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Abstract. We study the Vlasov-Poisson system with time periodic boundary
conditions. For small data we prove existence of weak periodic solutions in
any space dimension. In the one dimensional case the result is stronger: we
obtain existence of mild solution and uniqueness of this solution when the
data are smooth. It is necessary to impose a non vanishing condition for the
incoming velocities in order to control the life-time of particles in the domain.

1 Introduction

The master system of equations of collision-less plasma physics is the Vlasov-
Maxwell system. The main result in this field has been obtained in 1989
by R.J.DiPerna and P.L.Lions [13]. They prove existence of global weak
solutions for the Cauchy problem with arbitrary data. The global existence
of strong solution is still an open problem. The situation is much better
for the Vlasov-Poisson system. This system is obtained for the first one by
neglecting the magnetic field. This can be justified (at least for small time)
by a non-relativistic limit [18]. It reads :

∂tf + v · ∇xf +∇xϕ · ∇vf = 0, (t, x, v) ∈ IRt × IRd
x × IRd

v,

(1)

∆xϕ =
∫

IRdv

f(t, x, v)dv, (t, x) ∈ IRt × IRd
x.

(2)
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The variables (t, x, v) are respectively the time, the position and the veloc-
ity, d is the dimension of the space. The non-negative function f is the
distribution of the charged particles and ϕ is the induced electrostatic po-
tential. For the Cauchy problem weak global solution has been obtained
by Arsenev [16]. Existence of strong solution in 2D is a result due to De-
gond [19] and Ukai Ohabe [20]. The same result in 3D has been proved
by Pfaffelmoser [7]. A simpler and power-full method has been proposed
by P.L.Lions B.Perthame [8]. However for applications like vacuum diodes,
tube discharges, cold plasma, solar wind, satellite ionisation, thrusters, etc...
boundary conditions have to be taken into account. For the transient regime
global weak solutions of the Vlasov-Maxwell system has been proved to exist
by Y.Guo [5] and independently by M.Bezart [15]. The same problem for the
Vlasov-Poisson system has been investigated by Y.Guo [4] and N.Ben Ab-
dallah [9]. Permanent regimes are particularly important. They are of two
types and they are modeled by stationary solutions or time periodic solutions
for boundary value problems. Results concerning stationary problems can be
found in the paper of C.Greengard P.A.Raviart for the Vlasov-Poisson sys-
tem in 1D, in [2] for any space dimension and in [3] for the Vlasov-Maxwell
system. To our knowledge no results were available concerning time periodic
solutions. One strong motivation to study such solutions is the great diffi-
culty to compute it numerically. The analysis of the Vlasov-Maxwell system
in dimension 2 or 3 in this context seems, up to now, out of reach. The situa-
tion is different in 1D because solutions of Maxwell system can be computed
explicitly and the techniques introduced in this paper can be used, see [11].
We now describe precisely the boundary condition which we investigate. Let
Ω be a C1 bounded open set of IRd

x representing the device geometry. We
denote by ∂Ω the boundary and by Σ− the set of initial positions in phase
space of incoming particles :

Σ− = {(x, v) ∈ ∂Ω× IRd
v | v · ν(x) < 0}, (3)

where ν(x) is the outward normal of Ω at the point x ∈ ∂Ω. The distribution
g of incoming particles is prescribed :

f = g, (t, x, v) ∈ IRt × Σ−. (4)

We impose Dirichlet condition on the electrostatic potential ϕ :

ϕ = ϕ0, (t, x) ∈ IRt × ∂Ω. (5)
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The data are assumed to be T periodic and we look for T periodic solutions
(f, ϕ) of the problem (V P ) : (1), (2), (4) and (5). One of the key point of
our proof of existence of such solutions is to control the life-time of particles
in the domain Ω. It assures a dissipativeness property of the system. More
precisely it allows to bound the concentration

∫
fdv. Therefore we impose a

non-vanishing condition of incoming velocities which reads :

supp(g) ⊂ {(t, x, v) | t ∈ IRt, x ∈ ∂Ω, v · ν(x) < 0, v0 ≤ |v| ≤ v1}, (6)

for 0 < v0 < v1 given. We point out that other conditions can lead to the
same kind of result. Let Φ0 be the harmonic extension of the Dirichlet data.
A generalized condition could be : for any initial condition in the support of g
the characteristics solving dX

dt
= V , dV

dt
= ∇xΦ0 +F where F is small enough,

have their life-time uniformly bounded. Our result can now be summarized
as follows ( see Theorem 3 for precise assumptions ). If (6) holds then for
g and ϕ0 small enough there exist at least one T periodic weak solution
of the problem (V P ). We can precise this result in dimension 1 and with
supplementary smoothness assumption on the data we obtain a uniqueness
result ( Theorem 1 and Theorem 2 ). Let us remark that even if the electric
potential ϕ is ”a priori” known, there is no uniqueness of the T periodic
solution of the Vlasov problem (V ) : (1) and (4). Indeed, the distribution
function can take arbitrary ( constant ) values on the characteristics which
remain in the domain ( trapped characteristics ). In order to select physical
solution we introduce as in [2] and [3] the concept of minimal solution of
(V ) which are the solutions which vanish on the trapped characteristics.
These solutions can be obtained as the limit of the ( unique ) solution of the
modified Vlasov problem (Vα) when an absorption term α > 0 is introduced
and tends to zero :

αf + ∂tf + v · ∇xf +∇xϕ · ∇vf = 0, (t, x, v) ∈ IRt × Ω× IRd
v.

(7)

This limit absorption principle has been the starting point of the limit ab-
sorption method (LAM) which has been developed by the authors to obtain
numerical periodic solutions of Partial Differential Equation, see [12]. We
also stress that these results has been announced in [10].
The paper is organized as followed. In Section 2 we define weak solutions
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and minimal mild solution of the Vlasov problem (V ). We also proved that
the weak solution of the modified Vlasov problem (Vα) is unique and coincide
with the minimal mild solution. Section 3 is devoted to the 1 dimensional
case. We prove existence of a mild minimal solution (f, ϕ) and its unique-
ness in the case where the data are smooth. In Section 4 we introduce a
regularized problem. The existence theorem is obtained by using Schauder’s
theorem for the modified problem. Then we pass to the limit in the regular-
ization parameter to obtain our main result.

