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Abstract

We study a stationary 1 D Vlasov-Maxwell system which describes the

laser-plasma interaction. Three cases are analyzed : the classical case, the

quasi-relativistic case and the relativistic case. We prove the existence of

stationary solution and we establish estimates for the charge and current

densities.
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1 Introduction

We consider a population of relativistic electrons with mass m > 0 and charge

−e < 0. We denote by E(p), v(p) = ∇pE(p) the kinetic energy and the velocity
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associated to a given momentum p ∈ R3

E(p) = mc2

(√
1 +

|p|2
m2c2

− 1

)
, v(p) =

p

m
√

1 + |p|2
m2c2

,

where c is the speed of light. The electrons move under the action of an electro-

magnetic field verifying the Maxwell equations and their distribution function F =

F (t, x, p) satisfies the Vlasov equation. Recently a reduced 1D Vlasov-Maxwell sys-

tem was introduced for studying laser-plasma interactions. This model was studied

by Carrillo and Labrunie [5]. We distinguish three cases : the nonrelativistic model

NR, the quasi-relativistic model QR and the original fully relativistic model FR.

After introducing dimensionless unknowns and variables we obtain (see [5] for more

details)

∂tf +
p

γ1

∂xf −
(

E(t, x) +
A(t, x)

γ2

∂xA

)
∂pf = 0, (1)

∂2
t A− ∂2

xA = −ργ2(t, x)A(t, x), (2)

∂tE = j(t, x), (3)

∂xE = ρext(x)− ρ(t, x), (4)

where {ρ, ργ2 , j}(t, x) =
∫
R{1, 1

γ2
, p

γ1
}f(t, x, p) dp, γ1 = γ2 = 1 in the NR case,

γ1 = (1 + |p|2)1/2, γ2 = 1 in the QR case and γ1 = γ2 = (1 + |p|2 + |A(t, x)|2)1/2 in

the FR case. Here ρext is the density of a background population of ions which are

supposed at rest. We supplement these equations with initial conditions

f(0, x, p) = f0(x, p), (x, p) ∈ R2, (E, A, ∂tA)(0, x) = (E0, A0, A1)(x), x ∈ R. (5)

In [5] the authors investigated the existence of space periodic solutions and free-

space solutions for the system (1), (2), (3), (4), (5). They studied the existence and

uniqueness of weak solution in the NR and QR cases. The FR case is more delicate.

In this article we concentrate our attention on the stationary solutions of the system

(1), (2), (4) on the slab ]0, 1[ with boundary conditions. The same method applies

for the NR, QR and FR cases. We use the Schauder fixed point theorem. One of
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the key points is to obtain estimates for the charge and current densities. Our main

result is

Theorem 1.1 Assume that g0 ∈ L1(]0, +∞[) ∩ L∞(]0, +∞[), g1 ∈ L1(] −∞, 0[) ∩
L∞(]−∞, 0[), g0, g1 ≥ 0, ρext ∈ L∞(]0, 1[), ρext ≥ 0, ϕ0, ϕ1, A0, A1 ∈ R. Then, there

is a stationary solution (f ≥ 0, E, A) ∈ L1(]0, 1[×R)∩L∞(]0, 1[×R)×W 1,∞(]0, 1[)×
W 2,∞(]0, 1[) of

p

γ1

∂xf − (E(x) +
A(x)

γ2

A′(x))∂pf = 0, (x, p) ∈]0, 1[×R, (6)

f(x = 0, p > 0) = g0(p), f(x = 1, p < 0) = g1(p), (7)

E ′(x) = ρext(x)− ρ(x), x ∈]0, 1[,

∫ 1

0

E(x) dx = ϕ1 − ϕ0, (8)

−A′′(x) + ργ2(x)A(x) = 0, x ∈]0, 1[, A(0) = A0, A(1) = A1, (9)

where (ρ, ργ2) =
∫
R{1, 1

γ2
}f(·, p) dp. Moreover ρ belongs to L∞(]0, 1[) and we have

limR→+∞
∥∥∥
∫
|p|>R

f(·, p) dp
∥∥∥

L∞(]0,1[)
= 0.

The considered system provides particular measure solutions for the Vlasov-Maxwell

system in a very specific geometry, but at the price of nonlinearities that look

stronger. The analysis of the Cauchy problem for the Vlasov-Maxwell system (weak

solutions or classical solutions) can be dealt with by using different methods as done

by DiPerna and Lions [6], Glassey and Schaeffer [8], Glassey and Strauss [9], Klain-

erman and Staffilani [11], Bouchut, Golse and Pallard [4]. For applications (tube

discharges, cold plasma, solar wind, satellite ionization, thruster, ...) boundary con-

ditions have to be taken into account. The Vlasov-Maxwell initial-boundary value

problem was studied by Guo [10]. The three dimensional stationary Vlasov-Maxwell

system was analyzed by Poupaud [12]. Results for the time periodic case can be

found in [3].

The paper is organized as follows. In Section 2 we recall the notion of weak and

mild solutions for the Vlasov problem and several properties of such solutions. Some

technical proofs are postponed to the Appendix. In Section 3 we construct a fixed
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point application for the reduced 1 D Vlasov-Maxwell system and the existence of

weak solution follows by Schauder fixed point theorem. We investigate also the

propagation of the impulsion moments.

2 The Vlasov problem

In this section we assume that the fields E = E(x), A = A(x) are given and we

introduce the notions of mild solution (or solution by characteristics) and weak

solution for the stationary Vlasov equation

p

γ1

∂xf −
(

E(x) +
A(x)

γ2

A′(x)

)
∂pf = 0, (x, p) ∈]0, 1[×R, (10)

with the boundary conditions

f(x = 0, p > 0) = g0(p), f(x = 1, p < 0) = g1(p). (11)

The study of the linear Vlasov problem is motivated by the construction of a fixed

point application at the level of the fields (E, A), see Section 3. We need to estimate

the moments of the particle distribution. The main ingredients for such computa-

tions are the conservation of the particle energy along characteristics and a technical

result on bounds for the impulsion variation along characteristics.

