Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS
UFC
CNRS


Accueil > Activités > Séminaires > Analyse Fonctionnelle

Séminaire d’Analyse Fonctionnelle

par PROCHAZKA Antonin, Yulia Kuznetsova - publié le , mis à jour le

Le séminaire a lieu le mardi à 13h45, en salle 316Bbis du bâtiment de
Métrologie (plan d’accès).

Vous trouverez ci-dessous le planning du séminaire d’Analyse
Fonctionnelle pour l’année universitaire en cours.
L’historique des séminaires des années précédentes se trouve
ici.

Pour contacter la responsable (Yulia Kuznetsova) : yulia.kuznetsova@univ-fcomte.fr.
Pour s’abonner au séminaire : ACM.

Exposés à venir



-Mardi 5 mars: Oleg Aristov, Moscow.
Duality for Hopf holomorphically finitely generated algebras

Inspired by the duality theory of locally compact quantum groups, we discuss a class of topological Hopf algebras that can be considered as algebras of 'holomorphic functions on quantum complex Lie groups'. A Hopf holomorphically finitely generated (HFG) algebra is introduced as a topological Hopfalgebra that is a quotient of Taylor's algebra of free entire functions. For every Hopf HFG algebra $H$, the dual topological Hopf algebra $H^\circ $ can be defined. We talk over conditions under which $H^\circ $ is HFG. The natural commutative example of a Hopf HFG algebra is $\mathcal O(G)$, the algebra of holomorphic functions on a complex Lie group $G$. It is shown, under the assumption that $G$ is connected, that $\mathcal O(G)^{\circ \circ }\cong \mathcal O(G)$ iff $G$ is linear, i.e., admits a faithful finite-dimensional holomorphic representation.

-Jeudi 7 mars à 13h30: Oleg Aristov, Moscow.
Commutative and noncommutative $C^\infty $-functional calculus

In Noncommutative Differential Geometry, some dense subalgebras of $C^*$-algebras are considered. But there is still no an axiomatic definition of 'function algebras' on noncommutative $C^\infty $-manifolds or, more generally, $C^\infty $-spaces. One of main requirement to a candidate for the title is stability under $C^\infty $ -functional calculus for several commuting self-adjoint elements. We exhibit conditions that guarantee existence of a $C^\infty $-functional calculus on the joint spectrum of a commuting tuple of self-adjoint elements on a $C^*$-spectral Arens-Michael $*$-algebra and compare them to the Kissin-Shulman differential norm condition. We also discuss how to construct an enveloping functor that maps algebras of polynomials to algebras of $C^\infty $-functions and that is compatible with Pontryagin duality for abelian real Lie groups. The more distant goal is to extend Pontryagin duality from abelian Lie groups to all Lie groups.

-Mardi 12 mars: Uwe Franz, LMB.
Monotone Increment Processes, Classical Markov Processes and Loewner Chains

We prove a one-to-one correspondence between certain decreasing Loewner chains in the upper half-plane, a special class of real-valued Markov processes, and quantum stochastic processes with monotonically independent additive increments. This leads us to a detailed investigation of probability measures on the real line with univalent Cauchy transform. We discuss several subclasses of such measures and obtain characterizations in terms of analytic and geometric properties of the corresponding Cauchy transforms. Joint work with Takahiro Hasebe and Sebastian Schleissinger.

-Mardi 19 mars: Emiel Lorist, Delft.
Singular stochastic integral operators

Singular stochastic integrals of the form$$ S_K G(t) :=\int_0^\infty K(t,s) G(s) ,\mathrm d W_H(s), \qquad t\in \mathbb R_+,$$appear naturally in questions related to stochastic maximal regularity. Here $G$ is an adapted process, $W_H$ is a cylindrical Brownian motion and $K$ is allowed be singular.In this talk I will introduce Calder\'on--Zygmund theory for such singular stochastic integrals with operator-valued kernel $K$.I will first discuss $L^p$-extrapolation under a H\"ormander condition on the kernel. Afterwards I will treat sparse domination and sharp weighted bounds under a Dini condition on the kernel, leading to a stochastic analog of the solution to the $A_2$-conjecture. The developed theory implies $p$-independence and weighted bounds for stochastic maximal $L^p$-regularity both in the complex and real interpolation scale. This leads to mixed $L^p(L^q)$-theory for several stochastic partial differential equations, of which I will give a few examples. This talk is based on joint work with Mark Veraar.

-Mercredi 20 mars à 16:30: Frédéric Patras, Nice.


