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Model and motivation...

D'Alembert paradox : a solid immersed in an inviscid �uid is not
submitted to any resultant force ; in other words, birds (and planes...)
could not �y with a model where viscosity is neglected ! Yet, i nviscid
(hyperbolic !) models are ok for some �uids...

Answer 1 to the d'Alembert paradox: use viscous models of
�uid-solid interaction (see e.g. M. Hillairet , for a recent review).

Answer 2 (when the Reynolds number is large): it is reasonable to
neglect the viscous effects in the model that governs the �uid ;
but we have to conserve information from the vanishing viscosity
in a DRAG FORCE .
The drag force takes the form of a source term which takes into
account the difference between the velocity of the �uid and t he
velocity of the solid.
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...Model and motivation...

The 1D case : the Lagoutière-Seguin-Takahashi model for the
interaction, via a drag force, of a point particle with a Burgers �uid
writes

@t u + @x (u2=2) = � D(h0(t) � u) � 0(x � h(t)) ;

mh00(t) = � D(u(t; h(t)) � h0(t)) :

here

� u, the velocity of the �uid, is unknown
� h, the position of the solid particle, is unknown

(then h0 and h00respectively denote its velocity and acceleration);

� the parameters are � (the drag coef�cient) and m (the mass of the
solid particle); both are positive.

� the function D which intervenes in the drag force is an increasing
odd function.

Actually, we will suppose that

either D(v) = v (the linear case)

or D(v) = v jv j (the quadratic case):
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Auxiliary steps to approach the full model...

Our study of the above coupled problem includes two auxiliary steps,
that are of interest on their own. The �rst step is

(
@tu(t; x) + @x (u2=2)( t; x) = � � u(t; x) � 0(x); t > 0; x 2 R;
u(0; x) = u0(x); x 2 R;

i.e., the particle is decoupled from the �uid and �xed at zero .
Dif�culty 1 : the source term has to be carefully de�ned. Indeed, u
can be discontinuous (and in fact, typically u IS DISCONTINUOUS at
the particle location ).
To give an interpretation of the source term, the LeRoux
approximation was studied in detail by Lagoutière, Seguin,
Takahashi: � 0 = @x H (H: the Heavyside function) is replaced by
@x H" , a smoothed version. This permits to understand what goes on
at the interface.

The second step is to take h(�) a given path, still decoupled from the
�uid, and to solve the Burgers equation with singular source term
located at x = h(t). We'll see that as soon as the �rst step is well
understood, the second one is easy.
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...Auxiliary steps to approach the full model

Other way around, we should understand how to evolve the particle
location given the �uid state at time t. Recall the equation (ODE) for
the particle:

mh00(t) = � (u(t; h(t)) � h0(t)) :

Recall that u(t; �) has a jump at x = h(t)...
Dif�culty 2 : understand the equation in the Carathéodory sense ? In
the Filippov sense ?? We will see that a nice mathematical and
physical interpretation is possible:

� the particle is driven by the lack of mass conservation in the
equation for u ; or, equivalently, the total quantity of movementR

R u(t; �) + mh0(t) is conserved.
� the ODE for h can be written in a weak form that involves the values
of u(t; �) on R (which is more "robust")

With these auxiliary steps well understood, we can

� think of the appropriate de�nition of solution
� use �xed-point arguments to guarantee existence
� use time splitting algorithms (evolve the PDE and the ODE
alternatively) for existence (constructive) and ef�cient numerics.
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Main results: Auxiliary Problem 1 is well posed

For the Burgers-with-Dirac-at-zero model , we apply the machinery
developed for conservation laws with discontinuous �ux (adapted
entropies, Baiti,Jenssen and Audusse,Perthame ; revisited and
generalized recently by BA., Karlsen, Risebro using the notion of
admissibility germ ). The outcome is:

– de�nition(s) of entropy solutions
– uniqueness, continuous dependence (L1, L1

loc with domain of
dependence) exactly as in the Kruzhkov theory

In addition, we �nd

– a priori L1 bounds and (more delicate) variation bounds
– a strikingly simple numerical method (monotone consistent �nite
volume scheme with a trick at the interface )
– convergence of the numerical scheme, existence .