Assume that E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[) and consider the system of charac-

teristics associated to (10)

dX

ds
=

P (s)

γ1(s)
,

dP

ds
= −E(X(s))− A(X(s))

γ2(s)
A′(X(s)), (12)

with the conditions

X(0) = x, P (0) = p. (13)

Recall that γ1(s) = γ2(s) = 1 in the NR case, γ1(s) = (1 + |P (s)|2) 1
2 , γ2(s) = 1

in the QR case and γ1(s) = γ2(s) = (1 + |P (s)|2 + |A(s,X(s))|2) 1
2 in the FR case.

Observe that in all cases, under the above regularity hypotheses for E, A, for all
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(x, p) ∈ (]0, 1[×R) ∪ ({0} × [0, +∞[) ∪ ({1}×]−∞, 0]) there is a unique solution

for (12), (13) denoted (X(s), P (s)) = (X(s; x, p), P (s; x, p)). We introduce also the

entry/exit times sin(x, p) = inf{τ ≤ 0 : X(s; x, p) ∈]0, 1[, ∀s ∈]τ, 0[}, respectively

sout(x, p) = sup{τ ≥ 0 : X(s; x, p) ∈]0, 1[, ∀s ∈]0, τ [}. The Vlasov equation

says that f is constant along characteristics, d
ds

f(X(s), P (s)) = 0 and therefore we

construct as usual the solution by characteristics.

Definition 2.1 Assume that E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[). The mild solution

of the stationary Vlasov problem (10), (11) is given by

f(x, p) = gk(P (sin(x, p); x, p)) if sin > −∞, X(sin(x, p); x, p) = k, k ∈ {0, 1},

f(x, p) = 0 if sin(x, p) = −∞.

When E, A are less regular we can introduce the notion of weak solution. For this

observe that in all three cases we have div(x,p)

(
p
γ1

,−
(
E(x) + A(x)

γ2
A′(x)

))
= 0, and

therefore the Vlasov equation can be written

∂x

(
p

γ1

f

)
− ∂p

((
E(x) +

A(x)

γ2

A′(x)

)
f

)
= 0, (x, p) ∈]0, 1[×R.

Definition 2.2 Assume that E ∈ L∞(]0, 1[), A ∈ W 1,∞(]0, 1[), g0 ∈ L1
loc([0, +∞[), g1 ∈

L1
loc(]−∞, 0]). We say that f ∈ L1

loc([0, 1]×R) is a weak solution for the stationary

Vlasov problem (10), (11) iff

−
∫ 1

0

∫

R
f(x, p)

(
p

γ1

∂xϕ−
(

E(x) +
A(x)

γ2

A′(x)

)
∂pϕ

)
dp dx

=

∫

p>0

p

γ1

g0(p) ϕ(0, p) dp−
∫

p<0

p

γ1

g1(p) ϕ(1, p) dp, (14)

for any test function ϕ ∈ C1
c ([0, 1]× R) satisfying ϕ(0, p < 0) = ϕ(1, p > 0) = 0.

Unfortunately in general there is no uniqueness for the weak solution because f can

take arbitrary values on the characteristics such that sin = −∞. Nevertheless as in

[12] we can define the minimal weak solution which coincides with the mild solution.

The key point here is the following classical comparison result (see [1], [7]).
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Proposition 2.1 Assume that E,A are smooth (for example E ∈ W 1,∞(]0, 1[), A ∈
W 2,∞(]0, 1[)), α > 0, S1, S2 ∈ L∞(]0, 1[×R). Consider (fk)k∈{1,2} two bounded weak

solutions for

α fk +
p

γ1

∂xfk −
(

E(x) +
A(x)

γ2

A′(x)

)
∂pfk = Sk(x, p), (x, p) ∈]0, 1[×R,

satisfying f1(0, p) = f2(0, p) for any p > 0 and f1(1, p) = f2(1, p) for any p < 0. If

S1 ≤ S2 then we have f1 ≤ f2.

Remark 2.1 The previous comparison result guarantees the uniqueness of the bounded

weak solution for the problem

α f +
p

γ1

∂xf −
(

E(x) +
A(x)

γ2

A′(x)

)
∂pf = 0, (x, p) ∈]0, 1[×R, (15)

f(x = 0, p > 0) = g0(p), f(x = 1, p < 0) = g1(p),

with α > 0. Actually this solution coincides with the solution by characteristics

f(x, p) = eα sin(x,p) gk(P (sin(x, p); x, p)) if sin > −∞, X(sin(x, p); x, p) = k, k ∈ {0, 1},
(16)

f(x, p) = 0 if sin(x, p) = −∞.

Suppose that E, A are smooth (for example E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[))

and g0 ∈ L∞(]0, +∞[), g1 ∈ L∞(] − ∞, 0[), g0, g1 ≥ 0. We construct now the

minimal weak solution for (10), (11). For any α > 0 we denote by fα the unique

bounded weak solution of (15), (11). In view of Remark 2.1 we have 0 ≤ fα ≤
max{‖g0‖L∞ , ‖g1‖L∞}. A straightforward application of Proposition 2.1 yields fα ≥
fβ for any 0 < α ≤ β. We denote f(x, p) = limα↘0 fα(x, p) = supα>0 fα(x, p),

∀ (x, p) ∈ [0, 1] × R. Obviously we have 0 ≤ f ≤ max{‖g0‖L∞ , ‖g1‖L∞} and we

check easily that f is a weak solution for (10), (11). Proposition 2.1 implies easily

Proposition 2.2 The function f satisfies the following minimality property : if h

is a bounded nonnegative weak solution of (10), (11) such that h ≤ f , then h = f .
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We call the solution f = supα>0fα the minimal solution of (10), (11). By passing to

the limit for α ↘ 0 in (16) we deduce that the minimal solution coincides with the

mild solution.

2.1 Properties of the characteristics

In this section we assume that E, A are smooth such that the solutions (X(s), P (s))

of (12), (13) are well defined. An important property is that the total energy is con-

served along characteristics. As a direct consequence we obtain useful informations

about the geometry of characteristics. At the end of this paragraph we state our

technical lemma concerning the bounds of the impulsion variation along character-

istics.

Proposition 2.3 Assume that E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[). Consider Φ a

primitive of E, i.e., Φ′ = E and denote by W the total energy

W (x, p) =
|p|2
2

+
|A(x)|2

2
+ Φ(x), in the NR case,

W (x, p) =
(
1 + |p|2)

1
2 +

|A(x)|2
2

+ Φ(x), in the QR case,

W (x, p) =
(
1 + |p|2 + |A(x)|2)

1
2 + Φ(x), in the FR case.