2 Definitions and bounds for the Vlasov equa-

tion.

In this section we assume that the electric field E is a T periodic function in
time and we look for a solution f of the Vlasov equation:

{
∂tf + v · ∇xf + E · ∇vf = 0 (t, x, v) ∈ IRt × Ω× IRd

v,
f(t, x, v) = g(t, x, v) (t, x, v) ∈ IRt × Σ−.

(8)

Moreover, we suppose that the given distribution function g of the in-flowing
particles is T periodic in time, too. Now we briefly recall the notions of mild
and weak solutions for this type of problem.

2.1 Weak solution of the Vlasov equation

We first introduce the spaces L−, L−loc of incoming data with bounded or
locally bounded fluxes :

L− = {g | v · ν(x)g ∈ L1(IRt × Σ−)},

L−loc = {g | v · ν(x)g ∈ L1
loc(IRt × Σ−)},

where Σ− is defined by (3).

Definition 1 Let E ∈ (L∞(IRt × Ω))d and g ∈ L1
loc(IRt × Σ−) be T periodic

functions in time. We say that f ∈ L1
loc(IRt × Ω× IRd

v) is a T periodic weak
solution of problem (8) iff:
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∫ T

0

∫

Ω

∫

IRdv

f(t, x, v)(∂tθ + v · ∇xθ + E · ∇vθ)dvdxdt =

=
∫ T

0

∫

Σ−
v · ν(x) · g(t, x, v) · θ(t, x, v)dvdσdt (9)

for all T periodic function θ ∈ V, where:

V = {η ∈ W 1,∞(IRt × Ω× IRd
v) | η is T periodic with respect to time ,

η|IRt×Σ+ = 0, ∃B bounded set of IRd
v, supp(η) ⊂ IRt × Ω×B}.

In other words, a weak solution of problem (8) is a distribution function
satisfying:

< f, ϕ > =
∫ T

0

∫

Σ−
v · ν(x) · g(t, x, v) · θ(t, x, v)dvdσdt (10)

for all T periodic function ϕ, where θ denote the solution of the problem:





∂tθ + v · ∇xθ + E · ∇vθ = ϕ, (t, x, v) ∈ IRt × Ω× IRd
v,

θ = 0, (t, x, v) ∈ IRt × Σ+

(11)

Remark 1 In the above definition we can assume that the electric field is
only in (Lp(IRt × Ω))d by requiring more regularity on f (and g ), namely f
in Lqloc(IRt × Ω) where q is the conjugate exponent.

If the electric field satisfy E ∈ (L∞(IRt;W
1,∞(Ω)))d, we can express a solution

in terms of characteristics. Let (t, x, v) belong to IRt × Ω × IRd
v, we denote

by X(s; x, v, t), V (s; x, v, t) the solution of the system:





dX

ds
= V (s;x, v, t), s ∈ [τi, τo]

X(t;x, v, t) = x,

dV

ds
= E(s,X(s;x, v, t)), s ∈ [τi, τo]

V (t;x, v, t) = v.

(12)
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where τi = τi(x, v, t) (τo = τo(x, v, t)) is the incoming ( resp. outgoing ) time
of the particle in the domain Ω:

(X(τi), V (τi)) ∈ Σ− (13)

and
(X(τo), V (τo)) ∈ Σ+ ∪ Σ0. (14)

The subsets of ∂Ω× IRd
v,Σ

+ and Σ0 are respectively defined by:

Σ+ = {(x, v) ∈ ∂Ω× IRd
v | v · ν(x) > 0},

Σ0 = {(x, v) ∈ ∂Ω× IRd
v | v · ν(x) = 0}.

Using the Cauchy-Lipschitz theorem, we notice that the characteristics are
well defined. By integration along the characteristics curves, the solution of
the problem (11) formally writes:

θ(t, x, v) = −
∫ τo

t
ϕ(s,X(s;x, v, t), V (s;x, v, t))ds (15)

Now, always formally (10) implies that:

< f, ϕ > = −
∫ T

0
dt
∫

Σ−
dσ(x) dv v · ν(x)g(t, x, v)

∫ τo(x,v,t)

t
ϕ(s,X(s;x, v, t), V (s;x, v, t))ds. (16)

which is equivalent to:

f(t, x, v) =





g(τi, X(τi;x, v, t), V (τi;x, v, t)), if τi > −∞,

0, otherwise.
(17)

Definition 2 Let E ∈ (L∞(IRt;W
1,∞(Ω)))d and g ∈ L1

loc(IRt × Σ−) be T
periodic functions. The function f ∈ L1

loc(IRt × Ω × IRd
v) which is the mild

minimal periodic solution of problem (8) is given by (16).
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Remark 2 There is in general no uniqueness of the weak solution because f
can take arbitrarily values on the characteristics such that τi = −∞. But it
is possible to prove that the mild solution is the ununique minimal solution
of the transport equation. We refer to [3] for the concept of the minimal
solution and to [6] for a proof of this assertion.

Remark 3 We have that (X(s + T ;x, v, t + T ), V (s + T ;x, v, t + T )) =
(X(s;x, v, t), V (s;x, v, t)) because of the periodicity of E. Using this equality
it is easy to check that the mild solution is periodic.

Remark 4 If g ∈ C1(IRt×Σ−) then the mild solution is a classical solution
of (8).

