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BUCKLEY-LEVERETT EQUATION

IN FRACTURED POROUS MEDIUM
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Two-phase porous medium model in one space dimension...

Consider a two-phase flow of phases (“oil”, “water”) of saturation u
and 1− u, respectively, with neglected (???) capillary pressure
effects , in a vertical homogeneous porous medium with gravity.
This is the Buckley-Leverett model, which is a hyperbolic
conservation law

(BL) ∂t u + ∂x f (u) = 0 with initial datum u0.

The Buckley-Leverett flux f : [0,1] 7→ R is computed as follows:

f (u) = (ρo − ρw )gλo(u) + qtot
ko(u)

ko(u) + µo
µw

kw (u)

and
λo(u) = K

ko(u)kw (u)
µw ko(u) + µokw (u)

.

Physical meaning:
K : permeability of the medium
ko, kw relative permeabilities per phase
µa, µb phase viscosities
ρa, ρb phase densities.
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Buckley-Leverett equation as limit of degenerate parabolic pb...

A more precise model contains an additional second-order term, with
a small effect due to capillary pressure :

(BLε) ∂t u + ∂x f (u) = ε∂x (λo(u) ∂x π(u))

with
f (u) = (ρo − ρw )gλo(u) + qtot

ko(u)
ko(u) + µo

µw
kw (u)

,

λo(u) = K
ko(u)kw (u)

µw ko(u) + µokw (u)
.

and π an increasing function modelling the capillary pressure.
Typical form of f : f (0) = 0, f (1) = qtot , and f is bell-shaped
(i.e., f has one local maximum in (0,1)).
Typical form of π: a strictly increasing on (0,1) function with any kind
of behaviour at u = 0 and u = 1 (finite values or vertical asymptotes).
NB: (Cancès ) in the case of finite values at 0 or at 1,
we will consider π extended to a maximal monotone graph on [0,1]
(i.e., a monotone function, multivalued at u = 0 at u = 1).
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Buckley-Leverett equation: entropy solutions...

We forget about the motivations and look at the resulting hyperbolic equation:

(BL) ∂t u + ∂x f (u) = 0,

being understood that solutions are expected to be limits of the capillarity
regularized parabolic problem (BLε) .

The solutions are “just L∞” and can be characterized intrinsically by
Kruzhkov entropy inequalities

∀ k ∈R ∂t |u − k |+ ∂x sign(u − k)(f (u)− f (k)) 6 0,

in the sense of distributions.
Notation : q(u, k) := sign(u − k)(f (u)− f (k)) is the Kruzhkov entropy flux.

“Typical solutions” are piecewise smooth, with smoothness regions separated
by jumps. In the regions of smoothness, entropy inequalities hold with "="
sign, but on the jumps, we truly have "<": this corresponds to dissipation
processes taking place on the jumps.

NB: a capillary pressure π is “tacitly present” in the formulation,
its presence is manifested by the sign “<” of entropy inequalities;
but the notion of solution does not depend on the form of π !
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...Buckley-Leverett equation: entropy solutions.

MAIN FACT:
The (BL) equation is well posed in the framework of entropy solutions.
More precisely :

For all L∞ initial datum, there exists a unique entropy solution
The solver S (i.e., the map S : u0(x) 7→ u(t , x) that associates
the entropy solution to an initial datum) is L1-contractive , in the
sense that the Kato inequality holds:

∂t |u − û|+ ∂x sign(u − û)(f (u)− f (û)) 6 0

for u, û two entropy solutions.
NB: if û ≡ k , it’s just the definition !
(the Kato inequality is then one of the entropy inequalities)
Every entropy solution of (BL) is the limit, as ε→ 0, of the
solutions uε of the capillarity regularized parabolic problem (BLε).
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The case of a heterogeneous medium : model equation.