Then for any solution (X(s), P (s)) of (12) we have

d

ds
{W (X(s), P (s))} = 0, ∀ sin < s < sout.

Proof. Compute the derivative of W with respect to s and use (12). The conclusion

follows immediately in all three cases.

We summarize below several properties of the function W .

Proposition 2.4 With the notations of Proposition 2.3 we have

1) W (x, p1) < W (x, p2) iff |p1| < |p2| ;
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2) For any ε > 0 there is δ = δ(ε) > 0 such that if W (x, p2) − W (x, p1) ≥ ε for

some (x, p1, p2) ∈ [0, 1] × R2 then |p2|k − |p1|k ≥ δ with k = 2 in the NR case and

k = 1 in the QR and FR cases.

Proof. The first statement is obvious. We prove the second one. In the NR case

we have |p2|2 − |p1|2 ≥ 2 ε =: δ(ε). In the QR and FR cases we obtain

|p2|2 ≥ |p1|2 + ε2 + 2 ε
(
1 + |p1|2 + α2

) 1
2 ,

where α = 0 in the QR case and α = A(x) in the FR case. In both cases we deduce

|p2| − |p1| ≥
(
|p1|2 + ε2 + 2 ε (1 + |p1|2) 1

2

) 1
2 − |p1|

=
ε2 + 2 ε (1 + |p1|2) 1

2

{(
(1 + |p1|2) 1

2 + ε
)2

− 1

} 1
2

+ |p1|

≥ ε2 + 2 ε (1 + |p1|2) 1
2

(1 + |p1|2) 1
2 + ε + |p1|

≥ 2ε (1 + |p1|2) 1
2

ε + 2(1 + |p1|2) 1
2

≥ ε(1 + |p1|2) 1
2

ε + (1 + |p1|2) 1
2

≥ 1

2
min{1, ε},

and therefore we can take δ(ε) := 1
2

min{1, ε}.

In the following we perform a phase plane analysis. We have similar behaviors

in all three cases, due to the conservation of the total energy along characteristics.

We introduce the notations

p0 := inf{p ≥ 0 : W (0, p) ≥ W (x, 0), ∀ x ∈ [0, 1]}, (17)

p1 := sup{p ≤ 0 : W (1, p) ≥ W (x, 0), ∀ x ∈ [0, 1]}. (18)

By using the continuity of W with respect to p we deduce easily that

W (0, p0) ≥ W (x, 0), W (1, p1) ≥ W (x, 0), ∀ x ∈ [0, 1].

The above definitions are motivated by the following result
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Proposition 2.5 Assume that E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[).

1) For any 0 < p < p0 there is x0 ∈]0, 1[, 0 < s0 ≤ sout(0, p) ≤ +∞ such that

X(s; 0, p) < x0, P (s; 0, p) > 0, ∀ 0 < s < s0, lim
s↗s0

X(s; 0, p) = x0, lim
s↗s0

P (s; 0, p) = 0.

Moreover, if sout(0, p) < +∞ then

s0 =
sout(0, p)

2
, X(s; 0, p) = X(2s0−s; 0, p), P (s; 0, p) = −P (2s0−s; 0, p), ∀s ∈ [0, 2s0].

In particular X(sout(0, p); 0, p) = 0.

2) For any p > p0 we have sout(0, p) < +∞, P (s; 0, p) > 0, ∀ 0 ≤ s ≤ sout(0, p) and

X(sout(0, p); 0, p) = 1.

3) For any p1 < p < 0 there is x1 ∈]0, 1[, 0 < s1 ≤ sout(1, p) ≤ +∞ such that

X(s; 1, p) > x1, P (s; 1, p) < 0, ∀ 0 < s < s1, lim
s↗s1

X(s; 1, p) = x1, lim
s↗s1

P (s; 1, p) = 0.

Moreover, if sout(1, p) < +∞ then

s1 =
sout(1, p)

2
, X(s; 1, p) = X(2s1−s; 1, p), P (s; 1, p) = −P (2s1−s; 1, p), ∀s ∈ [0, 2s1].

In particular X(sout(1, p); 1, p) = 1.

4) For any p < p1 we have sout(1, p) < +∞, P (s; 1, p) < 0, ∀ 0 ≤ s ≤ sout(1, p) and

X(sout(1, p); 1, p) = 0.

Proof. We justify only the first two statements. The other ones follow in similar

manner.

1) Assume that p0 > 0 and consider p ∈]0, p0[. By the definition of p0 we deduce that

there is x̃ ∈ [0, 1] such that W (0, p) < W (x̃, 0). Actually, by the continuity of W we

can suppose that x̃ ∈]0, 1[. We claim that X(s; 0, p) ∈ [0, x̃[ for any s ∈ [0, sout(0, p)[.

Indeed, if there is ˜̃s such that X(˜̃s; 0, p) ≥ x̃ > 0 = X(0; 0, p) then there is s̃ ∈]0, ˜̃s]

such that X(s̃; 0, p) = x̃ and by the conservation of the total energy one gets a

contradiction

W (x̃, P (s̃)) = W (X(s̃), P (s̃)) = W (0, p) < W (x̃, 0) ≤ W (x̃, P (s̃)).
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We introduce now the notations s0 = sup{0 < τ ≤ sout(0, p) : P (s; 0, p) > 0, ∀ s ∈
[0, τ [}, and x0 = lims↗s0 X(s; 0, p). Since for any s ∈]0, s0[ we have 0 < X(s; 0, p) <

x̃ and X(·; 0, p) is strictly increasing on ]0, s0[ we deduce that 0 < x0 ≤ x̃ < 1 and

X(s; 0, p) < x0 ∀ s ∈]0, s0[. By construction we have P (s; 0, p) > 0 ∀ s ∈]0, s0[. We

have W (X(s), P (s)) = W (0, p) for any s ∈]0, s0[ and therefore P (s; 0, p) has a finite

limit as s tends to s0 : lims↗s0 P (s; 0, p) = η ≥ 0. We claim that η = 0. Indeed,

in the case s0 = +∞, if η > 0 then for s large enough we have P (s; 0, p) > η
2
,

∀ s > s1. Taking into account that P (s;0,p)
γ1(s)

≥ C(η), ∀s > s1 where C(η) = η
2

in the

NR case, C(η) = η
2
(1 + (η

2
)2)−

1
2 in the QR case and C(η) = η

2
(1 + (η

2
)2 + ‖A‖2

L∞)−
1
2

in the FR case, we obtain immediately a contradiction since 1 > X(s) − X(s1) >

C(η) (s− s1), ∀ s > s1. In the case s0 < +∞ if η > 0 then P (s0) = lims↗s0 P (s) =

η > 0 and there is s̃0 > s0 such that P (τ) > 0 for any τ ∈ [s0, s̃0] which is in

contradiction with the definition of s0. Therefore in both cases lims↗s0 P (s) = 0.

