad u(0\pm) = \pm 1.$$

(they are $\mathcal{D}'(\mathbb{R}_*)$ solutions;
in $\mathcal{D}'(\mathbb{R})$, the singular source term $-2\varepsilon(\delta_0)_x$ appears in the rhs !)

Techniques:

- “Freeze” the convection term, truncate the nonlinearity (in u) and its support (in x):
 replace $\left(\frac{u^2}{2}\right)_x$ by $\rho_n(x)\left(\frac{\rho_n(x)}{2} T_n(\bar{u})\right)^2_x$.

 The problem obtained in this way is the Euler-Lagrange equation for a quite standard convex minimization problem.

 Obtain $a \text{ priori}$ estimates to ensure boundedness; the strict convexity enforces compactness.

 One can use the Schauder fixed-point theorem.

 A maximum principle permits to get rid of the truncation T_n in u; a passage to the limit removes the truncation ρ_n in space.
Proof II

Pass to the limit, as $\varepsilon \downarrow 0$. The things to be cared of:

- **Compactness** (in $H^{\lambda/2}(\mathbb{R}^\pm)$-weak and for the a.e. convergence): this comes from the uniform in ε estimate in $H^{\lambda/2}(\mathbb{R}^\pm)$
- Passage to the limit in the weak formulation: straightforward
- Guarantee that the discontinuity of u^ε at $x = 0$ persists at the limit

The last item is challenging. We have two proofs.

- **First proof**, with an explicit construction of barriers m, M such that $\pm m(x) \leq \pm u^\varepsilon(x) \leq \pm M(x)$ for $\pm x > 0$, and $u_m(0+) = 1 = u_M(0+)$. The tools are: explicit sub-and-supersolutions, and the comparison principle (deduced with the help of the adapted entropies from the Kato inequality).

- **Second proof**, with a passage to the limit in the traces of u^ε. This looks a bit hopeless starting from the sole a.e. convergence of u^ε to u (nothing seems to prevent the formation of a boundary layer).

Fortunately, the Green-Gauss formula and the PDE in hand permit to pass to the (weak) limit in the traces of the flux $\frac{1}{2}(u^\varepsilon)^2(0\pm)$ and get $u(0\pm) = \pm 1$.

Conclusion: the so constructed u is stationary, discontinuous, it is a weak solution to the fractional Burgers equation; it violates the entropy condition.
Pass to the limit, as $\varepsilon \downarrow 0$. The things to be cared of:

- **Compactness** (in $H^{\lambda/2}(\mathbb{R}^\pm)$-weak and for the a.e. convergence): this comes from the uniform in ε estimate in $H^{\lambda/2}(\mathbb{R}^\pm)$

- **Passage to the limit in the weak formulation**: straightforward

- **Guarantee that the discontinuity of u^ε at $x = 0$ persists at the limit**

The last item is challenging. We have two proofs.

- **A first one**, with an explicit construction of barriers m, M such that $\pm m(x) \leq \pm u^\varepsilon(x) \leq \pm M(x)$ for $\pm x > 0$, and $u_m(0+) = 1 = u_M(0+)$. The tools are: **explicit sub-and-supersolutions**, and the comparison principle (deduced with the help of the adapted entropies from the Kato inequality).

- **A second proof**, with a passage to the limit in the traces of u^ε. This looks a bit hopeless starting from the sole a.e. convergence of u^ε to u (nothing seems to prevent the formation of a boundary layer).

Fortunately, the Green-Gauss formula and the PDE in hand permit to pass to the (weak) limit in the traces of the flux $\frac{1}{2}(u^\varepsilon)^2(0\pm)$ and get $u(0\pm) = \pm 1$.

Conclusion: the so constructed u is stationary, discontinuous, it is a weak solution to the fractional Burgers equation; it violates the entropy condition.
Proof II

Pass to the limit, as $\varepsilon \downarrow 0$. The things to be cared of:

- Compactness (in $H^{\lambda/2}(\mathbb{R}^\pm)$-weak and for the a.e. convergence): this comes from the uniform in ε estimate in $H^{\lambda/2}(\mathbb{R}^\pm)$
- Passage to the limit in the weak formulation: straightforward
- Guarantee that the discontinuity of u^ε at $x = 0$ persists at the limit

The last item is challenging. We have two proofs.

- a first one, with an explicit construction of barriers m, M such that $\pm m(x) \leq \pm u^\varepsilon(x) \leq \pm M(x)$ for $\pm x > 0$, and $u_m(0+) = 1 = u_M(0+)$. The tools are: explicit sub-and-supersolutions, and the comparison principle (deduced with the help of the adapted entropies from the Kato inequality).

- a second proof, with a passage to the limit in the traces of u^ε. This looks a bit hopeless starting from the sole a.e. convergence of u^ε to u (nothing seems to prevent the formation of a boundary layer). Fortunately, the Green-Gauss formula and the PDE in hand permit to pass to the (weak) limit in the traces of the flux $\frac{1}{2} (u^\varepsilon)^2(0\pm)$ and get $u(0\pm) = \pm 1$.

Conclusion: the so constructed u is stationary, discontinuous, it is a weak solution to the fractional Burgers equation; it violates the entropy condition.
Proof sketched

Proof II

Pass to the limit, as $\varepsilon \downarrow 0$. The things to be cared of:

- Compactness (in $H^{\lambda/2}(\mathbb{R}^\pm)$-weak and for the a.e. convergence): this comes from the uniform in ε estimate in $H^{\lambda/2}(\mathbb{R}^\pm)$.
- Passage to the limit in the weak formulation: straightforward.
- Guarantee that the discontinuity of u^ε at $x = 0$ persists at the limit.

The last item is challenging. We have two proofs.

- A first one, with an explicit construction of barriers m, M such that $\pm m(x) \leq \pm u^\varepsilon(x) \leq \pm M(x)$ for $\pm x > 0$, and $u_m(0+) = 1 = u_M(0+)$. The tools are: explicit sub-and-supersolutions, and the comparison principle (deduced with the help of the adapted entropies from the Kato inequality).

- A second proof, with a passage to the limit in the traces of u^ε. This looks a bit hopeless starting from the sole a.e. convergence of u^ε to u (nothing seems to prevent the formation of a boundary layer).

Fortunately, the Green-Gauss formula and the PDE in hand permit to pass to the (weak) limit in the traces of the flux $\frac{1}{2}(u^\varepsilon)^2(0^\pm)$ and get $u(0^\pm) = \pm 1$.

Conclusion: the so constructed u is stationary, discontinuous, it is a weak solution to the fractional Burgers equation; it violates the entropy condition.
And that’s it...

Grazie !!!