CNRS
UFC

Rechercher

Sur ce site

Sur le Web du CNRS

La brochure du labo

Brochure du Laboratoire

Accueil > Pages web personnelles > Nabile Boussaïd

Nabile Boussaïd

nabile.boussaid univ-fcomte.fr

Bureau B403
Laboratoire de Mathématiques de Besançon
16, route de Gray - 25030 Besancon Cedex, France

Téléphone : +33 3 81 66 63 37

Publications

[1] Nabile Boussaïd. “ Stable directions for small nonlinear Dirac standing waves ” . In : Comm. Math. Phys. 268.3 (2006), pp. 757–817. doi : 10.1007/s00220-006-0112-3.

[2] Nabile Boussaïd. “ On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case ” . In : SIAM J. Math. Anal. 40.4 (2008), pp. 1621–1670. doi : 10.1137/070684641.

[3] Lyonell Boulton and Nabile Boussaïd. “ Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials ” . In : LMS J. Comput. Math. 13 (2010), pp. 10–32. doi : 10.1112/S1461157008000429.  [1]

[4] Nabile Boussaïd and Sylvain Golénia. “ Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies ” . In : Comm. Math. Phys. 299.3 (2010), pp. 677–708. doi : 10.1007/s00220-010-1099-3.

[5] Nabile Boussaïd, Piero D’Ancona, and Luca Fanelli. “ Virial identity and weak dispersion for the magnetic Dirac equation ” . In : J. Math. Pures Appl. (9) 95.2 (2011), pp. 137–150. doi : 10.1016/j.matpur.2010.10.004.

[6] Lyonell Boulton, Nabile Boussaïd, and Mathieu Lewin. “ Generalised Weyl theorems and spectral pollution in the Galerkin method ” . In : J.Spectr. Theory 2.4 (2012), pp. 329–354. doi : 10.4171/JST/32.

[7] Nabile Boussaïd and Scipio Cuccagna. “ On stability of standing waves of nonlinear Dirac equations ” . In : Comm. Partial Differential Equations 37.6 (2012), pp. 1001–1056. doi : 10.1080/03605302.2012.665973.

[8] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Weakly coupled systems in quantum control ” . In : IEEE Trans. Automat. Control 58.9 (2013), pp. 2205–2216. doi : 10.1109/TAC.2013.2255948.

[9] Barrenechea G., Boulton L., Boussaïd N. (2014). “Finite Element Eigenvalue Enclosures for the Maxwell Operator”, SIAM Journal on Scientific Computing, 36, doi: 10.1137/140957810 (http://dx.doi.org/10.1137/140957810), RIS, BibTeX.

Prépublications

[1] Nabile Boussaïd. A stability result for small stationary solutions of a class of nonlinear Dirac equations. 2007.

[2] Nabile Boussaïd and Andrew Comech. On spectral stability of the nonlinear Dirac equation. 2012. arXiv : 1211.3336 [math.AP].

[3] Gabriel Raúl Barrenechea, Lyonell Boulton, and Nabile Boussaid. Eigenvalue enclosures. .

[4] Boussaïd Nabile, Caponigro Marco, Chambrion Thomas “Approximate controllability of the Schrödinger Equation with a polarizability term in higher Sobolev norms” (http://hal.archives-ouvertes.fr/hal-01006178), RIS, BibTeX.

[5] Boussaïd Nabile, Caponigro Marco, Chambrion Thomas “Regular propagators of bilinear quantum systems” (http://hal.archives-ouvertes.fr/hal-01016299), RIS, BibTeX.

Actes de conférences avec comité de lecture

[1] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Approximate controllability of the Schrödinger equation with a polarizability term ” . In : Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE. 2012, pp. 3024–3029. doi : 10.1109/CDC.2012.6426619.

[2] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Implementation of logical gates on infinite dimensional quantum oscillators ”. In : American Control Conference (ACC), 2012. IEEE. 2012, pp. 5825–5830.

[3] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Periodic control laws for bilinear quantum systems with discrete spectrum ”. In : American Control Conference (ACC), 2012. IEEE. 2012, pp. 5819–5824.

[4] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Small time reachable set of bilinear quantum systems ” . In : Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE. 2012, pp. 1083–1087. doi : 10.1109 CDC.2012.6426208.

[5] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Which notion of energy for bilinear quantum systems ? ” In : proceeding of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, pp 226-230, 29-31 août 2012. 2012, pp. 226–230. doi : 10.3182/20120829-3-IT-4022.00034.

[6] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Total variation of the control and energy of bilinear quantum systems ” . In : Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. Dec. 2013, pp. 3714–3719. doi : 10.1109/CDC.2013.6760455 .

[7] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “ Energy Estimates for Low Regularity Bilinear Schrödinger Equations ” . In : Control of Systems Governed by Partial Differential Equations. Vol. 1. 1. 2013, pp. 25–30. doi : 10.3182/20130925-3-FR-4043.00046.

[8] Boussaïd Nabile, Caponigro Marco, Chambrion Thomas “Efficient finite dimensional approximations for the bilinear Schrodinger equation with bounded variation controls” (http://hal.archives-ouvertes.fr/hal-01003056), RIS, BibTeX.

Thèse & HdR

Étude de la stabilité des petites solutions stationnaires pour une classe d’équations de Dirac non linéaires”. PhD thesis. July 2006. Advisor : Éric Séré

(2014). “Non linear models from relativistic quantum mechanics  : spectral and asymptotic analysis and related problems.” (https://tel.archives-ouvertes.fr/tel-01094575), page consultée le 19 décembre 2014, RIS, BibTeX.
En préparation

[1] Gabriel Barrenechea, Lyonell Boulton, and Nabile Boussaïd. “ Some remarks on the spectral properties of the maxwell operator on rough domains and domains with symmetries ”.

[2] Nabile Boussaïd, Andrew Comech, and David Stuart. “ Linear stability of solitary waves in Dirac-Maxwell system ”.

[3] Nabile Boussaïd and Bernard Ducomet. “ Lifetime and time evolution of quasistationary states for a generalized Schrödinger operator ”.

[4] Nabile Boussaïd, Hichem Hajaiej, Slim Ibrahim, and Laurent Michel. “On the global Cauchy problem for non-linear Schrödinger equation with magnetic potential ”.

[5] Boussaïd Nabile, Comech Andrew Linear stability of the nonlinear Dirac equation in the nonrelativistic limit, RIS, BibTeX.

Conférences organisées

Nabile Boussaïd, Andrew Comech and Stephen Gustafson, Spectral and asymptotic stability of nonlinear Dirac equation. dec. 2012.

Nabile, Boussaid & Louis Jeajean, Colloquium bisontin sur les EDPs dispersives et problèmes liés, 26-28 Janvier 2015, Besançon http://trimestres-lmb.univ-fcomte.fr/dispersive-PDE.html

Nabile Boussaïd, Journées bisontines sur le contrôle quantique : systèmes d’EDPs et applications à l’IRM, 9-11 Mars 2015 ;, Besançon, http://trimestres-lmb.univ-fcomte.fr/Journees-bisontines-sur-le.html


[1code added to the collection NLEVP : Timo Betcke, Nicholas J. Higham, Volker Mehrmann, Christian Schröder, and Françoise Tisseur. NLEVP : A Collection of Nonlinear Eigenvalue Problems. Feb. 2013. doi : 10.1145/2427023.2427024. url