Notice also that in the case s0 < +∞, (X±(s), P±(s)) := (X(s0 ± s),±P (s0 ± s))

verify (12) and the condition (X±(0), P±(0)) = (x0, 0). By the uniqueness of the

characteristics we deduce that (X+, P+) = (X−, P−) saying that sout = 2s0 and

X(s; 0, p) = X(2s0 − s; 0, p), P (s; 0, p) = −P (2s0 − s; 0, p) for any s ∈ [0, 2s0].

2) Take now p > p0 and let ε = W (0, p) −W (0, p0) > 0. By Proposition 2.4 there

is δ = δ(ε) > 0 such that |p2|k − |p1|k ≥ δ for any (x, p1, p2) ∈ [0, 1]× R2 satisfying

W (x, p2)−W (x, p1) ≥ ε, where k = 2 in the NR case and k = 1 in the QR and FR

cases. Observe that

W (X(s), P (s)) = W (0, p) = ε + W (0, p0) ≥ ε + W (X(s), 0), ∀ s ∈ [0, sout(0, p)[,

and therefore |P (s)|k ≥ δ for any s ∈ [0, sout(0, p)[. In particular we deduce that

sout(0, p) < +∞, P (s) > 0 for any s ∈ [0, sout(0, p)] and X(sout(0, p); 0, p) = 1.

We call p0, p1 introduced in (17), (18) the critical impulsion of the left, respec-

tively right boundary.

Another important property is that the variation of the impulsion p along any

characteristic is bounded by some constant depending on the fields E, A. It holds
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also true for nonstationary fields with basically the same proof, and thus, for the

sake of generality, we state this result for time dependent fields E, A. This can be

useful when studying the time periodic case (see for example [2]). We introduce the

notations

DNR := (2 ‖E‖L∞ + 2 ‖A‖L∞ ‖∂xA‖L∞)
1
2 , (19)

DQR := (βQR(1 + βQR))
1
2 , βQR = 4 (‖E‖L∞ + ‖A‖L∞ ‖∂xA‖L∞), (20)

DFR := max

{
‖A‖L∞ ,

(
βFR (βFR + (1 + ‖A‖2

L∞)
1
2 )

) 1
2

}
, (21)

where βFR = 8
√

2 (‖E‖L∞ + ‖∂xA‖L∞ + ‖∂tA‖L∞).

We have the following results in the NR, QR and FR cases (the details of the

proof can be found in the Appendix).

Lemma 2.1 Assume that E ∈ L∞(R; W 1,∞(]0, 1[)), A ∈ L∞(R; W 2,∞(]0, 1[)), D =

DNR in the NR case, D = DQR in the QR case, D = DFR in the FR case. In

the FR case we suppose moreover that ∂tA belongs to L∞(R×]0, 1[). Consider

(X(s), P (s)), sin ≤ s ≤ sout an arbitrary solution of (12). Then

1) if there is t ∈ [sin, sout] such that |P (t)| > D, therefore we have

sout−sin ≤ 4
γ1(t)

|P (t)| , |P (s)−P (t)| ≤ D,

∣∣∣∣
P (s)

γ1(s)
− P (t)

γ1(t)

∣∣∣∣ ≤
D

γ1(t)
, ∀ sin ≤ s ≤ sout ;

2) for any sin ≤ s1 ≤ s2 ≤ sout we have |P (s1)− P (s2)| ≤ 2 D.

Remark 2.2 When (E, A) ∈ W 1,∞(]0, 1[) × W 2,∞(]0, 1[) are stationary fields the

previous lemma holds with

DNR := (2 ‖E‖L∞ + 2 ‖A‖L∞ ‖A ′‖L∞)
1
2 ,

DQR := (βQR(1 + βQR))
1
2 , βQR = 4 (‖E‖L∞ + ‖A‖L∞ ‖A ′‖L∞),

DFR := max

{
‖A‖L∞ ,

(
βFR (βFR + (1 + ‖A‖2

L∞)
1
2 )

) 1
2

}
, βFR = 8

√
2 (‖E‖L∞+‖A ′‖L∞).
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2.2 Properties of the mild solution

In this paragraph we give some properties of the mild solution of the linear problem

(10), (11). We recall the formulation by characteristics and we estimate the moments

of f by using the geometry of characteristics. One of the key points for establishing

L∞ bounds is to use duality computations involving L1 test functions.

Proposition 2.6 Assume that E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[), g0 ∈ L∞loc([0, +∞[),

g1 ∈ L∞loc(]−∞, 0]). Denote by f the mild solution of (10), (11). Then

1) if g0, g1 are nonnegative, f is nonnegative ;

2) f belongs to L∞loc([0, 1] × R) ; moreover if g0 ∈ L∞(]0, +∞[), g1 ∈ L∞(] −∞, 0[)

then f ∈ L∞(]0, 1[×R) and ‖f‖L∞ ≤ max{‖g0‖L∞ , ‖g1‖L∞} ;

3) for any test function ψ ∈ C0
c ([0, 1]× R) we have

∫ 1

0

∫

R
f(x, p)ψ(x, p) dp dx =

1∑

k=0

∫

(−1)kp>0

|p|
γ1

gk(p)

∫ sout(k,p)

0

ψ(X(s; k, p), P (s; k, p)) ds dp ;

4) if g0 ∈ L1(]0, +∞[), g1 ∈ L1(] −∞, 0[) then f ∈ L1(]0, 1[×R) and
∫
R|f(·, p)| dp

belongs to L∞(]0, 1[) ;

5) if g0 ∈ L1(]0, +∞[), g1 ∈ L1(]−∞, 0[) then limR→+∞
∥∥∥
∫
|p|>R

|f(·, p)| dp
∥∥∥

L∞(]0,1[)
=

0.