NB: the Riemann solver at the interface was already described by
Lagoutière, Seguin, Takahashi , so a Godunov scheme could be
constructed; but we seek to avoid using the Riemann solver because
it is intricate.
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...Main results: : Auxiliary Problem 2 and the full problem

Then for the Burgers-driven-by-particle model (with x = h(t) GIVEN

path of the particle) we deduce well-posedness rather easily.

It is observed that the case of straight path, h(t) = Vt with V = const,
reduces to the Dirac-at-zero model by the simultaneous change of
u � V into u and of x � Vt into x. Thus, nothing new for h(t) = Vt.
Then any (W 2;1 ) path h(�) is approximated by piecewise af�ne paths;
existence is established by passage to the limit. Uniqueness is
straightforward from the de�nition of solution.

For the coupled model with data u0 and h(0) = 0, h0(0) = v0, we get

– existence, for L1 data u0

– existence, uniqueness, continuous dependence for BV solutions ,
for BV data u0.

We construct a time-explicit Glimm-type scheme where particle
position is updated via splitting; we get numerical results that agree
with the physical phenomena that are expected for the model .
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For the coupled model with data u0 and h(0) = 0, h0(0) = v0, we get

– existence, for L1 data u0

– existence, uniqueness, continuous dependence for BV solutions ,
for BV data u0.

We construct a time-explicit Glimm-type scheme where particle
position is updated via splitting; we get numerical results that agree
with the physical phenomena that are expected for the model .
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Frozen particle: understanding the coupling...

(0; 0)

u�

u+

�

� �

G1
�

G2
�

G3
�

The admissibility at the inter-
face f x = 0g of the solution
is governed by the germ G�

(terminology related to the one
of BA, Karlsen, Risebro ):

De�nition

The admissibility germ G� � R2 (or germ, for short) associated with
the particle-at-zero problem is the union G� = G1

� [ G2
� [ G3

� , where

G1
� = f (a; a � � ); a 2 Rg.

G2
� = [ 0; � ] � [� �; 0].

G3
� = f (a; b) 2 (R+ � R� ) n G2

� ; � � 6 a + b 6 � g.

NB: the partition of G� into the three parts is dictated by the
subsequent analysis, and by pro�les study of LST .
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Explaination : the Burgers equation with Dirac-at-zero drag term is
equivalent to @tu + @x (u2=2) = � � u@xH:

We introduce H" 2 C1(R) a non-decreasing function such that H" (x) = H(x)
when jxj > " . Since we are interested in understanding the behavior of the
solution through the stationary interface f x = 0g, we can study only
stationary solutions. We then obtain the regularized equation for
U" (x) = u(t ; x) in the strip � " < x < " :

(U2
" =2)0(x) + � U" (x)@xH" (x) = 0:

Proposition ( Lagoutière, Seguin, Takahashi '08 )

Independently from the choice of H" , there exists a solution to the above
ODE with U" (� " ) = c� and U" (+ " ) = c+ if and only if (c� ; c+ ) 2 G� .

The modelling assumption we make is the following :

the traces 
 � u and 
 + u at f x = 0g of a solution u of the Burgers equation on
R+ � (Rnf 0g) are compatible if and only if there exists a solution to above
ODE such that U" (� " ) = 
 � u, U" (" ) = 
 + u.

Thus the germ G� is the set of couples (
 � u; 
 + u) of possible traces at
f x = 0g (for a.e. t > 0) of the admissible solutions.
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Now, the dissipativity properties of the interface coupling are encoded in the
germ G� . Indeed, de�ne � : R2 � R2 7! R by

� � (( u� ; u+ ); (v� ; v+ )) = � � (u� ; v� ) � � � (u+ ; v+ )

where � � are the so-called semi-Kruzhkov entropy �uxes for Burgers eqn:

� � (u; v) = sgn� (u � v)(u2 � v2)=2.