In order to study the Buckley-Leverett equation in a porous medium
that consists of geologically different “blocks” separated by sharp
fractures, we look at the following model problem :

∂tu+∂x f(x ,u)x = 0, f(x ,u) =
{

f l(u), x < 0,
f r (u), x > 0,

= f l(u)1l{x<0} + f r (u)1l{x>0}

where f l,r are two different nonlinearities . We can see it as two
conservation laws coupled across the interface at {x = 0}.
It is clear that understanding the problem is equivalent to
understanding what coupling is allowed at the interface. One uses,
– the standard (Kruzhkov) notion of entropy solution can be used
separately in each region {x < 0} and {x > 0};
– the Rankine-Hugoniot condition (flux conservation) on the interface:

f l(ul) = f r (ur ) where ul,r = (γ l,r u)(t) are “traces”

– But what dissipative processes take place on the interface ???
We answer the question and give a physically motivated notion of
solution of the “discontinuous flux Buckley-Leverett” equation.
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AN ADMISSIBLE

STATIONARY SOLUTION
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Physical conditions on the interface: Rankine-Hugoniot condition.

First, look at the flux conservation at the interface :

f l(ul) = f r (ur ) where ul,r = (γ l,r u)(t) are traces .

Indeed, it was shown recently (Vasseur, Panov) that solutions “in L∞”
are actually regular enough to have strong traces on the boundary ,
at least for “genuinely nonlinear” f l,r .
In the configuration of fluxes f l,r we may have for the Buckley-Leverett
equation , there holds

f l,r (0) = 0, f l,r (1) = qtot , and both functions f l,r are “bell-shaped” .

which means that, roughly speaking, at every “flux level” F in
Range(f l) ∩ Range(f r ) we have one or two states ul (with f (ul) = F )
and one or two states ur (with f(ur ) = F ) that we can “connect” across
the interface. Let’s call “connection” any such couple (ul ,ur ).
Some of such connections will not be “admissible”: need to select the
“good ones”! To select, we will “connect” capillary pressures.



Buckley-Leverett Equation with Discontinuous Flux An Admissible Stationary Solution Notion of Solution and Well-Posedness

Physical conditions on the interface: Rankine-Hugoniot condition.

First, look at the flux conservation at the interface :

f l(ul) = f r (ur ) where ul,r = (γ l,r u)(t) are traces .

Indeed, it was shown recently (Vasseur, Panov) that solutions “in L∞”
are actually regular enough to have strong traces on the boundary ,
at least for “genuinely nonlinear” f l,r .
In the configuration of fluxes f l,r we may have for the Buckley-Leverett
equation , there holds

f l,r (0) = 0, f l,r (1) = qtot , and both functions f l,r are “bell-shaped” .

which means that, roughly speaking, at every “flux level” F in
Range(f l) ∩ Range(f r ) we have one or two states ul (with f (ul) = F )
and one or two states ur (with f(ur ) = F ) that we can “connect” across
the interface. Let’s call “connection” any such couple (ul ,ur ).
Some of such connections will not be “admissible”: need to select the
“good ones”! To select, we will “connect” capillary pressures.



Buckley-Leverett Equation with Discontinuous Flux An Admissible Stationary Solution Notion of Solution and Well-Posedness

Physical conditions on the interface: Rankine-Hugoniot condition.

First, look at the flux conservation at the interface :

f l(ul) = f r (ur ) where ul,r = (γ l,r u)(t) are traces .

Indeed, it was shown recently (Vasseur, Panov) that solutions “in L∞”
are actually regular enough to have strong traces on the boundary ,
at least for “genuinely nonlinear” f l,r .
In the configuration of fluxes f l,r we may have for the Buckley-Leverett
equation , there holds

f l,r (0) = 0, f l,r (1) = qtot , and both functions f l,r are “bell-shaped” .

which means that, roughly speaking, at every “flux level” F in
Range(f l) ∩ Range(f r ) we have one or two states ul (with f (ul) = F )
and one or two states ur (with f(ur ) = F ) that we can “connect” across
the interface. Let’s call “connection” any such couple (ul ,ur ).
Some of such connections will not be “admissible”: need to select the
“good ones”! To select, we will “connect” capillary pressures.