Proof of 1) and 2) The first statement and the last part of the second one follow

immediately by the definition of the mild solution. Take R > 0 and consider C =

C(R, D) > 0 such that |g0(p)| ≤ C, |g1(−p)| ≤ C for any 0 < p < R + 2D where

D = DNR in the NR case, D = DQR in the QR case and D = DFR in the FR case.

For any (x, p) ∈ [0, 1]× [−R, R] such that sin(x, p) > −∞ we have (cf. Lemma 2.1)

|P (sin(x, p); x, p) − p| ≤ 2D, and therefore we obtain |P (sin(x, p); x, p)| ≤ R + 2D.

We deduce that ‖f‖L∞(]0,1[×]−R,R[) ≤ C saying that f is locally bounded.

Proof of 3) In order to prove the third statement we assume for the moment that

g0, g1 ≥ 0. We obtain the equality (22) for any ψ ∈ C0
c ([0, 1] × R), ψ ≥ 0 by

performing the change of variables (s, p) → (X(s; 0, p), P (s; 0, p)) for p > 0, s ∈

12



]0, sout(0, p)[, respectively (s, p) → (X(s; 1, p), P (s; 1, p)) for p < 0, s ∈]0, sout(1, p)[

and by taking into account that f is constant along characteristics. Notice that we

have the equalities

∣∣∣∣det

(
∂(X(s; k, p), P (s; k, p))

∂(s, p)

)∣∣∣∣ =
|p|
γ1

, (−1)kp > 0, s ∈]0, sout(k, p)[, k ∈ {0, 1}.

Since f is nonnegative and locally bounded we deduce that for any ψ ∈ C0
c ([0, 1]×

R), ψ ≥ 0, the functions p → p
γ1

g0(p)
∫ sout(0,p)

0
ψ(X(s; 0, p), P (s; 0, p)) ds and p →

− p
γ1

g1(p)
∫ sout(1,p)

0
ψ(X(s; 1, p), P (s; 1, p)) ds are integrable on ]0, +∞[, respectively

] − ∞, 0[. Actually by using the decomposition into positive and negative parts

ψ = ψ+ − ψ− we obtain that formula (22) holds for any ψ ∈ C0
c ([0, 1]× R) (in fact

for any ψ compactly supported in [0, 1]×R and integrable). The general case follows

by decomposing g0,1 = g+
0,1 − g−0,1 and by observing that f± are the mild solutions

corresponding to the boundary conditions g±0 , g±1 .

Proof of 4) Suppose now that g0, g1 are integrable on ]0, +∞[, respectively ]−∞, 0[.

We have

∫ 1

0

∫

R
f± dp dx =

∫ 1

0

∫

R
f±1{|p|≤3D} dp dx +

∫ 1

0

∫

R
f±1{|p|>3D} dp dx =: I±1 + I±2 .

We know that f is locally bounded and we have

‖f‖L∞(]0,1[×]−3D,3D[) ≤ max
(‖g0‖L∞(]0,5D[), ‖g1‖L∞(]−5D,0[)

)
.

Therefore I+
1 + I−1 ≤ 6D ‖f‖L∞(]0,1[×]−3D,3D[). In order to estimate I±2 we use the

formula (22) with the function ψ(x, p) = 1{3D<|p|<R1}, for R1 > 3D. We obtain

∫ 1

0

∫

R
f±1{3D<|p|<R1} dp dx =

1∑

k=0

∫

(−1)kp>0

|p|
γ1

g±k (p)

∫ sout(k,p)

0

1{3D<|P (s;k,p)|<R1} ds dp.(22)

By applying Lemma 2.1 we deduce that |P (s; 0, p) − p| ≤ 2D for any p > 0 and

|P (s; 1, p)− p| ≤ 2D for any p < 0. In particular if 0 < p ≤ D we have |P (s; 0, p)| ≤
3D and therefore

∫ sout(0,p)

0

1{3D<|P (s;0,p)|<R1} ds = 0, 0 < p ≤ D. (23)
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Similarly we obtain
∫ sout(1,p)

0

1{3D<|P (s;1,p)|<R1} ds = 0, −D ≤ p < 0. (24)

Using one more time Lemma 2.1 we deduce that

sout(0, p) = sout(0, p)− sin(0, p) ≤ 4
γ1

p
, p > D, (25)

and

sout(1, p) = sout(1, p)− sin(1, p) ≤ −4
γ1

p
, p < −D. (26)

Combining (22), (23), (24), (25), (26) yields

∫ 1

0

∫

R
f±1{3D<|p|<R1} dp dx =

1∑

k=0

∫

(−1)kp>D

|p|
γ1

g±k (p)

∫ sout(k,p)

0

1{3D<|P (s;k,p)|<R1} ds dp

≤
∫

p>D

p

γ1

g±0 (p)sout(0, p) dp−
∫

p<−D

p

γ1

g±1 (p)sout(1, p) dp

≤ 4

∫

p>0

g±0 (p) dp + 4

∫

p<0

g±1 (p) dp, ∀ R1 > 3D. (27)

After letting R1 → +∞ one gets I±2 ≤ 4
∫

p>0
g±0 (p) dp+4

∫
p<0

g±1 (p) dp, and therefore

∫ 1

0

∫

R
f±(x, p) dp dx ≤

∫ 1

0

∫

R
f±(x, p)1{|p|≤3D} dp dx+4

∫

p>0

g±0 (p) dp+4

∫

p<0

g±1 (p) dp.

Finally one gets
∫ 1

0

∫

R
|f(x, p)| dp dx ≤ I+

1 + I−1 + 4

∫

p>0

|g0(p)| dp + 4

∫

p<0

|g1(p)| dp

≤ 4

∫

p>0

|g0(p)| dp + 4

∫

p<0

|g1(p)| dp

+ 6 D max
(‖g0‖L∞(]0,5D[), ‖g1‖L∞(]−5D,0[)

)
. (28)

In order to estimate the L∞ norm of
∫
R|f(·, p)| dp we write for any nonnegative

function ϕ ∈ L1(]0, 1[)
∫ 1

0

∫

R
f± ϕ dp dx =

∫ 1

0

∫

R
f±1{|p|≤4D}ϕ dp dx +

∫ 1

0

∫

R
f±1{|p|>4D}ϕ dp dx =: I±3 + I±4 .