Splitting the germ G� into three subsets, we have

Proposition (dissipativity and maximality of G� )

The following properties hold:

(i) (dissipativity) 8(u� ; u+ ); (v� ; v+ ) 2 G� ,

� � (( u� ; u+ ); (v� ; v+ )) > 0:

(ii) (maximality + ...) If a pair (u� ; u+ ) 2 R2 veri�es:

8(v� ; v+ ) 2 G1
� [ G2

� �(( u� ; u+ ); (v� ; v+ )) > 0;

then (u� ; u+ ) 2 G� .

One can prove the proposition directly, by a tedious case study... but...
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...Frozen particle: understanding the coupling.

A “better” (indirect) proof comes from the general theory from AKR .

First, property (i) is actually equivalent to the “Kato inequality” (,
L1-dissipativity)

�
Z

R+

Z

R

�
(u � v)+ @t ' + � + (u; v) @x '

�
6 0 8 ' 2 D (Q), ' > 0:

for the solutions

u(t ; x) := u� 1lf x< 0g + u+ 1l f x> 0g ; v(t ; x) := v� 1l f x< 0g + v+ 1l f x> 0g

of our equation; and the Kato inequality comes by passage to the limit from
the LeRoux approximation case :

Z

R+

Z

R

�
� (u" � v " )+ (@xH" ) ' � (u" � v " )+ @t ' � � + (u" ; v " )@x '

�
6 0:

Further, property (ii) means that “G1
� [ G2

� is a de�nite germ of which G� is the
unique maximal extension”. This follows (with some work) from the fact that
G� is a complete germ (, the germ allows to solve every Riemann problem).
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Frozen particle: de�nition(s)...

First, let us describe some elementary solutions of this problem:
these are the stationary piecewise constant functions c:

c(t; x) = c� 1lf x< 0g + c+ 1l f x> 0g =

(
c� if x < 0;

c+ if x > 0;
(c� ; c+ ) 2 G� :

They play the role of the constants in the standard Kruzhkov entropy
formulation. With the idea of adapted Kruzhkov entropies , we set up

De�nition (entropy solution)

Let u0 2 L1 (R). A function u 2 L1 (R+ � R) is said to be an entropy
solution of the “particle-at-zero” problem if for all function c de�ned
above with (c� ; c+ ) 2 G� ,

8' 2 C1
c (R+ � R); ' > 0

Z

R+

Z

R
[ju � c(x)j @t ' + �( u; c(x)) @x ' ] dx dt

+
Z

R
ju0 � c(x)j ' (0; x) dx > 0:
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...Frozen particle: de�nition(s)...

Let us provide alternative characterizations of entropy solutions:

Proposition (equivalent de�nitions)

A function u 2 L1 (R+ � R) is an entropy solution if and only if it satis�es any
of the following assertions:

A. The function u veri�es the adapted entropy inequalities wit h
(c� ; c+ ) 2 G1

� [ G2
� .

B. The function u veri�es the Kruzhkov entropy inequalities for all
nonnegative test function ' 2 C1

c (R+ � R) such that ' jx= 0 = 0,
moreover,

for a. e. t > 0 ( ( 
 � u)( t) ; (
 + u)( t) ) 2 G� :

D. There exists C = C(�; kuk1 ; c� ) such that the function u veri�es

8' 2 C1
c (R+ � R); ' > 0

Z

R+

Z

R
[ju� c(x)j @t ' +�( u; c(x)) @x ' ] dx dt

+
Z

R
ju0 � c(x)j ' (0; x) dx > � C(' )dist

�
(c� ; c+ ) ; G� )

for all (c� ; c+ ) 2 R� R.
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8' 2 C1
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Z

R+

Z

R
[ju� c(x)j @t ' +�( u; c(x)) @x ' ] dx dt

+
Z

R
ju0 � c(x)j ' (0; x) dx > � C(' )dist

�
(c� ; c+ ) ; G� )

for all (c� ; c+ ) 2 R� R.
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...Frozen particle: uniqueness, comparison, L1 contraction.