Jeudi 21 - Vendredi 22 mars: Julien Bichon, Malte Gerhold Anna Kula, Martin Lindsay, Michael Schuermann, Adam Skalski, Moritz Weber
Journées Thématiques : Cohomology of Compact Quantum Groups and Related Topics

See the dedicated web-page

Février

Janvier



-Mardi 8 janvier : Rachid Zarouf, Institut de Mathématiques de Marseille
Contre-exemples explicites réfutant la conjecture de Schäffer


-Mardi 15 janvier : Gonzalo Flores, Universidad de Chile
Linear structure of functions with maximal Clarke subdifferential
We prove that the set of real valued Lipschitz functions defined over finite dimensional spaces whose Clarke subdifferential is maximal at every point contains a linear subspace of uncountable dimension. This result goes in the line of a previous result by J. Borwein and X. Wang that shows some type of density in a similar context. Nevertheless, contrary to that result, our aproach is constructive. Moreover, in our setting we establish the spaceability of this property in the set of Lipschitz continuous functions. Joint work with A. Daniilidis.

-Mardi 22 janvier : relâche (école d'hiver)


Décembre



-Mardi 4 décembre : Christian Le Merdy, UFC
Différentiabilité à l’ordre n pour les fonctions d’opérateurs dans les classes de Schatten


-Mardi 11 décembre : Pavel Zorin-Kranich, University of Bonn
Decoupling for moment manifolds


-Mercredi 19 décembre : Journée de jeunes analystes non commutatifs
Programme + résumés


Novembre



-Mardi 6 novembre : relâche



-Mardi 13 novembre : Thomas Scheckter, UNSW Sydney
A Noncommutative Generalisation of a Problem of Steinhaus


-Mardi 20 novembre : Waed Dada, Université Wuppertal
Cesàro bounded operators on Banach spaces


-Mardi 27 novembre : Romuald Ernst, Université du Littoral Côte d'Opale
Quelques remarques autour de la fréquente hypercyclicité commune


Octobre



-Mardi 2 octobre : Gilles Lancien, UFC
(Exceptionnellement dans la salle 324B-2)
Espaces de Banach réflexifs asymptotiquement $c_0$ et plongements grossiers

-Mardi 9 octobre : relâche (journées GdR AFHP, Nice)


-Mardi 16 octobre : Matěj Novotný, Czech technical university
Schauder Bases in Lipschitz Free Spaces

-Mardi 23 octobre : Ali Talebi, Ferdowsi University of Mashhad, Iran
Noncommutative tail probability of maximal sums

Septembre



-Mardi 11 septembre: B.V.R. Bhat, .
Infinite mode quantum Gaussian states

-Mardi 18 septembre: Jared White, .
Finitely generated ideals in group algebras

-Mardi 25 septembre: Haonan Zhang, .
Idempotent states on quantum groups

Agenda

  • Mardi 18 octobre 2016 13:45-14:45 - Sergey Tikhonov - CRM, Barcelona

    Measures of smoothness and Fourier transforms

    Résumé : In this talk we discuss some recent results related to the quantitative Riemann-Lebesgue lemma on relationship between behavior of the Fourier transform at infinity and smoothness of a function.

    Lieu : 316Bbis


  • Mardi 25 octobre 2016 13:45-14:45 - Hubert Klaja - École Centrale de Lille

    Image numérique et calcul fonctionnel

    Résumé : Si $T$ est un opérateur linéaire borné, alors pour tout polynôme $p$, le spectre de $p(T)$ verifie $\sigma(p(T)) = p(\sigma(T))$.
    Ce n’est plus vrai si l’on remplace le spectre par l’image numérique.
    Dans cet exposé on discutera d’une nouvelle preuve d’un résultat de Drury qui permet de localiser l’image numérique de $p(T)$.
    C’est un travail en collaboration avec Javad Mashreghi et Thomas Ransford.

    Lieu : 316Bbis


  • Jeudi 3 novembre 2016 15:00-16:00 - Martin Lindsay - Lancaster University

    Multiple quantum Wiener integrals

    Lieu : 316Bbis


  • Mardi 8 novembre 2016 13:45-14:45 - Ignacio Vergara - ENS Lyon

    La propriété $p$-AP pour le groupe SL(3,R)

    Résumé : La $p$-AP est une propriété d’approximation pour les groupes localement compacts. On peut la voir comme une “version $L^p$” de la AP de Haagerup et Kraus. Je commencerai par définir cette propriété et en suite j’expliquerai comment on peut montrer que le groupe SL(3,R) ne satisfait pas $p$-AP pour aucun $1<p<\infty$.

