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Abstract

The subject matter of this paper deals with asymptotic behaviour for

quasi-static variational inequalities, with respect to physical parameters like

friction coefficient, compliance coefficient, etc. By convex duality the quasi-

static problems can be recast into standard evolution problems, whose study

rely on well-known methods. In this framework the stability with respect to

small friction coefficients reduces to long time behaviour for evolution prob-

lems.
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1 Introduction

Many problems in mechanics are formulated in terms of variational inequalities.

We deal with such models when studying obstacle problems, visco-plastic Bingham

fluids, elasto-plastic torsion problems, Signorini or contact problems, Coulomb fric-

tion law, etc. The solution of these models depend on some physical parameters,

like friction coefficient, torsion, compliance coefficient. A natural question concerns

the stability of the solutions with respect to these coefficients. For example we want

to identify the limit of solutions uε when the physical parameter, let say ε > 0

becomes very small. In that case if ε ∼ 0, then uε behaves like the limit solution

u0 = limε↘0 uε. But in many situations the approximation uε ∼ u0 is not satisfac-

tory; we also need to compute the first order corrections in the formal expansion

uε = u0 + εu1 + εo(ε).

In other words we have to compute the limit limε↘0(uε − u0)/ε.

A simplified friction model was introduced in [8] (see also [7], [9]). Let Ω ⊂ RN ,

N ≥ 1 be any bounded open set with smooth boundary and V = H1(Ω) endowed

with the norm ‖v‖ =
(∫

Ω
|v(x)|2 + |∇v|2 dx

)1/2
for any v ∈ V . For any ε > 0

consider the variational inequality

uε ∈ V :

∫
Ω

{uε(v − uε) +∇uε · (∇v −∇uε)} dx + ε

∫
∂Ω

{|v| − |uε|} dS(x) (1)

≥
∫

Ω

F(v − uε) dx, ∀ v ∈ V

where F ∈ L2(Ω). Surely the continuous linear form v ∈ V →
∫

Ω
Fv dx can be

written as the scalar product v →
∫

Ω
{Fv +∇F · ∇v} dx for some element F ∈ V .

Here ε is a small parameter corresponding to the friction coefficient. Clearly the

above problem can be formulated in abstract form: if (H, (·, ·)) is a Hilbert space

find uε ∈ H such that

a(uε, v − uε) + εj(v)− εj(uε) ≥ (F, v − uε), ∀ v ∈ H. (2)
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where a : H×H → R is a bilinear coercive form, j : H →]−∞,+∞] is a proper, con-

vex, l.s.c. function on H and F ∈ H. Therefore for any ε > 0 Lions-Stampacchia’s

theorem ensures the well-posedness of (2) cf. [8], [12]. We inquire about the asymp-

totic behaviour of the family of solutions (uε)ε>0 for small ε. For example we are

looking for expansion like

uε = u0 + εu1 + ε2u2 + ... (3)

Plugging this ansatz in (2) yields

a(u0+εu1+..., v−u0−εu1−...)+εj(v)−εj(u0+εu1+...) ≥ (F, v−u0−εu1−...) (4)

and passing, at least formally, to the limit when ε↘ 0 leads to

u0 ∈ H : a(u0, v − u0) ≥ (F, v − u0), ∀ v ∈ H

which is equivalent to

u0 ∈ H : a(u0, v) = (F, v), ∀ v ∈ H. (5)

Not surprising, the dominant term in (3) solves the elliptic problem (5). The com-

putation of the first order correction term u1 follows by combining (4), (5). We

obtain

εa(u1 + εu2 + ..., v − u0 − εu1 − ...) + εj(v)− εj(u0 + εu1 + ...) ≥ 0.

Simplifying by ε and replacing v by u0 + εv yield

a(u1 + εu2 + ..., ε(v − u1)− ε2u2 − ...) + j(u0 + εv)− j(u0 + εu1 + ε2u2 + ...) ≥ 0

which is equivalent to

a(u1 + εu2 + ..., v − u1 − εu2 − ...) +
j(u0 + εv)− j(u0 + εu1 + ε2u2 + ...)

ε
≥ 0.