Theorem (L 1 contraction+comparison, analogous to Kruzhkov theory)

Let u0 and v0 be two initial data in L1 (R) and let u and v be the associated
entropy solutions. Then for all R > 0,

for a.e. t > 0
Z R

R
(u � v)+ (t ; x) dx 6

Z R+ Lt

� R� Lt
(u0 � v0)+ (x) dx

where L = maxfk uk1 ; kvk1 g. Consequently, if (u0 � v0)+ 2 L1(R), we have

for a.e. t > 0
Z

R
(u � v)+ (t ; x) dx 6

Z

R
(u0 � v0)+ (x) dx:

In particular, for all u0 2 L1 (R), there exists at most one solution and the map
S(t) : u0 7! u(t ; �) on its domain is an order-preserving L1 contraction.

The proof is straightforward using

– the Kato inequality away from the interface (standard Kruzhkov)
– the characterization B. (“with traces” ) of entropy solutions
– and the dissipativity of G� .
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FROZEN PARTICLE

(DIRAC-AT-ZERO DRAG TERM):

NUMERICAL SCHEME AND EXISTENCE
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Frozen particle: a �nite volume scheme...

We use a well-balanced �nite volume scheme , preserving exactly
(some of) the stationary sols u(t; x) := u� 1lf x< 0g + u+ 1lf x> 0g.
Usual schemes are determined by a numerical �ux g(�; �) :

– g locally Lipschitz;
– g(u; u) = u2

2 (consistency );
– g(�; b) is %, g(a; �) is & (monotonicity ).
We only modify g(�; �) at the interface x = 0 (between x0 and x1):

g�
� (a; b) = g(a; b + � ) and g+

� (a; b) = g( a � � ; b):

Idea : g�
� “only see” the G1

� part of the germ !
Then the scheme writes

8i 6= 0; 1 un+ 1
i = un

i � � t
� x (g(un

i ; un
i+ 1) � g(un

i� 1; un
i ));

i = 0 : un+ 1
0 = un

0 � � t
� x (g�

� (un
0 ; un

1 ) � g(un
� 1; un

0 ));

i = 1 : un+ 1
1 = un

1 � � t
� x (g(un

1 ; un
2 ) � g+

� (un
0 ; un

1 )):

Numerical solution:
u� (t; x) =

P
n2 N

P
i2 Z un

i 1l(n� t;(n+ 1)� t) (t) 1l(xi � 1= 2;xi+ 1= 2) (x).
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Properties of the scheme...

Under the CFL condition: 2M� t 6 � x; (M being the Lipschitz constant of
the numerical �ux g on the ad hoc interval of values of (un

i )n; i , the scheme
writes

8i 2 Z un+ 1
i = Hi (u

n
i� 1; un

i ; un
i+ 1);

where functions Hi are monotone % in each of the three arguments.
NB: since � 7! � � � are % functions, monotonicity OK also for i = 0; 1.

Lemma (L1 bound — choice of M in the CFL condition)

Under the CFL condition, the scheme satis�es for all n 2 N, i 2 Z

minf essinf
R�

u0 � � ; essinf
R+

u0g 6 un
i 6 maxf esssup

R�
u0 ; esssup

R+
u0 + � g:

Proposition (the scheme is (partially) well-balanced)

(i) The initial datum v0(�) = c(�) = c� 1lf x< 0g + c+ 1lf x> 0g ,
(c� ; c+ ) 2 G1

� , is exactly preserved in the evolution by the scheme .

(ii) Let v� be the solution of the numerical scheme with
the initial datum v0(�) = c(�) = c� 1l f x< 0g + c+ 1l f x> 0g ,
(c� ; c+ ) 2 G2

� . Then v� converge to c in L1
loc(R

+ � R) as � x ! 0.
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...Properties of the scheme...

