Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS
UFC
CNRS


Accueil > Activités > Projets > PEPS

PEPS (Projets Exploratoires PluridisciplinaireS)

par Emilie Dupré - publié le , mis à jour le

-----------------------------------------------------------

Projets passés

PEPS - Jeunes Chercheur-e-s Géométrie des espaces uniformément discrets et ses voisins

PEPS 2 AMIES Biorouting

Ce PEPS est lié au projet BIOSOLVER.

PEPS Égalité Variétés de Kisin et multiplicités intrinsèques

Ce PEPS est lié au projet européen INTEGER.

  • Période : 1er janvier - 30 juin 2015 (6 mois)
  • Porteur : Agnès David
  • Partenaires :
    • IRMAR, Université Rennes 1 (Xavier Caruso)
    • Institut de Mathématiques de Jussieu - Paris Rive Gauche, Université Pierre et Marie Curie (Ariane Mézard)

PEPII Simulation et Identifiabilité de Modèles en Écologie ; relation proie-prédateur et transmission d’Echinococcus multilocularis (SIM2E)

  • Période : juin 2011 - décembre 2012
  • Porteurs : Antoine Perasso (Chrono-environnement), Franz Chouly
  • Participants locaux : Franz Chouly, Ulrich Razafison
  • Partenaires :

PEPS Interactions Mathématiques-Informatique-Ingénierie Classification non supervisée des données en grande dimension pour MIXMOD

  • Période : mars 2010 - mars 2012
  • Porteur : Florent Langrognet
  • Partenaires :
  • Description : MIXMOD est une librairie de calcul destinée à traiter une large gamme de problématiques de classification (supervisée, semi-supervisée, non supervisée) pour des données quantitatives ou qualitatives. Les caractéristiques des données rencontrées dans certains domaines (traitement d’images, reconnaissance automatique de caractères, de formes, …) ne permettent pas d’appliquer les algorithmes "classiques " dans de bonnes conditions (problèmes numériques, convergence lente des algorithmes, …). Dans ces situations où les individus sont représentés par plusieurs centaines (voire milliers de caractéristiques), d’autres voies doivent être envisagées pour traiter efficacement (rapidité, robustesse, précision) ces données. Ce projet vise à renforcer le travail interdisciplinaire engagé permettant de proposer des solutions innovantes et efficaces et de les intégrer dans MIXMOD.