We know that f is locally bounded and

‖f‖L∞(]0,1[×]−4D,4D[) ≤ max{‖g0‖L∞(]0,6D[), ‖g1‖L∞(]−6D,0[)}.
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Therefore we have

I+
3 + I−3 =

∫ 1

0

∫

R
|f(x, p)|1{|p|≤4D}ϕ(x) dp dx

≤ 8D max{‖g0‖L∞(]0,6D[), ‖g1‖L∞(]−6D,0[)} ‖ϕ‖L1 . (29)

In order to estimate I±4 we use formula (22) with the function ψ(x, p) = 1{|p|>4D}

(actually we have to consider first ψR1(x, p) = 1{4D<|p|<R1} for any R1 > 4D and

then let R1 → +∞, but we skip these arguments). We obtain

∫ 1

0

∫

R
f±1{|p|>4D}ϕ dp dx =

1∑

k=0

∫

(−1)kp>0

|p|
γ1

g±k (p)

∫ sout(k,p)

0

1{|P (s;k,p)|>4D}ϕ(X(s; k, p)) ds dp.

(30)

By Lemma 2.1 we deduce that |P (s; 0, p)−p| ≤ 2D for any p > 0 and |P (s; 1, p)−p| ≤
2D for any p < 0. In particular if 0 < p ≤ 2D we have |P (s; 0, p)| ≤ 4D for any

s ∈]0, sout(0, p)[ and therefore

∫ sout(0,p)

0

1{|P (s;0,p)|>4D}ϕ(X(s; 0, p)) ds = 0, ∀ 0 < p ≤ 2D. (31)

Similarly we obtain

∫ sout(1,p)

0

1{|P (s;1,p)|>4D}ϕ(X(s; 1, p)) ds = 0, ∀ − 2D ≤ p < 0. (32)

Notice also that by Lemma 2.1 we have

∣∣∣∣
P (s; 0, p)

γ1(s)
− p

γ1

∣∣∣∣ ≤
D

γ1

, P (s; 0, p) ≥ p−D > 0, ∀ p > 2D, 0 < s < sout(0, p),

respectively

∣∣∣∣
P (s; 1, p)

γ1(s)
− p

γ1

∣∣∣∣ ≤
D

γ1

, P (s; 1, p) ≤ p + D < 0, ∀ p < −2D, 0 < s < sout(1, p).

In particular sout(0, p) < +∞, X(sout(0, p); 0, p) = 1, sout(1, p) < +∞, X(sout(1, p); 1, p) =

0. We deduce that for any p > 2D, s ∈ [0, sout(0, p)] we have

0 <

p
γ1

P (s;0,p)
γ1(s)

≤
p
γ1

p
γ1
− D

γ1

=
p

p−D
≤ 2,
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and for any p < −2D, s ∈ [0, sout(1, p)] we have

0 <
− p

γ1

−P (s;1,p)
γ1(s)

≤
− p

γ1

− p
γ1
− D

γ1

=
−p

−p−D
≤ 2.

One gets for any p > 2D

p

γ1

∫ sout(0,p)

0

1{|P (s;0,p)|>4D}ϕ(X(s; 0, p)) ds ≤ p

γ1

∫ sout(0,p)

0

1
P (s;0,p)

γ1(s)

ϕ(X(s; 0, p))
dX

ds
ds

≤ 2

∫ sout(0,p)

0

ϕ(X(s; 0, p))
dX

ds
ds

= 2‖ϕ‖L1(]0,1[). (33)

Similarly we obtain for any p < −2D

− p

γ1

∫ sout(1,p)

0

1{|P (s;1,p)|>4D}ϕ(X(s; 1, p)) ds ≤ 2‖ϕ‖L1(]0,1[). (34)

Combining (30), (31), (32), (33), (34) yields

I+
4 + I−4 ≤ 2

(∫

p>0

|g0(p)| dp +

∫

p<0

|g1(p)| dp

)
‖ϕ‖L1(]0,1[), (35)

and thus (29), (35) imply

∫ 1

0

∫

R
|f(x, p)|ϕ(x) dp dx ≤ 8D max{‖g0‖L∞(]0,6D[), ‖g1‖L∞(]−6D,0[)}‖ϕ‖L1(]0,1[)

+ 2

(∫

p>0

|g0(p)| dp +

∫

p<0

|g1(p)| dp

)
‖ϕ‖L1(]0,1[),

for any nonnegative function ϕ ∈ L1(]0, 1[). We deduce that

∥∥∥∥
∫

R
|f(·, p)| dp

∥∥∥∥
L∞(]0,1[)

≤ 8D max{‖g0‖L∞(]0,6D[), ‖g1‖L∞(]−6D,0[)}

+ 2

(∫

p>0

|g0(p)| dp +

∫

p<0

|g1(p)| dp

)
. (36)

Proof of 5) Take now R > 4D and denote ρ±R(x) =
∫
|p|>R

f±(x, p) dp, x ∈ [0, 1].

We have for any nonnegative function ϕ ∈ L1(]0, 1[)

∫ 1

0

ρ±R(x)ϕ(x) dx =
1∑

k=0

∫

(−1)kp>0

|p|
γ1

g±k (p)

∫ sout(k,p)

0

1{|P (s;k,p)|>R}ϕ(X(s; k, p)) ds dp.
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As before observe that for any 0 < p ≤ R − 2D we have |P (s; 0, p)| ≤ p + 2D ≤ R

and thus
∫ sout(0,p)

0
1{|P (s;0,p)|>R}ϕ(X(s; 0, p)) ds = 0. Similarly, for any −R + 2D ≤

p < 0 we have
∫ sout(1,p)

0
1{|P (s;1,p)|>R}ϕ(X(s; 1, p)) ds = 0. Notice also that for any

p > R− 2D > 2D we have,∣∣∣∣
P (s; 0, p)

γ1(s)
− p

γ1

∣∣∣∣ ≤
D

γ1

, P (s; 0, p) ≥ p−D > 0, sout < +∞, X(sout; 0, p) = 1

and therefore

p

γ1

∫ sout(0,p)

0

1{|P (s;0,p)|>R}ϕ(X(s; 0, p)) ds ≤ p

γ1

∫ sout(0,p)

0

ϕ(X(s; 0, p))
dX
ds

P (s;0,p)
γ1

ds

≤
∫ sout(0,p)

0

p
γ1

p
γ1
− D

γ1

ϕ(X(s; 0, p))
dX

ds
ds

≤ 2‖ϕ‖L1(]0,1[).