Again, a formal passing to the limit when ε↘ 0 leads to

a(u1, v − u1) + (∂j(u0), v − u1) ≥ 0, ∀ v ∈ H.
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If we denote by A : H → H the linear operator associated to the bilinear form

a(·, ·), the previous inequality says that u1 belongs to the closed convex set K =

−A−1∂j(u0). Actually it is not very hard to see that u1 solves the variational

problem

u1 ∈ K : a(u1, v − u1) ≥ 0, ∀ v ∈ K. (6)

Surely, once we have determined the terms u0, u1, ... we need to check the validity of

the asymptotic expansion (3), for example that uε−u0 = o(ε), uε−u0−εu1 = εo(ε),

etc. Such kind of results have been obtained in [4].

Here we intend to perform similar asymptotic analysis for quasistatic variational

inequalities associated to (1): find uε ∈ W 1,p
loc (R+;V ) such that

uε(0) = u0
ε

uε(t) ∈ V :
∫

Ω
{uε(t)(v − u̇ε(t)) +∇uε · (∇v −∇u̇ε)} dx+ ε

∫
∂Ω
{|v| − |u̇ε|} dS(x)

≥
∫

Ω
{F (t)(v − u̇ε(t)) +∇F (t) · (∇v −∇u̇ε(t))} dx, ∀ v ∈ V

(7)

where F ∈ W 1,p
loc (R+;V ) for some p ∈]1,+∞]. Notice that by the inclusionW 1,p(0, T ;V ) ⊂

C(0, T ;V ) we have F, uε ∈ C(0, T ;V ) for any T > 0 and thus the variational in-

equality in (7) is meaningful for any t ∈ R+. The well-posedness of quasistatic

variational inequalities has been established in [10], [1], [2], [3], [11]. The existence

can be obtained by using Euler backward finite difference approximation. Taking as

usual v = 0 and v = 2u̇ε(t) in (7) we obtain that (7) is equivalent to
uε(0) = u0

ε, uε(t) ∈ V, ∀ t ∈ R+∫
Ω
{uε(t)u̇ε(t) +∇uε · ∇u̇ε} dx+ ε

∫
∂Ω
|u̇ε| dS(x) =

∫
Ω
{F (t)u̇ε(t) +∇F (t) · ∇u̇ε(t)} dx∫

Ω
{uε(t)v +∇uε · ∇v} dx+ ε

∫
∂Ω
|v| dS(x) ≥

∫
Ω
{F (t)v +∇F (t) · ∇v} dx, ∀ v ∈ V.

In particular the initial condition u0
ε should satisfy for any v ∈ V∫

Ω

{u0
ε(x)v(x) +∇u0

ε · ∇v} dx+ ε

∫
∂Ω

|v(x)| dS(x) ≥
∫

Ω

{F0(x)v(x) +∇F0 · ∇v} dx.

(8)

It is possible to transform the quasistatic problem (7) into a standard evolution
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problem. Indeed, the problem (7) is equivalent to

A

(
uε(t)− u0(t)

ε

)
+ ∂j(u̇ε(t)) 3 0, t ∈ R+

and thus to [
u̇ε(t),−A

(
uε(t)− u0(t)

ε

)]
∈ ∂j, t ∈ R+. (9)

For simplicity we assume that the function j is even i.e.,

D(j) = −D(j), j(v) = j(−v) for any v ∈ D(j). (10)

Observe that this is the case of the model (1). Under the assumption (10) it is easily

seen that ∂j is odd : D(∂j) = −D(∂j) and ∂j(−x) = −∂j(x) for any x ∈ D(∂j)

i.e.,

[x, y] ∈ ∂j iff [−x,−y] ∈ ∂j.

Therefore (9) becomes [
−u̇ε(t), A

(
uε(t)− u0(t)

ε

)]
∈ ∂j.

Consider now the conjugate function j? by convexity duality

j?(w) = sup
v∈H
{(w, v)− j(v)}, w ∈ H.

It is well known [6] that j? is proper, convex, l.s.c. and ∂j? = (∂j)−1. Therefore we

obtain [
A

(
uε(t)− u0(t)

ε

)
,−u̇ε(t)

]
∈ (∂j)−1 = ∂j?

saying that uε solves the evolution problem

duε

dt
+ ∂j?A

(
uε(t)− u0(t)

ε

)
3 0, t ∈ R+.