2.2 Estimation of the life-time of particles

In order to assure L∞ estimates for the charge and current densities, we
assume that the following conditions are satisfied:

‖E‖L∞(IRt×Ω) ≤ 1

4
· | v0 |2
δ(Ω)

, (18)

E ∈ (L∞(IRt;W
1,∞(Ω)))d, (19)

supp(g) ⊂ {(t, x, v) | t ∈ IRt, x ∈ ∂Ω, v · ν(x) < 0, v0 ≤ |v| ≤ v1}. (20)

Here, δ(Ω) is the diameter of Ω and the velocity v0,v1 are positive constants.
With these assumptions, we get:

Lemma 1 Assume that the electric field and the boundary data satisfy (18),
(19) and (20). Then, the life-time in Ω of particles starting from the support
of g is finite:

τo(x, v, t)− τi(x, v, t) ≤ 2 · δ(Ω)

v0

, ∀(t, x, v) ∈ supp(g). (21)

Proof
Suppose that there is a particle injected in Ω at t = τi and which is still in

the domain at t1 > τi + 2 · δ(Ω)

v0

. According to (20), we have:

0 < v0 ≤ µ · V (τi) ≤ v1,
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where µ = V (τi)/|V (τi)|. Integrating (12) on [τi, t] ⊂ [τi, t1], we obtain:

X(t) = X(τi) +
∫ t

τi
V (s)ds (22)

V (t) = V (τi) +
∫ t

τi
E(s,X(s))ds (23)

Using (23), we find for all t ∈ [τi, τi + 2 · δ(Ω)/v0]:

µ · V (t) ≥ µ · V (τi)− ‖E‖C0(IRt×Ω) · (t(t− τi)

≥ v0 − 1

4
· |v0|2
δ(Ω)

· 2 · δ(Ω)

v0

=
v0

2
. (24)

Hence, the particle moves in the direction µ at least with the velocity v0/2
during t ∈ [τi, τi + 2 · δ(Ω)/v0]. Moreover, we can choose ε > 0 and tε =
τi + 2 · δ(Ω)/v0 + ε < t1 such that:

µ · V (t) > 0,∀t ∈ [τi, tε]. (25)

Using again (12), we have:

|X(tε)−X(τi)| ≥ |µ · (X(tε)−X(τi))|
=

∫ tε

τi
µ · V (s)ds

>
∫ τi+2·δ(Ω)/v0

τi
µ · V (s)ds

≥ 2 · δ(Ω)

v0

· v0

2
= δ(Ω), (26)

which contradicts the fact that X(tε) ∈ Ω.

Corollary 1 Assuming the same hypotheses as in Lemma 1 (18), (19), (20)
and let f be the mild solution of Definition 2. Then we have:

supp(f) ⊂ {(t, x, v)|t ∈ IRt, x ∈ Ω,
v0

2
≤ |v| ≤ v1 +

v0

2
}. (27)
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Proof
The estimates (27) follow from the previous Lemma. Indeed, according to
(23), we obtain:

V (t) = V (τi) +
∫ t

τi
E(s,X(s))ds, (28)

and therefore:

|V (t)| ≥ |V (τi)| − ‖E‖C0(IRt×Ω) · (t− τi)

≥ v0 − 2 · δ(Ω)

v0

· 1

4
· |v0|2
δ(Ω)

=
v0

2
, (29)

and:

|V (t)| ≤ |V (τi)|+ ‖E‖C0(IRt×Ω) · (t− τi)

≤ v1 + 2 · δ(Ω)

v0

· 1

4
· |v0|2
δ(Ω)

= v1 +
v0

2
. (30)

2.3 Vlasov equation with absorption term

Lemma 2 Let E ∈ (L∞(IRt;W
1,∞(Ω)))d and g ∈ L∞(IR×Σ−) be T periodic

functions which verify (18), (20). Then a weak periodic solution in L∞(IRt×
Ω× IRd

v) of the modified Vlasov equation :





α · f + ∂tf + v · ∇xf + E · ∇vf = 0, (t, x, v) ∈ IRt × Ω× IRd
v,

f = g, (t, x, v) ∈ IRt × Σ−.
(31)

is unique and therefore is the mild solution.

Proof Assume that f is a solution in L∞(IRt × Ω × IRd
v) with g = 0. We

have :

∂tf + v · ∇xf + E · ∇vf = −α · f ∈ L∞(IRt × Ω× IRd
v),

(32)
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and therefore( cf. [1], [14]) we obtain:

−α · f 2 = f(∂tf + v · ∇xf + E · ∇vf)

=
1

2
(∂tf

2 + v · ∇xf
2 + E · ∇vf

2).

Integrating this relation on ]0, T [×Ω× IRd
v gives:

α
∫ T

0

∫

Ω

∫

IRdv

f 2dvdxdt = −1

2

∫ T

0

∫

∂Ω

∫

IRdv

v · ν(x)f 2dvdσdt

≤ −1

2

∫ T

0

∫

Σ−
v · ν(x)f 2dvdσdt = 0.

3 Mild solutions for the Vlasov-Poisson sys-

tem in 1D.

In this Section we consider the 1 dimensional case and Ω is the unit interval
]0, 1[.

3.1 Continuity of the characteristics

We work under the hypotheses (18), (19),(20), which assure a finite life-time
Tout = 2/v0 and a minimal velocity vmin = v0/2 for all particles. We prove
C0 continuity of the characteristics of Vlasov equation.

Lemma 3 Consider (En)n≥1 a sequence of electric fields which verify:

‖En‖C0(IRt×[0,1]) ≤ | v0 |2
4

, (33)

| En(t, x)− En(t, y) |≤ L | x− y |,∀t ∈ IRt, x, y ∈ [0, 1], (34)

lim
n→∞En = E in C0(IRt × [0, 1]), (35)

and g ∈ L∞(IRt × Σ−) a function such as:

supp(g) ⊂ {(t, 0, v) | t ∈ IRt, 0 < v0 ≤ v ≤ v1}
∪ {(t, 1, v) | t ∈ IRt, −v1 ≤ v ≤ −v0}. (36)
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Then we have ∀s ∈ (τni , τ
n
o ) ∩ (τi, τo):

|Xn(s)−X(s)| ≤
(

2

v0

)1/2

‖En − E‖C0(IRt×[0,1]) exp
(
L+ 2

v0

)
,

|Vn(s)− V (s)| ≤
(

2

v0

)1/2

‖En − E‖C0(IRt×[0,1]) exp
(
L+ 2

v0

)
,

and also:

|τno,i − τo,i| ≤
(

2

v0

)3/2

· ‖En − E‖C0(IRt×[0,1]) exp
(
L+ 2

v0

)
(37)

Proof
We first remark that in view of (35), (34) holds also for E. Therefore the
corresponding characteristics are well defined. Let (t, x, v) ∈ IRt×(0, 1)×IRv.
We multiply (12) by Xn(s;x, v, t)−X(s;x, v, t) and Vn(s; x, v, t)−V (s;x, v, t)
to get ∀s ∈ (τni , τ

n
o ) ∩ (τi, τo):

