Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS
UFC
CNRS


Accueil > Pages web personnelles > HARAGUS Mariana > Publications

Publications

par LANGROGNET Florent - publié le , mis à jour le

Book

Preprints

  • J. CUEVAS-MARAVER, P.G. KEVREKIDIS, D.J. FRANTZESKAKIS, N.I. KARACHALIOS, M. HARAGUS & G. JAMES
    Floquet Analysis of Kuznetsov-Ma breathers : A Path Towards Spectral Stability of Rogue Waves

Refereed Journals

  • M. HARAGUS, J. LI & D. E. PELINOVSKY
    Counting unstable eigenvalues in Hamiltonian systems via commuting operators
    Comm. Math. Phys.
  • M. HARAGUS & E. WAHLEN
    Transverse instability of periodic and generalized solitary waves for a fifth-order KP model
    J. Diff. Equations 262 (2017), 3235-3249.
  • C. KLEIN & M. HARAGUS
    Numerical study of the stability of the Peregrine solution
    Annals of Mathematical Sciences and Applications
  • J. ROSSI, R. CARRETERO-GONZALES, P. G. KEVREKIDIS, & M. HARAGUS
    On the spontaneous time-reversal symmetry breaking in synchronously-pumped passive Kerr resonators
    J. Phys. A : Math. Theor., 49 (2016), 455201.
  • M. HARAGUS
    Transverse dynamics of two-dimensional gravity-capillary periodic water waves
    J. Dynam. Diff. Eq., 27 (2015), 683-703.
  • M. HARAGUS & T. KAPITULA
    Spots and stripes in NLS-type equations with nearly one-dimensional potentials
    Math. Meth. Appl. Sci., 37 (2014), 75-94.
  • M. HARAGUS & A. SCHEEL
    Grain boundaries in the Swift-Hohenberg equation
    Europ. J. Appl. Math., 23 (2012), 737-759.
  • M. HARAGUS & A. SCHEEL
    Dislocations in an anisotropic Swift-Hohenberg equation
    Comm. Math. Phys., 315 (2012), 311-335.
  • M. HARAGUS
    Transverse spectral stability of small periodic traveling waves for the KP equation
    Stud. Appl. Math., 126 (2011), 157-185.
  • M. HARAGUS
    Stability of periodic waves for the generalized BBM equation
    Rev. Roumaine Maths. Pures Appl., 53 (2008), 445-463.
  • M. HARAGUS & T. KAPITULA
    On the spectra of periodic waves for infinite-dimensional Hamiltonian systems
    Physica D, 237 (2008) 2649-2671.
  • M. HARAGUS & A. SCHEEL
    A bifurcation approach to non-planar traveling waves in reaction diffusion-systems
    GAMM Mitteilungen 30 (2007), 66-86.
  • M. HARAGUS & A. SCHEEL
    Interfaces between rolls in the Swift-Hohenberg equation
    Int. J. Dyn. Sys. Diff. Eqns., 1 (2007), 89-97.
  • Th. GALLAY & M. HARAGUS
    Orbital stability of periodic waves for the nonlinear Schrödinger equation
    J. Dyn. Diff. Eqns., 19 (2007), 825-865.
  • Th. GALLAY & M. HARAGUS
    Stability of small periodic waves for the nonlinear Schrödinger equation
    J. Diff. Equations, 234 (2007), 544-581.
  • M. HARAGUS & A. SCHEEL
    Stable viscous shocks in elliptic conservation laws
    Indiana Univ. Math. J., 56 (2007), 1261-1278.
  • M. HARAGUS, E. LOMBARDI & A. SCHEEL
    Stability of wave trains in the Kawahara equation
    J. Math. Fluid Mech., 8 (2006), 482-509.
  • M. HARAGUS & A. SCHEEL
    Almost planar waves in anisotropic media
    Comm. Partial Differential Equations, 31 (2006), 791-815.
  • M. HARAGUS & A. SCHEEL
    Corner defects in almost planar interface propagation
    Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 283-329.
  • M. D. GROVES & M. HARAGUS
    A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves
    J. Nonlinear Sci., 13 (2003), 397-447.
  • M. HARAGUS, D. P. NICHOLLS & D. H. SATTINGER
    Solitary wave interactions of the Euler-Poisson equations
    J. Math. Fluid Mech., 5 (2003), 92-118.
  • M. D. GROVES, M. HARAGUS & S.-M. SUN
    A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves
    Phil. Trans. Roy. Soc. Lond. A., 360 (2002), 2189-2243.
  • M. HARAGUS & A. SCHEEL
    Linear stability and instability of ion-acoustic plasma solitary waves
    Physica D, 170 (2002), 13-30.
  • M. HARAGUS & A. SCHEEL
    Finite-wavelength stability of capillary-gravity solitary waves
    Comm. Math. Phys. 225 (2002), 487-521.
  • M. D. GROVES, M. HARAGUS & S.-M. SUN
    Transverse instability of gravity-capillary line solitary water waves
    C. R. Acad. Sci. Paris, t. 333, Série I (2001), 421-426.
  • L. BREVDO, R. HELMIG, M. HARAGUS & K. KIRCHGÄSSNER
    Permanent fronts in two-phase flows in a porous medium
    Transport in Porous Media 44 (2001), 507-537.
  • M. HARAGUS & R. L. PEGO
    Spatial wave dynamics of steady oblique wave interactions
    Physica D 145 (2000), 207-232.
  • F. DIAS & M. HARAGUS
    On the transition from two-dimensional to three-dimensional water waves
    Stud. Appl. Math. 104 (2000), 91-127.
  • M. HARAGUS & G. SCHNEIDER
    Bifurcating fronts for the Taylor-Couette problem in infinite cylinders
    Z. angew. Math. Phys. 50 (1999), 120-151.
  • M. HARAGUS & R. L. PEGO
    Travelling waves of the KP equations with transverse modulations
    C. R. Acad. Sci. Paris, t. 328, Série I (1999), 227-232.
  • M. HARAGUS
    Nonlocal dimension breaking in turning points
    C. R. Acad. Sci. Paris, t. 327, Série I (1998), 149-154.
  • M. HARAGUS & A. IL’ICHEV
    Three Dimensional Solitary Waves in the Presence of Additional Surface Effects
    Eur. J. Mech. B/Fluids 17 (1998), 739-768.
  • M. HARAGUS & D. H. SATTINGER
    Inversion of the linearized Korteweg-de Vries equation at the multi-soliton solutions
    Z. angew. Math. Phys. 49 (1998), 436-469.
  • M. HARAGUS
    Reduction of PDEs on unbounded domains. Application : unsteady water wave problem
    J. Nonlinear Sci. 8 (1998), 353-374.
  • M. HARAGUS
    Model equations for water waves in the presence of surface tension
    Eur. J. Mech. B/Fluids 15 (1996), 471-492.