Introducing the notation yε = uε(t)−u0(t)
ε

finally we deduce that the quasistatic prob-

lem (7) can be written
yε(0) =

u0
ε − u0

0

ε
=: y0

ε

ε
dyε

dt
+ ∂j?Ayε(t) 3 −

du0

dt
, t ∈ R+.

(11)
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The well-posedness of (11) comes by standard results on evolution problems associ-

ated to maximal monotone operators [5]. We use the well-known result [5] pp. 72,

which adapts easily to our case, due to the ellipticity of the operator A.

Theorem 1.1 (Brezis) Let ϕ : H →]−∞,+∞] a proper, convex, l.s.c. function on

a Hilbert space and f ∈ L2(0, T ;H). Then for any u0 ∈ D(ϕ) = D(∂ϕ) the Cauchy

problem  u(0) = u0

du

dt
+ ∂ϕ(u(t)) 3 f(t), t ∈ [0, T [

has a unique strong solution u ∈ C(0, T ;H) such that

i) ϕ ◦ u ∈ L1(0, T ;H)

ii) ϕ ◦ u is absolutely continuous on [δ, T ] for any δ ∈]0, T [

iii)
√
t
du

dt
∈ L2(0, T ;H).

Moreover, if u0 ∈ D(ϕ) then

iv) ϕ ◦ u is absolutely continuous on [0, T ]

v)
du

dt
∈ L2(0, T ;H).

In the case of the simplified friction model, the convex function is given by

J(v) =

∫
∂Ω

|v(x)| dS(x), v ∈ V.

Since J(v) ≥ 0 = J(0) for any v ∈ V we have 0 ∈ ∂j(0). We consider the non empty

closed convex set

D0 = ∂J(0) = {w ∈ V :

∫
∂Ω

|v(x)| dS(x) ≥
∫

Ω

{w(x)v(x)+∇w ·∇v} dx, ∀ v ∈ V }.

Notice that J is homogeneous and we check easily that in this case the conjugate

function J? is given by

J?(w) =

 0, if w ∈ D0

+∞, if w ∈ V \D0

and thus D(J?) = D0. Observing that J is a seminorm we deduce immediately that

∂J(v) ⊂ ∂J(0) for any v ∈ V implying that

D(∂J?) = D((∂J)−1) = R(∂J) = ∪v∈V ∂J(v) = ∂J(0) = D0.

6



Applying Theorem 1.1 to the simplified friction model (with A = Id) we obtain

Proposition 1.1 For any F ∈ W 1,2
loc (R+;V ), ε > 0 and initial condition u0

ε such

that u0
ε−F (0)

ε
∈ D0 there is a unique solution uε ∈ W 1,2

loc (R+;V ) satisfying∫ T

0

‖u̇ε(t)‖2 dt ≤
∫ T

0

‖Ḟ (t)‖2 dt, ∀ T > 0. (12)

Proof. We only justify the estimate (12). Multiplying (11) by ẏε one gets after

integration on [0, T ]

ε

∫ T

0

‖ẏε(t)‖2 dt+ J?(yε(T ))− J?(yε(0)) = −
∫ T

0

(Ḟ (t), ẏε(t)) dt.

By the hypothesis y0
ε = u0

ε−F (0)
ε
∈ D0 = D(J?) and thus

ε

∫ T

0

‖ẏε(t)‖2 dt = −
∫ T

0

(Ḟ (t), ẏε(t)) dt

implying that ∫ T

0

(u̇ε(t), u̇ε(t)− Ḟ (t)) dt = 0.

Our estimate comes easily by Cauchy-Schwarz inequality.

Remark 1.1 Notice that the hypothesis on the initial condition in Proposition 1.1

coincides with (8), since D0 = −D0.

2 Asymptotic behaviour of the simplified friction

model

We investigate the behaviour of the simplified friction model (7) for small values

of ε > 0. Observe that the convex function J is a bounded seminorm on V . Indeed,

by trace theorem, we have

J(v) = ‖v‖L1(∂Ω ≤ C(Ω)‖v‖, ∀ v ∈ V.