    Lieu : 316Bbis


  • Jeudi 17 novembre 2016 13:45-14:45 - Serguei Kisliakov - Steklov Mathematical Institute, Saint-Pétersbourg

    Certains nouvelles estimations dans le théorème de la couronne.

    Lieu : 316Bbis


  • Mardi 22 novembre 2016 13:30-14:30 - Sebastien Schleissinger - Université de Wuerzburg

    The Loewner Equation and Monotone Probability Theory

    Résumé : The Loewner differential equation is an important tool in geometric function theory. It has been introduced by C. Loewner in 1923 in order to attack the Bieberbach conjecture (proven by L. de Branges in 1985). In 2000, O. Schramm considered a stochastic version of this equation, which turned out to have striking applications, in particular in statistical physics and conformal field theory. Schramm’s equation has become a field which is now called Schramm-Loewner Evolution (SLE). In this talk we consider a simple relation of Loewner theory to monotone probability theory. Certain Loewner equations can be interpreted as evolution equations for quantum processes.

    Lieu : 316Bbis


  • Mardi 22 novembre 2016 14:45-15:45 - Hun Hee Lee - Seoul National University

    Similarity degree of Fourier algebras

    Résumé : In this talk we will focus on the Dixmier type of similarity question for Fourier algebras and their similarity degrees by Pisier. We will explain that for a locally compact group $G$, amongst a class which contains amenable and small invariant neighbourhood groups (especially discrete groups), that its Fourier algebra $A(G)$ satisfies a completely bounded version of Pisier’s similarity property with similarity degree at most 2. Specifically, any completely bounded homomorphism $\pi:A(G)\to B(H)$ admits an invertible $S$ in $B(H)$ for which $\|S\|\|S^-1\|\leq \cbnorm\pi^2$ and $S^-1\pi(\cdot)S$ extends to a $*$-representation of the C*-algebra $C_0(G)$.

    Lieu : 316Bbis


  • Mardi 29 novembre 2016 13:45-14:45 - Gilles Godefroy - Université Paris 6

    The complexity of the isomorphism class of some Banach spaces

    Lieu : 316Bbis


  • Mardi 6 décembre 2016 13:45-14:45 - Paweł Józiak - IMPAN, Warsowie

    On quantum increasing sequences.

    Résumé : Quantum increasing sequences were introduced by S. Curran to characterize free conditional independence by means of comparing joint distributions of initial segments of a sequence of random variables to joint distributions of initial segments of a subsequence of that sequence of random variables, à la Ryll-Nardzewski. This is a de Finetti type theorem, but with weakened assumptions. I will explain the rôle of increasing sequences in free probability and discuss some results of mine in the theory of compact quantum groups, that grew out of the study of the connection of quantum increasing sequences and quantum permutations.

    Lieu : 316Bbis


  • 1 | ... | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ... | 15

  • Lundi 27 novembre 2017 09:00-17:00 - Journée thematique de NC-Geom-FA

    Analyse fonctionnelle et information quantique

    Résumé : Benoit Collins (Universite de Kyoto)
    Guillaume Aubrun (Universite de Lyon)
    Participants du projet I-QUINS


  • Du 26 mars 2018 14:00 au 27 mars 2018 17:30 - Journées en Analyse Fonctionnelle

    Journées en Analyse Fonctionnelle

  • Du 29 mai 2018 13:30 au 1er juin 2018 12:30 - Guillaume Aubrun (Lyon), Marek Cúth (Prague) et Sophie Grivaux (Lille)

    Ecole de printemps 2018 du GdR AFHP

    Résumé : Voir le programme ici.


  • Mercredi 19 décembre 2018 09:00-17:30 -

    Journée de jeunes analystes non commutatifs

    Résumé :

    • Guixiang Hong (Wuhan University) : Vector-valued Littlewood-Paley theorem for sum and difference sets
    • Chao Zhang (Universidad Autonoma de Madrid) On some properties of the differential transforms related to the fractional parabolic Poisson semigroups
    • Haonan Zhang (UFC) : Carlen-Frank-Lieb conjecture and monotonicity of α-z Renyi relative entropy
    • Simeng Wang (Université Paris Sud) : Factoriality and type classification for q-deformed Araki-Woods algebras
    • Sheng Yin (Universitat des Saarlandes) : Free analysis : zero divisors and Atiyah properties
    • Isabelle Baraquin (UFC) : Random walks on finite quantum groups
    • Xumin Wang (UFC) : Fourier multipliers on some discrete groups

    Lieu : 316Bbis


iCal