Buckley-Leverett Equation with Discontinuous Flux An Admissible Stationary Solution Notion of Solution and Well-Posedness

“Non-Lax connections”.

For a short moment, look at the case f l = f r : this is the Kruzhkov case !!!
But, then it is well known that the “admissible connections” (u l , ur ) must
satisfy the so-called Lax condition :

(∗) (f l)′(u l) > 0 and (f r )′(ur ) 6 0.

(here f l and f r are one and the same function).
It was understood in the 1990th that in the discontinuous flux case,

– some non-Lax connections should appear (heuristically, “the interface
creates information !”).
– and some Lax connections will become non admissible.

Those non-Lax connections for which both signs in (∗) are inverted will be
called totally non-Lax connections .
Let us concentrate on finding admissible totally non-Lax connections:
we will see later that there is one and only one such connection (u l

π, ur
π) , and

it determines completely the interface coupling.
For bell-shaped fluxes, the set Lf defined by

{(u l , ur ) | f l(u l) and f r (ur ) are connected by a totally non-Lax shock}

is a portion of decreasing curve in [0, 1]× [0, 1].
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Two particular (extremal) totally non-Lax connections.

In the previous works (Kaasschieter; Adimurthi et al.; Cancès ), two
connections were used in the context of porous media: the optimal
and the barrier connections.

The optimal connection maximizes the flux at the interface :
F = f l(ul) = f r (ur ) in the largest possible. We call this
connection (ul

opt ,u
r
opt).

The barrier connection minimizes the flux at the interface :
F = f l(ul) = f r (ur ) in the smallest possible among all totally
non-Lax connections. We call this connection (ul

bar ,u
r
bar ).

In practice, we have ul
bar = 1 if qtot > 0 and ur

bar = 0 if qtot 6 0.

The optimal connection “facilitates” the transport of the “oil” phase at
the interface. The barrier connection corresponds to “trapping” of the
‘oil” phase at the interface.
Both phenomena appear in practice !! But we will show that all
intermediate cases can also appear.
The choice depends on the FORM of capillary pressure graphs πl,r .
The totally non-Lax connection we’ll select will be called (ul

π,ur
π).
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Physical conditions on the interface: capillary pressures.

To select connections , we need to know what information on the
interface can be “inherited” from the idea that a solution u is a limit of
solutions uε of the parabolic, capillarity regularized problem
(here πl,r , not present in (BL), enter the stage! ).
We have seen that in the parabolic (regularized) problem,
the quantity connected through the interface is the capillary pressure.
Moreover, it was shown by Cancès that the right way to connect
capillary pressures πl and πr is the following :

πl(γ luε) ” = ” πr (γr uε) in the generalized sense:

namely, at u = 0 and at u = 1, πl,r are extended to multi-valued
monotone functions and “equality” actually means

πl(γ luε) ∩ πr (γr uε) is non-empty .

Because πl,r are increasing, the set Lπ defined as

{(ul
ε,u

r
ε) |πl(ul

ε) and πr (ur
ε) are connected}

is a monotone graph in [0,1]× [0,1].
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capillarity regularized problem, its well-posedness

Definition (Cancès, Gallouët, Porretta)

An L∞ function uε on (0,T )× R =: Q = Q l ∪Qr and such that
”λl,r (uε) ∂x π

l,r (uε)” = ∂x ϕ
l.r (uε) ∈ L2(Q l,r ) is a solution of (BLε) if

- for all ξ ∈ L2(0,T ;H1(R)) with ∂tξ ∈ L∞(Q),

−
∫∫

Q
uε ∂t ξ −

∫
R

u0ξ(0, ·)−
∫∫

Q l
(f l(uε)− λl(uε) ∂x π

l(uε)) ∂x ξ

−
∫∫

Qr
(f r (uε)− λr (uε) ∂x π

r (uε)) ∂x ξ = 0;