In particular we have for any v ∈ V

∂J(v) ⊂ ∂J(0) ⊂ {w ∈ V : ‖w‖ ≤ C(Ω)}.
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2.1 A priori estimates

We establish several uniform estimates with respect to the parameter ε > 0. It

is easily seen that (uε(t))ε>0 concerges towards F (t) in V uniformly in time. Since

we want to determine the first order term in asymptotic expansion like (3) we need

to estimate the oscillations yε = uε−F
ε

of uε around the limit function F .

Proposition 2.1 Let F ∈ W 1,p
loc (R+;V ) and u0

ε ∈ V such that u0
ε−F (0)

ε
∈ D0. Then

we have

i) supε>0

∥∥uε−F
ε

∥∥
C(R+;V )

≤ C(Ω).

ii) supε>0 ‖u̇ε‖Lp(0,T ;V ) ≤ ‖Ḟ‖Lp(0,T ;V ), ∀ T > 0.

In particular if F̈ = 0 then

iii) supε>0

∥∥∥∥√tε (u̇ε − Ḟ )

∥∥∥∥
L2(0,T ;V )

≤
√

5
2
C(Ω).

Proof. Here (·, ·) stands for the standard scalar product of V . Using (7) one gets

(uε(t)− F (t), v − u̇ε(t)) + εJ(v)− εJ(u̇ε(t)) ≥ 0, ∀ v ∈ V.

Taking v such that v − u̇ε(t) = F (t)− uε(t) we obtain

‖uε(t)− F (t)‖2 ≤ εJ(u̇ε(t) + F (t)− uε(t))− εJ(u̇ε(t))

≤ εJ(F (t)− uε(t))

≤ εC(Ω)‖uε(t)− F (t)‖

saying that ∥∥∥∥uε − F
ε

∥∥∥∥
C(R+;V )

≤ C(Ω), ∀ ε > 0.

For a.a. t > 0 and h > 0 we have by (7) written in t+ h with v = 0

(uε(t+ h), u̇ε(t+ h)) ≤ (F (t+ h), u̇ε(t+ h))− εJ(u̇ε(t+ h)). (13)

Using now (7) in t with v = u̇ε(t) + u̇ε(t+ h) yields

−(uε(t), u̇ε(t+ h)) ≤ −(F (t), u̇ε(t+ h)) + εJ(u̇ε(t) + u̇ε(t+ h))− εJ(u̇ε(t)). (14)
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Combining (13), (14) leads to

(uε(t+ h)− uε(t), u̇ε(t+ h)) ≤ (F (t+ h)− F (t), u̇ε(t+ h))

+ ε {J(u̇ε(t) + u̇ε(t+ h))− J(u̇ε(t))− J(u̇ε(t+ h))}

≤ (F (t+ h)− F (t), u̇ε(t+ h))

since J is a seminorm. We deduce that(
uε(t+ h)− uε(t)

h
, u̇ε(t+ h)

)
≤
∥∥∥∥F (t+ h)− F (t)

h

∥∥∥∥ ‖u̇ε(t+ h)‖

which implies by letting h↘ 0

‖u̇ε(t)‖ ≤ ‖Ḟ (t)‖, for a.a. t > 0

and therefore

sup
ε>0
‖u̇ε‖Lp(0,T ;V ) ≤ ‖Ḟ‖Lp(0,T ;V ), ∀ T > 0.

Assume now that F̈ = 0, let say F (t) = F (0) + tG, F (0), G ∈ V . By the previous

computations we know that

‖u̇ε(t)‖ ≤ ‖Ḟ (t)‖ = ‖G‖, for a.a. t > 0

and thus the functions t→ uε(t) and t→ J(uε(t)) are Lipschitz continuous. Indeed

|J(uε(t+h))−J(uε(t))| ≤ J(uε(t+h)−uε(t)) ≤ C(Ω)‖uε(t+h)−uε(t)‖ ≤ C(Ω)|h|‖G‖.

Therefore in any differentiability point t0 of uε and J ◦ uε we have

dJ(uε)

dt
|t=t0 =

(
q,
duε

dt
|t=t0

)
, ∀ q ∈ ∂J(uε(t0)).