In what follows, we need a technical hypothesis (dissipativity at x = 0):

(H) @a(@ag(a; b) + @bg(a; b)) > 0; @b(@ag(a; b) + @bg(a; b)) > 0;

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )

Let T > 0 and A > 0. Assume that u0 2 BV(R) and � x is small enough.
Then, under the CFL condition and assumption (H), we have

ku� (�; �)kBV ([0;T ]� Rn(� A;A)) 6 1
A Const(T ; ku0kL1 ; ku0kBV (R) ; � ):

– estimate in BV(0; T ; L1(R)) (i.e., time BV estimate in the mean ) from
translation invariance + contraction (use Crandall-Tartar lemma + (H))
– mean-value theorem: for some r 2 (0; A), ku(�; � r )kBV(0;T ) 6 const=A
– look at our solution as solution to a Cauchy-Dirichlet problem

with BV initial and boundary data.

Proposition (approximate Kato inequality)

Let u� ; v� be solutions of the scheme. Let ' 2 D ([0; T ) � R), ' > 0. Then

�
Z

R+

Z

R

�
(u� � v� )+ @t ' + � + (u� ; v� ) @x '

�
6 Rem(� x; ' ):

Arguments: monotonicity of the scheme, consistency , the BVloc in space
bound
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Convergence; existence of entropy solutions.

Theorem (convergence of the scheme; existence of solutions )

Assume u0 2 L1 (R). Then, under the CFL condition and assumption (H), the
numerical scheme converges in L1

loc(R
+ � R) to the unique entropy solution to

“Burgers with particle-at-zero” problem when � x tends to 0.

In particular, the problem is well-posed , for L1 data and L1
loc topology.

Proof.

� First assume that u0 2 BV(R).

– BVloc bounds yield compactness: we get u an accumulation point of (u� ) � ;
– well-balance property for (c� ; c+ ) 2 G1

� [ G2
� yields enough explicit

stationary solutions v� to the scheme (at least, at the limit � x ! 0);
– using the approximate Kato inequalities on u� and the above special
solutions v� , at the limit we get Kato inequalities...
but, these are precisely the adapted entropy inequalities !!
– then u is (the unique) entropy solution (use caract. A. of entropy sols).

� For the general case u0 2 L1 (R) , localize using �nite speed of
propagation; approximate u0 by BV(R) \ L1(R) functions (un

0)n Use discrete
L1 contraction and the result of the BV case.
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COUPLED PROBLEM
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Case h = h(t): existence, uniqueness

Theorem (well-posedness for moving but decoupled particle )

Given h(�) a C1 path, there exists a unique entropy solution to the Burgers
equation with singular drag term � � (u � h0(t )) � 0(x � h(t)) ; (localized) L1

contraction property holds.

De�nition :

– the germ G� changes into (h0(t ); h0(t )) + G� ;
– versions B. (“with traces”) and D. (“adapted entropy inequalities with
remainder term”) permit to de�ne entropy solutions.

Arguments :

– for uniqueness, comparison, L1 contraction: same technique;
– for existence: use characterization D. (it is stable by passage to the limit!) ;
– approximate h(�) by a family (hn)n of piecewise af�ne paths
– construction of solutions for “particle at hn” is straightforward: h0

n being
piecewise constant, one changes variables to reduce to the “drag
force-at-zero” case. Procedure restarted at each time where h0

n jumps.
– because h0

n ! h0, the associated germs converge; thus we pass to the limit
in characterization D..
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Case h = h(t): continuous dependence en h(�)

Uniqueness proof for the coupled problem relies on a Gronwall inequality,
which in turn relies on a Lipschitz dependence estimate for the map
h(�) 7! u(�; �) .

Theorem (dependence of u on the path h(�))

Assume u; û are entropy solutions corresponding to the particles located at
h(�); ĥ(�), respectively, with h(0) = 0 = ĥ(0) and same initial datum u0.
Assume û 2 L1 (0; T ; BV(R)) . Then for a.e. t 2 (0; T ),

ku(t ; �) � û(t ; �)kL1(R) 6 C(kuk1 ; kûk1 ; kûkBV ; � )
Z t

0
jh0(s) � ĥ0(s)j ds:

Arguments:

– change of variables y = x � h(t), resp. x � h0(t ). Two eqns, both with

singularity at zero, come out, with different �uxes of the ki nd u 7! u2

2 � h0(t )u.
– use the techniques of dependence of entropy solutions on the �ux function
(BV regularity needed!): Kuznetsov, Bouchut-Perthame, Karlsen-Risebro... :
the C1 norm of the difference of the �uxes pops up, which yields jh0 � ĥ0j

– use Lipschitz dependence of the germ on h0 to describe additional (small)
“non-dissipation” term coming from the interface.
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Case h = h(t): continuous dependence en h(�)

Uniqueness proof for the coupled problem relies on a Gronwall inequality,
which in turn relies on a Lipschitz dependence estimate for the map
h(�) 7! u(�; �) .