Review Articles

  • M. HARAGUS & G. IOOSS
    Bifurcation theory
    In "Encyclopedia of Mathematical Physics", eds. J.-P. Françoise, G.L. Naber and Tsou S.T.
    Oxford : Elsevier, 2006, volume 1, 275-280.
  • M. HARAGUS & K. KIRCHGÄSSNER
    Three-dimensional steady capillary-gravity waves
    In "Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems",
    B. Fiedler ed., Berlin : Springer-Verlag, 2001, 363-397.

Proceedings

  • M. HARAGUS & K. KIRCHGÄSSNER
    Breaking the dimension of solitary waves
    In "Progress in partial differential equations : the Metz surveys 4",
    M. Chipot, I. Shafrir eds., Pitman Research Notes in Mathematics Series 345 (1996), 216-228.
  • M. HARAGUS
    Reduction of high order nonlinear PDEs on the real line
    Proceedings of the 24th National Conference of Geometry and Topology,
    Timisoara, Roumanie (1996), 111-126.
  • M. HARAGUS & K. KIRCHGÄSSNER
    Breaking the Dimension of a Steady Wave : Some Examples
    In "Nonlinear dynamics and pattern formation in the natural environment",
    A. Doelman, A. van Harten eds., Pitman Research Notes in Mathematics Series 335 (1995), 119-129.
  • M. HARAGUS
    The orbital stability of fronts for high order parabolic partial differential equations
    In "Structure and Dynamics of Nonlinear Waves in Fluids",
    A. Mielke, K. Kirchgässner eds., Adv. Ser. Nonlinear Dynamics 7 (1995), 268-274.

Thesis

  • M. HARAGUS
    Existence et stabilité d’ondes hydrodynamiques
    Habilitation, Université Bordeaux I, 2001.
  • M. HARAGUS
    Réduction d’équations d’évolution en domaines cylindriques et stabilité de solutions de type onde solitaire
    Thèse de doctorat, Université de Nice, 1994.