1

2

d

ds
|Xn(s)−X(s)|2 +

1

2

d

ds
|Vn(s)− V (s)|2 =

= (Xn(s)−X(s)) · (Vn(s)− V (s))

+ (En(s,Xn(s))− E(s,X(s))) · (Vn(s)− V (s))

≤ 1

2
· |Xn(s)−X(s)|2 +

1

2
· |Vn(s)− V (s)|2

+ (L · |Xn(s)−X(s)|+ ‖En − E‖C0(IRt×[0,1]))

× |Vn(s)− V (s)|
≤ L+ 2

2
(|Xn(s)−X(s)|2 + |Vn(s)− V (s)|2)

+
1

2
‖En − E‖2

C0(IRt×[0,1]), (38)

which yields:

|Xn(s)−X(s)|2 + |Vn(s)− V (s)|2 ≤
≤ (L+ 2)

∫ s

t
|Xn(τ)−X(τ)|2 + |Vn(τ)− V (τ)|2dτ

+ |t− s|‖En − E‖2
C0(IRt×[0,1]). (39)
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By using Gronwall Lemma ( and Lemma 1 ), we deduce that ∀s ∈ (τni , τ
n
o )∩

(τi, τo):

|Xn(s)−X(s)|2 + |Vn(s)− V (s)|2 ≤ 2

v0

· ‖En − E‖2
C0(IRt×[0,1])

exp
(

2
L+ 2

v0

)
, (40)

and also:

|Xn(s)−X(s)| ≤
(

2

v0

)1/2

‖En − E‖C0(IRt×[0,1]) · exp
(
L+ 2

v0

)
, (41)

|Vn(s)− V (s)| ≤
(

2

v0

)1/2

‖En − E‖C0(IRt×[0,1]) · exp
(
L+ 2

v0

)
, (42)

because |t − s| ≤ 2

v0

. In order to estimate the difference of entry times,

assume that τi ≤ τni holds and write:

v0

2
· |τni − τi| ≤

∣∣∣∣∣
∫ τi

τni

dX

ds
ds

∣∣∣∣∣

= |X(τni )−X(τi)|

= |X(τni )−Xn(τni )|

≤
(

2

v0

)1/2

‖En − E‖C0(IRt×[0,1]) · exp
(
L+ 2

v0

)
, (43)

because X(τi) = Xn(τni ) and so:

|τni − τi| ≤
(

2

v0

)3/2

· ‖En − E‖C0(IRt×[0,1]) · exp
(
L+ 2

v0

)
. (44)

If the other inequality τi > τni holds, we can find the same estimates, by
changing X,V, τi with Xn, Vn, τ

n
i respectively. The same method yields a

similar estimate for the exit times :

|τno − τo| ≤
(

2

v0

)3/2

· ‖En − E‖C0(IRt×[0,1]) · exp
(
L+ 2

v0

)
. (45)
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Lemma 4 With the same assumptions as in Lemma 3, if moreover g ∈
W 1,∞(IRt × Σ−) and if we denote by fn,f the solutions given by (17) which
correspond to the fields En,E, we have the estimate:

‖fn − f‖L∞(IRt×(0,1)×IRv) ≤ ‖g‖W 1,∞(IRt×Σ−) · ‖En − E‖C0(IRt×[0,1])

·
(

2

v0

)1/2 (
1 +

v0

2
+

2

v0

)
· exp

(
L+ 2

v0

)
(46)

Proof
We assume that τi ≤ τni then, using Lemma 3 and (33), the difference of the
entry velocity is given by:

|Vn(τni )− V (τi)| ≤ |Vn(τni )− V (τni )|+ |V (τni )− V (τi)|

≤
(

2

v0

)1/2

‖En − E‖C0 · exp
(
L+ 2

v0

)
+

∣∣∣∣∣
∫ τi

τni

dV

ds
ds

∣∣∣∣∣

≤
(

2

v0

)1/2

‖En − E‖C0 · exp
(
L+ 2

v0

)
+ |τni − τi| · ‖E‖C0

≤
(

2

v0

)1/2 (
1 +

v0

2

)
· ‖En − E‖C0 · exp

(
L+ 2

v0

)
. (47)

Assuming now that g ∈ W 1,∞(IRt×Σ−). Then we easily check the statement
of the lemma, using (37) and (47):

|fn(t, x, v)− f(t, x, v)| = |g(τni , 0, Vn(τni ))− g(τi, 0, V (τi))|

≤ ‖g‖W 1,∞(IRt×Σ−)

× (|τni − τi|+ |Vn(τni )− V (τi)|)

≤ ‖g‖W 1,∞(IRt×Σ−)‖En − E‖C0(IRt×[0,1])

×
(

2

v0

)1/2 (
1 +

v0

2
+

2

v0

)
exp

(
L+ 2

v0

)
. (48)
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3.2 Existence

In this section section we establish existence result for the mild periodic
solution of the 1D Vlasov-Poisson problem:





∂tf + v · ∂xf + E · ∂vf = 0, (t, x, v) ∈ IRt × [0, 1]× IRv,
f = g, (t, x, v) ∈ IRt × Σ−,
E(t, x) = ∂xϕx(t, x), (t, x) ∈ IRt × [0, 1],

∂2
xxϕ =

∫

IRv
f(t, x, v)dv, (t, x) ∈ IRt × [0, 1],

ϕ(t, 0) = 0, t ∈ IRt,
ϕ(t, 1) = ϕ1(t), t ∈ IRt, ϕ1 T − periodic.

(49)

We want to use the Schauder fixed point theorem. We define an application
which maps a periodic electric field E to an other one E1 where E1 is defined
as follows. Let f be the mild periodic solution of Definition 2 corresponding
to the electric field E. The electric field E1 = ∂xϕ is determined as the

solution of the Poisson problem with the density ρ(t, x) =
∫

IRv
f(t, x, v) dv.