We also write d
dt
J(uε) = (∂J(uε(t)), u̇ε(t)). We justify the last statement of Propo-

sition 2.1 only for smooth solutions (uε)ε>0. The general result follows by standard

regularization arguments and we skip them. Observe that (7) is equivalent to

uε(t)− F (t) + ε∂J(u̇ε(t)) 3 0, t ∈ R+. (15)
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We intend to multiply (15) by üε = üε − F̈ . For this notice that

d

dt

(
J(u̇ε)− J(Ḟ )

)
= (∂J(u̇ε(t)), üε(t)). (16)

Putting together (15), (16) implies

(uε(t)− F (t), üε − F̈ ) + ε
d

dt

(
J(u̇ε)− J(Ḟ )

)
= 0 (17)

and we obtain

d

dt
(uε(t)− F (t), u̇ε(t)− Ḟ (t)) + ε

d

dt

(
J(u̇ε)− J(Ḟ )

)
= ‖u̇ε(t)− Ḟ (t)‖2. (18)

Taking v = Ḟ (t) in (7) we deduce that

−(uε(t)− F (t), u̇ε(t)− Ḟ (t))− ε
{
J(u̇ε(t))− J(Ḟ (t))

}
≥ 0, t ∈ R+.

We consider the non negative function bε : R+ → R+ given by

bε(t) = −(uε(t)− F (t), u̇ε(t)− Ḟ (t))− ε
{
J(u̇ε(t))− J(Ḟ (t))

}
, t ∈ R+

and therefore (18) becomes

‖u̇ε(t)− Ḟ (t)‖2 + ḃε(t) = 0, t ∈ R+. (19)

Let us consider T > 0 and integrate over [s, T ] for any s ∈ [0, T ]∫ T

s

‖u̇ε(t)− Ḟ (t)‖2 dt = bε(s)− bε(T ) ≤ bε(s).

Integrating now for s ∈ [0, T ] yields∫ T

0

t ‖u̇ε(t)− Ḟ (t)‖2 dt ≤ 1

2
‖u0

ε − F (0)‖2 − ε
∫ T

0

{J(u̇ε(t))− J(Ḟ (t))} dt

≤ 1

2
(C(Ω)ε)2 − ε

∫ T

0

{J(u̇ε(t))− J(Ḟ (t))} dt. (20)

For estimating the last term, take any element q in ∂J(Ḟ ) and notice that∫ T

0

{J(u̇ε(t))− J(Ḟ (t))} dt ≥
∫ T

0

(q, u̇ε(t)− Ḟ (t)) dt

= (q, uε(T )− F (T ))− (q, u0
ε − F (0))

≥ −2C(Ω)2ε (21)
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since ‖q‖ ≤ C(Ω) (J being Lipschitz continuous of constant C(Ω)) and ‖uε −

F‖C(R+;V ) ≤ C(Ω)ε. Finally combining (20), (21) we deduce for any T > 0∫ T

0

t ‖u̇ε(t)− Ḟ (t)‖2 dt ≤ 5

2
C(Ω)2ε2

saying that ‖
√
t (u̇ε − Ḟ )/ε‖L2(R+;V ) ≤

√
5
2
C(Ω).

2.2 Limit of first order fluctuations

Based on the previous estimates we deduce that limε↘0 uε = F in C(R+;V )

and ((uε − F )/ε)ε>0 is bounded in L∞(R+;V ). Therefore there is a sequence (εk)k

converging towards 0 and a function y ∈ L∞(R+;V ) such that

yεk
:=

uεk
− F
εk

⇀ y weakly ? in L∞(R+;V ) and weakly in L2
loc(R+;V ).

Since (
√
t ẏεk

)k is bounded in L2(R+;V ) we may assume that
√
t ẏεk

⇀
√
t z weakly

in L2(R+;V ). It is easily seen that z coincides with the distribution derivative of y.

For any t ∈ R+ we introduce the non empty closed convex set K(t) = −∂J(Ḟ (t)).