Similarly one gets for any p < −R + 2D that

− p

γ1

∫ sout(1,p)

0

1{|P (s;1,p)|>R}ϕ(X(s; 1, p)) ds ≤ 2‖ϕ‖L1(]0,1[).

Finally we obtain
∫ 1

0

ρ±R(x)ϕ(x) dx ≤ 2

(∫

p>R−2D

g±0 (p) dp +

∫

p<−R+2D

g±1 (p) dp

)
‖ϕ‖L1(]0,1[),

which implies that
∫

|p|>R

f±(x, p) dp ≤ 2

(∫

p>R−2D

g±0 (p) dp +

∫

p<−R+2D

g±1 (p) dp

)
, a.e. x ∈]0, 1[.

Therefore we deduce that∥∥∥∥
∫

|p|>R

|f(·, p)| dp

∥∥∥∥
L∞(]0,1[)

≤ 2

(∫

p>R−2D

|g0(p)| dp +

∫

p<−R+2D

|g1(p)| dp

)
. (37)

Remark 2.3 Under the hypotheses of Proposition 2.6 denote by fα the unique solu-

tion of (15), (11) and let f be the mild solution of (10), (11). Since we have |fα| ≤ |f |
for any α > 0, we deduce that the statements 1), 2), 4), 5) of Proposition 2.6 hold

also for fα. Moreover, by change of variables, we obtain the analogous formula (see

(22))
∫ 1

0

∫

R
fαψ dp dx =

1∑

k=0

∫

(−1)kp>0

|p|
γ1

gk(p)

∫ sout(k,p)

0

e−αsψ(X(s; k, p), P (s; k, p)) ds dp,

for any function ψ ∈ C0
c ([0, 1]× R).
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We estimate now the current densities j±(x) :=
∫
R

p±
γ1

f(x, p) dp where p± = max(0,±p).

The interesting point is that these estimates do not depend on the fields E, A.

Proposition 2.7 Assume that E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[), g0, g1 ≥ 0 and

G1 :=

∫

p>0

p

γ1

g0(p) dp−
∫

p<0

p

γ1

g1(p) dp < +∞.

Denote by f the mild solution of (10), (11). Then for a.a. x ∈]0, 1[ we have

∫

R

|p|
γ1

f(x, p) dp = j+(x) + j−(x) ≤ 2G1.

Proof. We use the formula (22) with ψ(x, p) = p+

γ1
ϕ(x), where ϕ ∈ L1(]0, 1[), ϕ ≥ 0.

We obtain

∫ 1

0

j+(x)ϕ(x) dx =

∫ 1

0

∫

R
f(x, p)ϕ(x)

p+

γ1

dp dx

=
1∑

k=0

∫

(−1)kp>0

|p|
γ1

gk(p)

∫ sout(k,p)

0

(
P (s; k, p)

γ1(s)

)+

ϕ(X(s; k, p)) ds dp

= I0 + I1. (38)

We introduce now p0 the critical impulsion corresponding to the left boundary x =

0. By Proposition 2.5 we know that for any p > p0 we have sout(0, p) < +∞,

P (s; 0, p) > 0 for any s ∈ [0, sout(0, p)], X(sout(0, p); 0, p) = 1. In this case we obtain

∫ sout(0,p)

0

(
P (s; 0, p)

γ1(s)

)+

ϕ(X(s; 0, p)) ds =

∫ sout(0,p)

0

dX

ds
ϕ(X(s; 0, p)) ds

=

∫ 1

0

ϕ(u) du. (39)

Consider now 0 < p < p0. If sout(0, p) = +∞ we know by Proposition 2.5 that there

is x0 ∈]0, 1[ such that lims→+∞ X(s; 0, p) = x0, P (s; 0, p) > 0, ∀ s > 0 and therefore

we find as above that

∫ sout(0,p)

0

(
P (s; 0, p)

γ1(s)

)+

ϕ(X(s; 0, p)) ds =

∫ +∞

0

dX

ds
ϕ(X(s; 0, p)) ds

=

∫ x0

0

ϕ(u) du. (40)
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It remains to analyze the case 0 < p < p0, sout(0, p) < +∞. We know that there is

x0 ∈]0, 1[ such that X(sout(0, p)/2; 0, p) = x0, P (s; 0, p) > 0, ∀ s ∈ [0, sout(0, p)/2[,

P (sout(0, p)/2; 0, p) = 0, P (s; 0, p) < 0, ∀s ∈]sout(0, p)/2, sout(0, p)]. We find easily

that
∫ sout(0,p)

0

(
P (s; 0, p)

γ1(s)

)+

ϕ(X(s; 0, p)) ds =

∫ sout(0,p)/2

0

dX

ds
ϕ(X(s; 0, p)) ds

=

∫ x0

0

ϕ(u) du. (41)

Combining (39), (40), (41) yields I0 ≤
∫

p>0
p
γ1

g0(p) dp ‖ϕ‖L1(]0,1[). Similarly, by

introducing the critical impulsion p1 corresponding to the right boundary x = 1

and by using Proposition 2.5 we deduce that I1 ≤ − ∫
p<0

p
γ1

g1(p) dp ‖ϕ‖L1(]0,1[), and

finally (38) implies
∫ 1

0
j+(x)ϕ(x) dx ≤ G1‖ϕ‖L1(]0,1[), for any nonnegative function

ϕ ∈ L1(]0, 1[). Therefore ‖j+‖L∞(]0,1[) ≤ G1. By similar computations we obtain

‖j−‖L∞(]0,1[) ≤ G1 and thus
∫
R
|p|
γ1

f(x, p) dp ≤ 2G1, for a.a. x ∈]0, 1[.

Remark 2.4 Under the hypotheses of Proposition 2.7 we have the estimate
∫

R

|p|
γ1

fα(x, p) dp ≤ 2G1, a.e. x ∈]0, 1[, ∀ α > 0,

where fα is the solution of (15), (11).