In order to assure the invariance of the domain, smallness assumptions of the
data are required. We have:

Theorem 1 Let g ∈ L∞(IRt × Σ−) be a periodic function, ϕ1 a T periodic
continuous function, 0 < v0 < v1 such as:

supp(g) ⊂ {(t, 0, v) | t ∈ IRt, 0 < v0 ≤ v ≤ v1}
∪ {(t, 1, v) | t ∈ IRt, −v1 ≤ v ≤ −v0}, (50)

‖ϕ1‖L∞(IRt) + 3 · v1 · ‖g‖L∞(IRt×Σ−) ≤ |v0|2
4
. (51)

Thus, the system (49) has at least one mild periodic solution.

Proof
We denote by F : X → X the map:

E → fE → ρE → E1 = ∂xϕ, (52)
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where:

E ∈ X = {e ∈ C0(IRt × [0, 1]); ‖e‖C0(IRt×[0,1] ≤ |v0|2
4
,

|e(t, x)− e(t, y)| ≤ L · |x− y|, ∀ x, y ∈ [0, 1]

e(t, x) = e(t+ T, x), ∀ (t, x) ∈ IRt × [0, 1]},

(53)

with:

L = 2 · v1 · ‖g‖L∞(IRt×Σ−). (54)

Here fE is the mild periodic solution given by (16) and E1 = ∂xϕ is the
solution of the Poisson problem:





∂2
xxϕ = ρE =

∫

IRv
f(t, x, v)dv, (t, x) ∈ IRt × [0, 1],

ϕ(t, 0) = 0, t ∈ IRt,

ϕ(t, 1) = ϕ1(t), t ∈ IRt.

(55)

Step 1 The map F is well defined (F(X) ⊂ X).

Let E ∈ X. Using Corolary 1 (27), we get:

‖ρ‖C0(IRt×[0,1]) ≤ 2 · v1 · ‖g‖L∞(IRt×Σ−). (56)

The electric field E1 writes:

E1(t, x) = ϕ1(t)−
∫ 1

0
(1− y) · ρE(t, y)dy +

∫ x

0
ρE(t, y)dy, (57)

and therefore:

‖E1‖C0(IRt×[0,1]) ≤ ‖ϕ1‖L∞ +
3

2
· ‖ρE‖C0(IRt×[0,1])

≤ ‖ϕ1‖L∞ + 3 · v1 · ‖g‖L∞(IRt×Σ−)

≤ |v0|2
4
. (58)
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The electric field E1 verifies also :

|E1(t, x)− E1(t, y)| ≤ ‖∂xE1‖L∞(IRt×[0,1]) · |x− y|
= ‖ρE‖L∞(IRt×[0,1]) · |x− y|
≤ 2 · v1 · ‖g‖L∞(IRt×Σ−) · |x− y|
= L · |x− y|. (59)

Moreover, because E is time periodic, fE, ρE, ϕ and E1 are periodic too, so
E1 = F(E) ∈ X.

Step 2 The map F is compact for the topology of C0(IRt × [0, 1]).

We prove that F(X) is compact. For that we derive a bound on the time
derivative of E1 = F(E), E ∈ X. From (57) we obtain:

∂t(E
1 − ϕ1) = −

∫ 1

0
(1− y)∂tρEdy +

∫ x

0
∂tρEdy.

We use now the conservation law ∂tρE + ∂xjE = 0, where jE =
∫
v vfEdv. An

integration by part yields:

∂t(E
1 − ϕ1) =

∫ 1

0
jE(t, y)dy − jE(t, x).

Therefore this relation with (53) gives that E1−ϕ1 is uniformly Lipschitz with
respect to time and position. Ascoli’s Theorem yields that E1−ϕ1 and then
E1 belong to a compact set of C0([0, T ]× [0, 1]). Because of the periodicity
of E1 we also have that it belongs to a compact set of C0(IRt × [0, 1]).

Step 3 The map F : (X,C0(IRt × [0, 1]))→ (X,C0(IRt × [0, 1])) is continu-
ous.

Let (En)n≥1 ⊂ X, limn→∞En = E in C0(IRt × [0, 1]). Denoting by fn the
mild solution given by (16) corresponding to En. Using (45), (41) et (42),
we pass to the limit for n→∞ in (16) which now reads:

< fn, ϕ > = (60)

−
∫ T

0

∫

v<0

∫ τno

t
v · g(t, 1, v) · ϕ(s,Xn(s; 1, v, t), Vn(s; 1, v, t))dsdvdt

+
∫ T

0

∫

v>0

∫ τno

t
v · g(t, 0, v) · ϕ(s,Xn(s; 0, v, t), Vn(s; 0, v, t))dsdvdt.
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Using Lemma 3 we can pass to the limit in this expression. So fn is a
convergent sequence in sense of distributions whose limit f is the mild so-
lution corresponding to the field E. Moreover, from the uniform bound in
L∞(IRt × (0, 1)) we deduce:

fn ⇀ f, weak ? in L∞(IRt × (0, 1)× IRv). (61)

In the same way, the densities ρn converge weakly, because the support of fn
are bounded with respect of velocities:

ρn =
∫

IRv
fn(t, x, v)dv ⇀ ρ =

∫

IRv
f(t, x, v)dv, weak ? in L∞(IRt×(0, 1)).

(62)
On the other hand the weak convergence of ρn implies the weak convergence
of F(En) towards F(E) ( for instance in L∞(IRt×[0, 1])). Since F is compact,
it implies that F(En)→ F(E) in C0(IRt×[0, 1]). This prove the continuity of
the map F . At this point, using the Schauder fixed point theorem, we prove
existence of periodic solution of 1D Vlasov-Poisson problem which concludes
the proof of the Theorem 1.

3.3 Uniqueness

In this section we are interested in uniqueness results. We state the following:

Theorem 2 Under the same assumptions as in Theorem 1, by requiring
moreover that g ∈W 1,∞(IRt × Σ−) and :

‖g‖W 1,∞(IRt×Σ−) <

(
v0

2

)1/2

· exp
(
−L+ 2

v0

)

3 · v1 ·
(

1 +
v0

2
+

2

v0

) , (63)

the system (49) has a unique mild periodic solution.