- at the interface {x = 0}, the capillary pressures are connected:

πl(γ luε) ∩ πr (γr uε) 6= ∅.
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capillarity regularized problem, its well-posedness

Theorem (Cancès, Gallouët, Porretta)

There exists a solver Sε , i.e., a map that associates to a [0,1]-valued
function u0 on R a solution of (BLε) such that the Kato inequality
holds: for ξ > 0, ξ regular,

−
∫∫

Q
|uε − ûε| ∂tξ −

∫
R
|u0 − û0| ξ(0, ·)

−
∫∫

Q l

(
q l(uε, ûε)− ε∂x |ϕl(uε)− ϕl(ûε)|

)
∂xξ

−
∫∫

Qr

(
qr (uε, ûε)− ε∂x |ϕr (uε)− ϕr (ûε)|

)
∂xξ 6 0.

The Kato inequality means, in the sense of distributions:

∂t |uε − ûε|+ ∂xq(·;uε, ûε) 6 ε∂x |λ(·;uε) ∂x π(·;uε)−λ(·; ûε) ∂x π(·; ûε)|.
In particular Sε is L1-contractive:

‖uε(t , ·)− ûε(t , ·)‖L1(R) 6 ‖u0 − û0‖L1(R).
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q l(uε, ûε)− ε∂x |ϕl(uε)− ϕl(ûε)|
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Stationary re-scaled equation and capillarity profiles

Let us look for solutions of (BLε) that are
- constant in t
- smooth in R±, with possibly a jump at x = 0

but with the capillary pressures connected
- solutions taking the values ul and ur , respectively, at ±∞,

with f l(ul) connected to ( ≡ equal to) f r (ur ).
NB. We can find such profiles of the form uε(t , x) = U(x/ε) !!
(this is a classical technique in conservation laws: natural scaling of
the equation is used !)
The function U will satisfy the ε-independent ODE

λl(U)(πl(U))′ = f l(U)− F for x 6 0
λr (U)(πr (U))′ = f r (U)− F for x > 0
F = f l,r (ul,r ) and πl(U(0−)) ∩ πr (U(0+)) 6= ∅.

Idea: when U solving the above equation exists, the “connection
solution” c(t , x) = ul11{x<0} + ur 11x>0} is the limit of solutions
uε(t , x) = U(x/ε) of the (BLε) equation. Then c(·) is an admissible
solution of (BL) equation, according to our modelling assumption.
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Looking for an admissible totally non-Lax connection.

We have seen that

– The set Lπ of (u l , ur ) with connected capillary pressures is an increasing
(maximal monotone) graph in the unit square.
– Totally non-Lax connections form a decreasing curve Lf in part of
[0, 1]× [0, 1] with endpoints (u l

opt , u
r
opt) and (u l

bar , u
r
bar );

– the endpoint (u l
bar , u

r
bar ) is on the boundary of the unit square.

• If there exists (u l
π, ur

π) ∈ Lπ ∩ Lf (the intersection point is necessarily
unique), then U(x) = u l

π11I{x<0} + ur
π11I{x<0} is a viscosity profile !

• Fact (simple): if Lf ∩ Lπ = ∅, a viscosity profile exists for (u l
opt , u

r
opt) !

We then set u l,r
π := u l,r

opt for this case .

=⇒ in all cases, (u l
π, ur

π) is an admissible totally non-Lax connection.
Second case, details:
consider, e.g., the case where the optimal connection level F is the maximum value of
f l (otherwise, it is the maximum value of f r ). Then we construct a solution of the ODE
of the previous slide, by connecting the state ul

opt at x = −∞ to any state U(0−) at
x = 0− provided U(0−) < ul

opt . One of the couples (U(0−), ur
opt ) belongs to the graph

Lπ , thus we get a profile U (decreasing for x < 0, constant on x > 0) connecting ul
opt

at x = −∞ to ur
opt at x = +∞.
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Physically motivated solutions to BL equation in fractured medium