Theorem 2.1 Assume that F (t) = F0 + tG with F0, G ∈ V and that (u0
ε − F0)/ε ∈

D0. Then there is a sequence (εk)k converging towards 0 and an element y ∈ −∂J(G)

such that

lim
k→+∞

uεk
− F
εk

= y weakly ? in L∞(R+;V ) and strongly in L2
loc(]0,+∞[;V ).

Proof. Take η ∈ C1
c (]0,+∞[; R) a non negative function. Multiplying (7) by η(t)

one gets∫
R+

(
uεk

(t)− F (t)

εk

, v − u̇εk
(t)

)
η(t) dt+

∫
R+

J(v)η(t) dt ≥
∫

R+

J(u̇εk
(t))η(t) dt. (22)
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Since η has compact support in ]0,+∞[, one gets by Proposition 2.1∣∣∣∣∫
R+

{J(u̇ε(t))− J(Ḟ )}η(t) dt

∣∣∣∣ ≤ C(Ω)

∫
R+

‖u̇ε(t)− Ḟ‖η(t) dt

≤ C(Ω)‖
√
t(u̇ε − Ḟ )‖L2(R+;V )

∥∥∥∥ η√t
∥∥∥∥

L2(R+;R)

≤
√

5

2
ε C(Ω)2

∥∥∥∥ η√t
∥∥∥∥

L2(R+;R)

and therefore we have the convergence

lim
ε↘0

∫
R+

J(u̇ε(t))η(t) dt =

∫
R+

J(Ḟ )η(t) dt.

Similarly, combining weak and strong convergences one gets∫
R+

(yεk
(t), v − u̇εk

(t))η(t) dt =

∫
R+

(yεk
(t), v − Ḟ )η(t) dt

+

∫
R+

(yεk
(t), Ḟ − u̇εk

(t))η(t) dt

→
∫

R+

(y(t), v − Ḟ )η(t) dt, as k → +∞.

Passing to the limit in (22) when k → +∞ yields∫
R+

{(y(t), v − Ḟ ) + J(v)− J(Ḟ )}η(t) dt ≥ 0

for any non negative function η ∈ C1
c (]0,+∞[; R) and therefore one gets for a.a.

t > 0

(y(t), v − Ḟ ) + J(v)− J(Ḟ ) ≥ 0, v ∈ V (23)

saying that y(t) ∈ K for a.a. t > 0. Observe that the set K does not depend on t

and we have K = −∂J(G). Take v an arbitrary element of K, [Ḟ ,−v] ∈ ∂J . By

(7) we know that yεk
+ ∂J(u̇εk

(t)) 3 0 which is equivalent to [u̇εk
(t),−yεk

(t)] ∈ ∂J .

Therefore by the monotonicity of ∂J one gets

(u̇εk
(t)− Ḟ ,−(yεk

(t)− v)) ≥ 0

and after multiplication by ε−1
k η ≥ 0, η ∈ Cc(]0,+∞[; R) and integration on R+ we

deduce ∫
R+

(ẏεk
(t), v − yεk

(t))η(t) dt ≥ 0. (24)
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Observe that (yεk
)k, (ẏεk

)k are bounded in L2(supp(η);V ) and thus (after extraction

eventually) we have the convergence limk→+∞ yεk
= y strongly in L2(supp(η);V ).

Finally we deduce easily that∫
R+

(ẏ(t), v − y(t))η(t) dt ≥ 0

implying that

y(t) ∈ K : (ẏ(t), v − y(t)) ≥ 0, for a.a. t > 0, ∀ v ∈ K.

The previous variational inequality says that for any v ∈ K the function t →
1
2
‖y(t)− v‖2 is non increasing i.e.,

1

2
‖y(t+ h)− v‖2 ≤ 1

2
‖y(t)− v‖2, t > 0, h > 0.

Taking v = y(t) ∈ K one gets y(t + h) = y(t), t, h > 0 and thus y(·) is a constant

function.

Actually we can show that limε↘0 yε(t) = y strongly in V and uniformly for

t ∈ [δ,+∞[ for any δ > 0. The proof relies on long time behaviour of semigroup

generated by maximal monotone operators. Indeed, by (11) we know that the

simplified friction model (7) is equivalent to
ε
dyε

dt
+ ∂J?(yε(t)) 3 −G, t ∈ R+

yε(0) =
u0

ε − F0

ε
∈ D0.