Proof
The existence result has been proved in the previous section. In order to
establish uniqueness result, we show that the map F is a contraction. Let
E,F ∈ X two electric fields and denote by fE, fF the corresponding mild
solutions. Lemma 4 (46) and the fact that fE, fF have bounded support in
velocity, allow us to write:
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‖ρE − ρF‖C0(IRt×[0,1]) ≤ 2 · v1 · ‖g‖W 1,∞(IRt×Σ−) · ‖E − F‖C0(IRt×[0,1])

·
(

2

v0

)1/2 (
1 +

v0

2
+

2

v0

)
· exp

(
L+ 2

v0

)
(64)

By formula (57), we deduce:

‖F(E)−F(F )‖C0(IRt×[0,1]) ≤ 3

2
· ‖ρE − ρF‖C0(IRt×[0,1])

≤ 3 · v1 · ‖g‖W 1,∞(IRt×Σ−) · ‖E − F‖C0(IRt×[0,1])

·
(

2

v0

)1/2 (
1 +

v0

2
+

2

v0

)
· exp

(
L+ 2

v0

)
. (65)

Therefore we have:

‖F(E)−F(F )‖C0(IRt×[0,1]) ≤ q · ‖E − F‖C0(IRt×[0,1]), (66)

where q is given by:

q = 3 ·
(

2

v0

)1/2

exp
(
L+ 2

v0

)
· v1 ·

(
1 +

v0

2
+

2

v0

)
· ‖g‖W 1,∞(IRt×Σ−) < 1. (67)

4 Weak solutions for the Vlasov-Poisson sys-

tem in the multidimensional case.

In this section, we establish existence result for the weak periodic solution of
the Vlasov-Poisson problem:





∂tf + v · ∇xf + E · ∇vf = 0, (t, x, v) ∈ IRt × Ω× IRd
v,

f = g, (t, x, v) ∈ IRt × Σ−,
E(t, x) = ∇xϕ, (t, x) ∈ IRt × Ω,

∆xϕ =
∫

IRdv

f(t, x, v)dv, (t, x) ∈ IRt × Ω,

ϕ = ϕ0, (t, x) ∈ IRt × ∂Ω.

(68)
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Here, the boundary data g and ϕ0 are T− periodic functions. We look for
a weak periodic solution (f(t, x, v), ϕ(t, x, v)). As previously, the Schauder
fixed point theorem is used. We define an application which maps a periodic
potential ϕ to an other one ϕ1 where ϕ1 is defined as follows. Let f be the
mild periodic solution of Definition 2 corresponding to the electric field E =
∇xϕ. The potential ϕ1 is determined as the solution of the Poisson problem
with the density ρ(t, x) =

∫
IRdv
f(t, x, v)dv. Unfortunately this procedure

cannot be used directly. Indeed the Definiton 2 requires that the electric
field is Lipschitz with respect to x and we cannot expect such a regularity in
the general case. Therefore we have to regularize the potential. We also have
to use an absorption term in the Vlasov equation in order to have uniqueness
of the weak solution. Then the strategy of proof is as follows. We first
show the existence of weak periodic solution for a regularized problem by
using the Schauder fixed point theorem. Next we pass to the limit when the
regularization parameter vanishes.

4.1 Fixed point for the regularized problem

Let p > d+ 1 be a positive constant and let X be the set of the functions ϕ
which verify:

ϕ ∈ L∞(IRt;W
2,p(Ω)) , ‖ϕ‖L∞(IRt;W 2,p(Ω)) ≤ C1, (69)

∂tϕ ∈ L∞(IRt;W
1,p(Ω)) , ‖∂tϕ‖L∞(IRt;W 1,p(Ω)) ≤ C2, (70)

‖∇xϕ‖L∞(IRt×Ω×IRdv) ≤
1

4
· |v0|2
δ(Ω)

, (71)

ϕ(t+ T, ·) = ϕ(t, ·), (72)

where C1 and C2 are fixed constants which will be chosen later on. With the
definitions (69),(70), we have for any function ϕ ∈ X :

‖∇xϕ‖pW 1,p((0,T )×Ω) = ‖∂t∇xϕ‖pLp((0,T )×Ω)

+
d∑

i=1

‖∂xi∇xϕ‖pLp((0,T )×Ω)

≤ K(C1, C2) (73)

Using the compactness results embedding:

W 1,p((0, T )× Ω) ↪→ C0([0, T ]× Ω) (p > d+ 1, δ(Ω) <∞),
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we deduce that {∇xϕ|ϕ ∈ X} is a compact set of C0([0, T ] × Ω). We con-
clude that X is a compact set of C0([0, T ];C1(Ω)). We now introduce a
regularization mapping:

Rα : C0([0, T ];C1(Ω))→ C0([0, T ];C2(Ω))

ϕ 7→ Rαϕ(t, x) =
∫

IRdx

ζα(x− y) · ϕ(t, y)dy, (74)

where ζα ≥ 0 is a mollifier:

ζα(x) =
1

αd
ζ
(
x

α

)
, ζ ∈ C∞0 (IRd)

supp(ζ) ⊂ B1 ,
∫

IRd
ζ(u)du = 1.

Here, · is a linear extension operator from C1(Ω) onto C1(IRd)
( which requires that ∂Ω is C1 ). Therefore, ϕ is a T periodic extension on
IRt × IRd

x of ϕ such as:

‖∇xϕ‖L∞(IRt×IRdx) ≤ ‖∇xϕ‖L∞(IRt×Ω). (75)

Obviously, Rα is well defined and continuous. Moreover, (71) is preserved
by this application. By definition Rαϕ is T periodic. Next, we consider the
application:

F : ϕ ∈ X 7→ ϕ1
α, (76)

where:





∆xϕ
1
α(t) =

∫

IRdv

fα(t, x, v)dv = ρα(t), x ∈ Ω

ϕ1
α(t, x) = ϕ0(t, x), x ∈ ∂Ω.

(77)

Above fα is the mild solution of the following modified Vlasov equation
corresponding to the field ∇xRαϕ:





α · fα + ∂tfα + v · ∇xfα +∇xRαϕ · ∇vfα = 0, (t, x, v) ∈ IRt × Ω× IRd
v,

fα = g, (t, x, v) ∈ IRt × Σ−.
(78)
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The term α · fα changes the formula (16) in the following way:

< fα, θ > = −
∫ T

0
dt
∫

Σ−
dvdσ

∫ ταo

t
v · ν(x)g(t, x, v)

θ(s,Xα(s; x, v, t), Vα(s;x, v, t))e−α(s−t)ds. (79)

We prove now that the application F maps X into itself and is continuous
on C0([0, T ];C1(Ω)) for convenient choices of the constants C1 and C2 and
for small enough boundary datas.