Let us recapitulate the key elements of our analysis:

Proposition

(i) Limits (a.e. on Q) of solutions of (BLε) are entropy solutions on
{x < 0} and on {x > 0} of (BL).
(ii) The resulting limit solver S for (BL) is L1-contractive.
(iii) The solvers Sε contain the solution uε(t , x) = U(x/ε)
(iv) Consequently, the limit solver S contains the admissible
connection cπ(t , x) = ul

π11{x<0} + ur
π11x>0} obtained by intersecting

Lπ with Lf (with the optimal connection chosen if Lπ ∩ Lf = ∅);
(v) and for u = limε→0 uε, we inherit one particular Kato inequality:

∂t |u − cπ(·)|+ ∂x q(·;u, cπ(·)) 6 0.

These facts will be now inserted in the “usine à gaz” of the general
theory of conservation laws with discontinuous flux.
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Notion of entropy solution...

Definition (Bürger, Karlsen, Towers)

Let (ul
π,ur

π) be a totally non-Lax connection .
A Gπ-entropy solution to (BL) equation is a [0,1]-valued function u
which takes value u0 at t = 0 (in the sense of traces) and satisfies

Kruzhkov entropy inequalities away from the interface hold:

∀k ∈ R ∂t |u − k |+ ∂xq l,r (u, k) 6 0 in Q l,r

The global “connection-adapted entropy” inequality
( ≡ the Kato inequality wrt cπ(·) = ul

π11I{x<0} + ur
π11I{x<0} ) holds:

∂t |u − cπ(·)|+ ∂xq(·;u, cπ(·)) 6 0 in Q.

NB The reason for which only one adapted global entropy inequality
is needed lies in the particular configuration of Buckley-Leverett
fluxes f l,r (bell-shaped fluxes).
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...Notion of entropy solution.

To understand why the definition works, we will invoke the “general theory”
(A., Karlsen, Risebro ). According to this theory,

– a “good definition” prescribes all possible couples of traces (u l , ur ) at the
interface; the notation Gπ refers to the set of all these couples;

– actually, the adapted global entropy inequalities must hold wrt to all the
connections c(·) = u l11I{x<0} + ur 11I{x<0} with (u l , ur ) ∈ Gπ;

– in the Buckley-Leverett context, they hold for all (u l , ur ) ∈ Gπ as soon as
they hold for the totally non-Lax connection (u l

π, ur
π).

Gπ ={the set of all admissible trace couples (γ lu, γr u) at {x = 0} }

= {(u l
π, u

r
π)}

∪
{

all Lax and “half-Lax” connections at levels 6 Fπ := f l,r (u l,r
π )

}
In terms of the “general theory”: Gπ is maximal, complete L1D germ

(⇔ the theory works well !)

and G0
π := {(u l

π, ur
π)} is a definite L1D germ

with complete maximal extension Gπ
(⇔ everything is determined by G0

π.)
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...Notion of entropy solution.
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Well-posedness.

Theorem (A.,Karlsen,Risebro + A., Goatin, Seguin+A., Cancès)

(i) For every configuration of fluxes f l,r and of capillary pressures πl,r

there exists a unique totally non-Lax connection (ul
π,ur

π) that can be
obtained as the limit of capillarity regularized Buckley-Leverett
equation.
(ii) Assume the fluxes f l,r are either Lipshitz, or genuinely nonlinear.
A connection (ul

π,ur
π) being fixed, for every initial datum there exists a

unique Gπ-entropy solution of the Buckley-Leverett equation . These
solutions form the unique L1-dissipative solver S obtained as limit of
the L1-dissipative solvers Sε of the capillarity-regularized equation .
(iii) Consider a monotone finite volume numerical scheme (in the
spirit of Eymard, Gallouët, Herbin ) for (BL). Assume that it is
“well-balanced” wrt to the connection (ul

π,ur
π). Then converges to

the unique Gπ-entropy solution of (BL).
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Choukrane — Merci — Gracias — Thank you !!!
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