Theorem (dependence of u on the path h(�))

Assume u; û are entropy solutions corresponding to the particles located at
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ku(t ; �) � û(t ; �)kL1(R) 6 C(kuk1 ; kûk1 ; kûkBV ; � )
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Case h = h(t): continuous dependence en h(�), L1 and BV stability

Proposition ( BV estimate)

The solution constructed for the h = 0 case obeys
ku(t ; �)kBV(R) & for all t > 0

(at t = 0 the variation may increase by a const. depending on ku0k1 ,G� ).

The solution constructed for the �xed-h (�) case obeys the BV estimate

ku(t ; �)kBV(R) 6 ku0kBV(R) + const(�; ku0k1 ) + 2
Z t

0
jh00(s)j ds:

Argument: (re)-construct solutions by wave-front tracking algorithm
(Dafermos, Holden-Risebro, Bressan et al. ) (better control of interactions).

Lemma (L1 bounds)

We get a uniform L1 bound on ad hoc sequences of h0(�) and u(�; �).

To be precise: if we look at solutions to the coupled problem, we get
maxfk uk1 ; kh0k1 g 6 maxfk u0k1 ; jh0(0)jg.
For solutions appearing in the �xed-point or splitting argu ments, we get
somewhat weaker bounds.
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Case of u frozen: evolving h = h(�)

Proposition (modelling/“traces” interpretation of the OD E on h(�) )

For every drag force, the ODE in the coupled problem writes

mh00(t ) =
�

(u� )2=2 � h0(t )u�

�
�

�
(u+ )2=2 � h0(t )u+

�
:

Notice that the right-hand side above is expressed as the difference of the
normal components of the 2D-�eld (u; u2=2) on the curve f x = h(t)g from
the left and from the right . Combining this observation with the Green-Gauss
formula, we get the following weak formulation of the ODE:

Lemma (second interpretation of the ODE on h(�) )

Let u be a weak solution of the PDE on f x 6= h(t)g; let h 2 W 2;1 (0; T ). Then
h(�) veri�es the ODE if and only if for all � 2 D ([0; T )) , for all  2 D (R) such
that  � 1 on the set f x 2 R : 9t 2 [0; T ] such that h(t) = xg, there holds

� m
Z T

0
h0(t )� 0(t )dt = mh0(0)� (0) +

Z T

0

Z

R

�
u � t +

u2

2
� x

�
+

Z

R
u0 � (0):
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Coupled problem: existence, uniqueness of BV solutions / existence of
L1 solutions

The above ingredients can be used in several ways:

– In a �xed-point argument h(�) 7! u(�; �) 7! h(�)
(compactness: work in C1([0; T ]), exploit a W 2;1 (0; T ) bound on h(�) )

– In a time splitting algorithm (alternatively evolving u and h on small time
intervals):

� u updated from h using the theory of entropy solutions for h frozen;
� h updated from u using the above weak formulation of the ODE.

– In a numerical scheme (same time splitting + approximation in space of the
conservation law); an interesting possibility is the random-choice algorithm
(Glimm ), in order not to adapt the space meshing to the particle location.

Theorem (Main result)

For all BV datum u0 and given h(0), h0(0), there exists a unique entropy
solution to the coupled problem.
For all L1 datum u0 and given h(0), h0(0), there exists an entropy solution to
the coupled problem.
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Coupled problem: a well-balanced random-choice numerical scheme
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Figure: Representation of the algorithm based on the well-balanced scheme.
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Numerics: drafting-kissing-tumbling
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Figure: Trajectories of two particles
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Thx !!!

THANK YOU !
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