Step 1 Invariance of the domain.

Let ϕ ∈ X be an electric potential and ϕα = Rαϕ its regularization. We
verify (18),(19),(20), and we deduce from Lemma 1 the existence of a finite
life-time 2 · δ(Ω)/v0. Using Corollary 1 we also have:

‖ρα‖pL∞(IRt;Lp(Ω)) = sup
t∈IRt

∫

Ω
|ρα(t, x)|pdx

= sup
t∈IRt

∫

Ω

∣∣∣∣∣
∫

v0/2≤|v|≤v1+v0/2
fα(t, x, v)dv

∣∣∣∣∣
p

dx

≤ ‖g‖pL∞(Σ−) vol(Ω) ωpd[(
v1 +

v0

2

)d
−
(
v0

2

)d]p
,

where ωd is the volume of the unit ball of IRd. At this point, using the
classical results of regularity for the Poisson equation, we get:

‖ϕ1
α‖L∞(IRt;W 2,p(Ω)) ≤ Cp(Ω) (‖ϕ0‖L∞(IRt;W 2−1/p,p(∂Ω)) + ‖ρα‖L∞(IRt;Lp(Ω)))

≤ Cp(Ω) (‖ϕ0‖L∞(IRt;W 2−1/p,p(∂Ω)) + vol(Ω)1/p

‖g‖L∞(IRt×Σ−) ωd

[(
v1 +

v0

2

)d
−
(
v0

2

)d]
)

= C1

(80)

Therefore we choose:

C1 = Cp(Ω) (‖ϕ0‖L∞(IRt;W 2−1/p,p(∂Ω)) + vol(Ω)1/p · ‖g‖L∞(IRt×Σ−)

ωd

[(
v1 +

v0

2

)d
−
(
v0

2

)d]
), (81)
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in order that ϕ1
α satisfies (69). Finally, differentiating (77) with respect to t

and using the equation of continuity, we obtain:




∆x∂tϕ
1
α = ∂tρα(t) = −∇x · jα, x ∈ Ω

∂tϕ
1
α(t, x) = ∂tϕ0(t, x), x ∈ ∂Ω,

(82)

with jα =
∫
vfα(t, x, v)dv. We observe that:

‖∇x · jα‖L∞(IRt;W−1,p(Ω))

≤ ‖jα‖L∞(IRt;Lp(Ω))

≤ ‖g‖L∞(IRt×Σ−) vol(Ω)1/p (v1 + v0/2)

ωd

[(
v1 +

v0

2

)d
−
(
v0

2

)d]

which yields:

‖∂tϕ1
α‖L∞(IRt;W 1,p(Ω)) ≤ Cp(Ω) (‖∂tϕ0‖L∞(IRt;W 1−1/p,p(∂Ω)) + vol(Ω)1/p ωd

‖g‖L∞(IRt×Σ−)

[(
v1 +

v0

2

)d
−
(
v0

2

)d] (
v1 +

v0

2

)
).

Therefore we choose:

C2 = Cp(Ω) (‖∂tϕ0‖L∞(IRt;W 1−1/p,p(∂Ω)) + vol(Ω)1/p ‖g‖L∞(IRt×Σ−)

ωd

[(
v1 +

v0

2

)d
−
(
v0

2

)d] (
v1 +

v0

2

)
). (83)

We next claim that (71) holds. Indeed there is a Sobolev constant Cs(Ω)
such that:

‖∇xϕ
1
α‖C0(Ω) ≤ Cs(Ω) · ‖∇xϕ

1
α‖W 1,p(Ω)

≤ Cs(Ω) · ‖ϕ1
α‖W 2,p(Ω)

≤ Cs(Ω)Cp(Ω) · (‖ϕ0‖L∞(IRt;W 2−1/p,p(∂Ω)) + vol(Ω)1/p

‖g‖L∞(IRt×Σ−)

[(
v1 +

v0

2

)d
−
(
v0

2

)d]
ωd)

(84)

This estimates leads to the conditions on the data which allow to obtain our
existence result.
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Assumption
From now on we assume that data are small enough in order the following
condition is satisfied:

‖ϕ0‖L∞(IRt;W 2−1/p,p(∂Ω)) + vol(Ω)1/p · ‖g‖L∞(IRt×Σ−)

ωd ·
[(
v1 +

v0

2

)d
−
(
v0

2

)d]
≤ |v0|2

4 · Cs(Ω) · Cp(Ω) · δ(Ω)
. (85)

We summarized the results we have obtained above in:

Lemma 5 Under the assumption (85) with C1 and C2 given by (81), (83),
F maps X into itself.

Step 2 Continuity.

We work with the topology of C0(IRt;C
1(Ω)) defined by the norm:

|ϕ| = ‖ϕ‖L∞ + ‖∇xϕ‖L∞ . (86)

Let (ϕn)n≥1 ⊂ X be a sequence ϕn → ϕ in C0(IRt;C
1(Ω)). By the continuity

of Rα, we also have Rαϕn → Rαϕ in C0(IRt;C
1(Ω)). Let fn,α be the weak

solutions of the modified Vlasov equation which corresponds to the field
∇xRαϕn. Obviously, we have the estimate:

‖fn,α‖L∞(IRt×Ω×IRdv) ≤ ‖g‖L∞(IRt×Σ−).