(25)

We introduce the fast variable s = t
ε

and the new unknown zε(s) = yε(t). We obtain

the problem 
dzε

ds
+ ∂J?(zε(s)) 3 −G, s ∈ R+

zε(0) =
u0

ε − F0

ε
=: z0

ε ∈ D0.
(26)

Assume that (z0
ε)ε>0 converges as ε ↘ 0 to some element z0 ∈ D0 = D0 and let

us consider z ∈ C(R+;V ) the unique strong solution of (26) corresponding to the

initial condition z0. Using the monotonicity of ∂J? we easily check that

‖zε(s)− z(s)‖ ≤ ‖z0
ε − z0‖ → 0 as ε↘ 0
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and therefore we can write

‖yε(t)− y‖ ≤ ‖zε(t/ε)− z(t/ε)‖+ ‖z(t/ε)− y‖ ≤ ‖z0
ε − z0‖+ ‖z(t/ε)− y‖

from which we deduce that limε↘0 yε(t) = y strongly in V and uniformly for t ∈

[δ,+∞[ for any δ > 0 provided that z converges for large time towards y. We are

done if we justify such a long time behaviour for z. This is a direct consequence of

well-known results concerning the stability theory of semigroups. More precisely we

appeal to Baillon theorem and Bruck comparison result. For the sake of completeness

we recall here these results.

Theorem 2.2 (Baillon) Let A : D(A) ⊂ H → H be a maximal monotone and odd

operator (i.e., D(A) = −D(A) and A(−x) = {−y : y ∈ Ax}). We denote by

(S(t))t≥0 the semigroup generated by −A. Then A−10 6= ∅ and for any x ∈ D(A)

there is an element y ∈ A−10 such that

i) limt→+∞ ProjA−10S(t)x = y, strongly in H.

ii) limt→+∞ σ(t)x = y, strongly in H, σ(t)x = 1
t

∫ t

0
S(s)x ds, t > 0.

Theorem 2.3 (Bruck) Assume that the proper, convex, l.s.c. function ϕ : H →

]−∞,+∞] has a minimum point. Let us denote by (S(t))t≥0 the semigroup generated

by −∂ϕ. Then for any x ∈ D(∂ϕ) we have

lim
t→+∞

‖S(t)x− σ(t)x‖ = 0, where σ(t)x =
1

t

∫ t

0

S(s)x ds, t > 0.

Based on the previous results we obtain

Theorem 2.4 Assume that F (t) = F0 + tG, with F0, G ∈ V and that the family

(ε−1(u0
ε − F0))ε>0 ⊂ D0 converges as ε ↘ 0 to some element z0 ∈ D0 = D0. If

G ∈ D⊥0 then there is y ∈ −∂J(G) such that

lim
ε↘0

uε(t)− (F0 + tG)

ε
= y, uniformly for t ∈ [δ,+∞[, ∀ δ > 0.
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Proof. Let z be the unique solution of
dz

ds
+ ∂J?(z(s)) 3 −G, s ∈ R+

z(0) = z0 ∈ D0

which is equivalent to 
dz

ds
+ ∂φG(z(s)) 3 0, s ∈ R+

z(0) = z0 ∈ D0

where φG(z) = J?(z) + (G, z). It is easily seen that φG is even (since J? is even and

G ∈ D⊥0 ). Therefore ∂φG is odd and we have (∂φG)−10 = −∂J(G) 6= ∅. We deduce

by Baillon theorem and Bruck comparison result that there is a minimum point y

for φG, y ∈ −∂J(G) such that

lim
s→+∞

Proj−∂J(G)z(s) = lim
s→+∞

z(s) = lim
s→+∞

1

s

∫ s

0

z(τ) dτ = y.

Finally one gets

‖yε(t)− y‖ ≤ ‖zε(t/ε)− z(t/ε)‖+ ‖z(t/ε)− y‖ ≤ ‖z0
ε − z0‖+ ‖z(t/ε)− y‖ → 0

as ε↘ 0, uniformly for t ∈ [δ,+∞[, for any δ > 0.
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