By standard compactness results, we can extract a subsequence of (fn,α)n≥1

such that:
fn,α ⇀ fα in L∞(IRt × Ω× IRd

v), weak ? . (87)

Using the weak formulation, for all function θ ∈ V we have :
∫ T

0

∫

Ω

∫

IRdv

fn,α(t, x, v)(−α · θ + ∂tθ + v · ∇xθ +∇xRαϕn · ∇vθ)dvdxdt =

=
∫ T

0

∫

Σ−
v · ν(x) · g(t, x, v) · θ(t, x, v)dvdσdt

and we conclude that fα is a weak solution of the modified Vlasov equation
which correspond to the field ∇xRαϕ ∈ C0(IRt;C

1(Ω)):
∫ T

0

∫

Ω

∫

IRdv

fα(t, x, v)(−α · θ + ∂tθ + v · ∇xθ +∇xRαϕ · ∇vθ)dvdxdt =

=
∫ T

0

∫

Σ−
v · ν(x) · g(t, x, v) · θ(t, x, v)dvdσdt
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Now, using Lemma 2 , we deduce that fα is the mild solution for the modified
Vlasov equation which correspond to the field ∇xRαϕ ∈ C0(IRt;C

1(Ω)):

< fα, θ > = −
∫ T

0

∫

Σ−

∫ ταo

t
v · ν(x) · g(t, x, v)

· θ(s,Xα(s;x, v, t), Vα(s; x, v, t)) · e−α(s−t)dsdvdσdt. (88)

Since the limit is unique, the whole sequence converges weakly:

fn,α ⇀ fα weak ? in L∞(IRt × Ω× IRd
v).

Furthermore, since fn,α have compact support in velocity, we have:

ρn,α ⇀ ρα weak ? in L∞(IRt × Ω),

which yields:

ρn,α ⇀ ρα weak ? in Lr(IRt × Ω).

Therefore we have:

F(ϕn)(t) ⇀ F(ϕ)(t) weak ? in W 2,r(Ω), a.e.t ∈ IRt.

Since (F(ϕn))n≥1 is compact in C0(IRt;C
1(Ω)) ( because X is compact), the

convergence holds in C0(IRt;C
1(Ω)).

Step 3: Passing to the limit for α→ 0.
At this point, we may apply the Schauder theorem, which yields an electric
potential ϕα ∈ X and a density fα such that:

∫ T

0

∫

Ω

∫

IRdv

fα(t, x, v)(−α · θ + ∂tθ + v · ∇xθ +∇xRαϕα · ∇vθ)dvdxdt =

=
∫ T

0

∫

Σ−
v · ν(x) · g(t, x, v) · θ(t, x, v)dvdσdt, (89)

for test function θ ∈ V and:

∆xϕα =
∫

IRdv

fα(t, x, v)dv, (t, x) ∈ IRt × Ω, (90)

ϕα = ϕ0, (t, x) ∈ IRt × ∂Ω.
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In order to complete the proof, we have to pass to the limit for α→ 0. Since
(ϕα)α>0 ⊂ X which is compact in C0(IRt;C

1(Ω)), we may assume, extracting
a subsequence if necessary, that (ϕαk)k≥1 converges:

ϕαk → ϕ in C0(IRt × Ω), (91)

∇xϕαk → ∇xϕ in C0(IRt × Ω).

We have the same convergences for the regularized potentials:

Rαkϕαk → ϕ in C0(IRt × Ω),

∇xRαkϕαk → ∇xϕ in C0(IRt × Ω). (92)

Indeed, because the extension operator · is continuous, for all (t, x) ∈ (IRt×Ω
we have:

|Rαkϕαk(t, x)− ϕ(t, x)| = |Rαkϕαk(t, x)− ϕ(t, x)|
= |

∫
ζαk(x− y)[ ϕαk(t, y)− ϕ(t, x) ]dy |

≤ |
∫
ζαk(x− y)[ ϕαk(t, y)− {ϕ(t, y) ] dy |

+ |
∫
ζαk(x− y)[ ϕ(t, y)− ϕ(t, x) ] dy |

≤ ‖ ϕαk(t)− ϕ(t) ‖C0(IRd)

+ sup
|x−y|≤αk

| ϕ(t, y)− ϕ(t, x) | −→ 0. (93)

The second convergence (92) follows in the same way.
Obviously, we have:

αk

∫ T

0

∫

Ω

∫

IRdv

fαk(t, x, v) · θ(t, x, v)dvdxdt→ 0,

(94)

and therefore we conclude that fαk ⇀ f weak ? in L∞(IRt×Ω× IRd
v), where

f is a weak solution of the Vlasov equation which corresponds to the field
∇xϕ ( we pass to the limit for αk → 0 in (89)):

∫ T

0

∫

Ω

∫

IRdv

f(t, x, v)(∂tθ + v · ∇xθ +∇xϕ · ∇vθ)dvdxdt =

=
∫ T

0

∫

Σ−
v · ν(x) · g(t, x, v) · θ(t, x, v)dvdσdt, (95)
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for test function θ ∈ V . We have to show that (f, ϕ) verifies the Poisson
equation. Because (suppfαk) are bounded ( uniformly with respect to k ) we
have:

ραk ⇀ ρ =
∫

IRdv

f(t, x, v)dv, weak ? in L∞(IRt × Ω).

Therefore passing to the limit in the sense of distribution in (90) gives ∆xϕ =
ρ. In view of the convergence (91) we also have ϕ = ϕ0 on ∂Ω. We summarize
our results in the following theorem:

Theorem 3 Let g and ϕ0 be T periodic functions, Ω a bounded subset of IRd

with ∂Ω ∈ C1, p > d+ 1 and 0 < v0 < v1 such as:

supp(g) ⊂ {(t, x, v) | t ∈ IRt, x ∈ ∂Ω, 0 < v0 ≤ −v · ν(x) ≤ |v|l ≤ v1},

g ∈ L∞(IRt × Σ−),

ϕ0 ∈ L∞(IRt;W
2−1/p,p(∂Ω)),

∂tϕ0 ∈ L∞(IRt;W
1−1/p,p(∂Ω)),

‖ϕ0‖L∞(IRt;W 2−1/p,p(∂Ω)) +K‖g‖L∞(IRt×Σ−) ≤M,

with :

K = vol(Ω)1/p ωd

[(
v1 +

v0

2

)d
−
(
v0

2

)d]
, M =

|v0|2
4 Cs(Ω) Cp(Ω) δ(Ω)

,

where ωd is the volume of the unit ball of IRd, Cp(Ω) is given by (80) ( regu-
larity result for the Poisson problem ) and Cs(Ω) is given by (84) ( Sobolev
embedding ). Then, the system (68) has at least one weak periodic solution.
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