3 Fixed point application for the Vlasov-Maxwell

equations

We intend to apply the Schauder fixed point theorem. We will construct a fixed

point application (E, A) → (Ẽ, Ã) =: F(E, A) for (E, A) in some compact subset of

C0([0, 1]) × C1([0, 1]). The estimates obtained in the previous section allows us to

construct such a subset which is left invariant by F . We need to study the continuity

of F with respect to the topology of C0([0, 1])×C1([0, 1]). Let us start by analyzing

the equation satisfied by A for a given density n.
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Proposition 3.1 Assume that n ∈ L∞(]0, 1[), n ≥ 0, A0, A1 ∈ R. Then there is a

unique solution A ∈ W 2,∞(]0, 1[) for the problem

−A′′(x) + n(x) A(x) = 0, x ∈]0, 1[, (42)

A(0) = A0, A(1) = A1, (43)

satisfying the estimates

‖A‖L∞(]0,1[) ≤ max{|A0|, |A1|}, ‖A′‖L∞(]0,1[) ≤ |A1−A0|+‖n‖L∞(]0,1[) max{|A0|, |A1|},

‖A′′‖L∞(]0,1[) ≤ ‖n‖L∞(]0,1[) max{|A0|, |A1|}.

Proof. By performing the change of unknown A(x) = Ã(x) + (1 − x)A0 + xA1,

x ∈ [0, 1] the problem (42), (43) becomes

−Ã′′(x) + n(x) Ã(x) = −n(x) [(1− x)A0 + xA1] =: F (x), x ∈]0, 1[, (44)

Ã(0) = 0, Ã(1) = 0. (45)

Since n is nonnegative and bounded there is a unique solution Ã ∈ H1
0 (]0, 1[) for

(44), (45). Observe also that the function x → 1
2
|A(x)|2 is convex since d2

dx2
1
2
|A|2 ≥ 0.

Therefore one gets ‖A‖L∞(]0,1[) ≤ max{|A0|, |A1|} and we deduce also that

‖A′′‖L∞(]0,1[) ≤ ‖n‖L∞(]0,1[) max{|A0|, |A1|}.

Taking into account that
∫ 1

0
A′(x) dx = A1 − A0 we deduce that there is x0 ∈ [0, 1]

such that A′(x0) = A1 − A0 and we obtain

|A′(x)| ≤ |A′(x0)|+
∣∣∣∣
∫ x

x0

A′′(y) dy

∣∣∣∣ ≤ |A1 − A0|+ ‖n‖L∞(]0,1[) max{|A0|, |A1|}.

We define now the fixed point application. Since there is no uniqueness result for the

weak solution of (10), (11) it is convenient to use the problem (15), (11). Therefore,
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for any α > 0 consider F̃α(E, A) = (Ẽ, Ã) where E ∈ W 1,∞(]0, 1[), A ∈ W 2,∞(]0, 1[),

fα is the unique solution of (15), (11) and

ρ(·) =

∫

R
fα(·, p) dp, ργ2(·) =

∫

R
γ−1

2 f(·, p) dp,

Ẽ = Φ′, Φ′′ = ρext − ρ, Φ(0) = ϕ0, Φ(1) = ϕ1,

−Ã′′ + ργ2Ã = 0, Ã(0) = A0, Ã(1) = A1.

Proposition 3.2 Assume that g0 ∈ L1(]0, +∞[)∩L∞(]0, +∞[), g1 ∈ L1(]−∞, 0[)∩
L∞(] −∞, 0[), g0, g1 ≥ 0, ρext ∈ L∞(]0, 1[), ρext ≥ 0, ϕ0, ϕ1, A0, A1 ∈ R. For any

R > 0 we consider the set

D̃R := { (E, A) ∈ W 1,∞(]0, 1[)×W 2,∞(]0, 1[) : ‖E‖L∞(]0,1[) + ‖A′‖L∞(]0,1[) ≤ R,

‖A‖L∞(]0,1[) ≤ max{|A0|, |A1|}}. (46)

Then there are R0 > 0 and C0 > 0 such that F̃α(D̃R0) ⊂ D̃R0 and

sup
(E,A)∈D̃R0

max{‖Ẽ ′‖L∞(]0,1[), ‖Ã′′‖L∞(]0,1[)} ≤ C0.

Proof. Since
∫ 1

0
Ẽ(x) dx = ϕ1 − ϕ0 we deduce that there is x0 ∈ [0, 1] such that

Ẽ(x0) = ϕ1 − ϕ0. Therefore one gets

‖Ẽ‖L∞(]0,1[) ≤ |Ẽ(x0)|+ ‖Ẽ ′‖L∞(]0,1[) ≤ c1 + ‖ρ‖L∞(]0,1[), (47)

where c1 := |ϕ1 − ϕ0|+ ‖ρext‖L∞(]0,1[). By Proposition 3.1 we have

‖Ã‖L∞(]0,1[) ≤ c2, ‖Ã′‖L∞(]0,1[) ≤ c3 + c2 ‖ργ2‖L∞(]0,1[) ≤ c3 + c2 ‖ρ‖L∞(]0,1[), (48)

where c2 := max{|A0|, |A1|}, c3 := |A1 −A0|. By Proposition 2.6 (see formula (36))

and Remark 2.3 we know that in the NR case we have

‖ρ‖L∞(]0,1[) ≤ 2G0 + 8G∞DNR, (49)

where G0 := ‖g0‖L1(]0,+∞[) + ‖g1‖L1(]−∞,0[), G∞ := max{‖g0‖L∞ , ‖g1‖L∞} and

DNR = (2(‖E‖L∞ + ‖A‖L∞‖A′‖L∞))
1
2 ≤

√
2 (‖E‖L∞ + c2‖A′‖L∞)

1
2 ,
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for any A satisfying ‖A‖L∞ ≤ c2. Combining (47), (48), (49) implies

‖Ẽ‖L∞ + ‖Ã′‖L∞ ≤ c1 + c3 + (1 + c2)‖ρ‖L∞

≤ c1 + c3 + (1 + c2)
{

2G0 + 8G∞
√

2(1 + c2) (‖E‖L∞ + ‖A′‖L∞)
1
2

}

= c4(‖E‖L∞ + ‖A′‖L∞)
1
2 + c5, (50)

where c4 = 8G∞(1+c2)∞
√

2(1 + c2) and c5 = c1+c3+2G0(1+c2). We deduce easily

that if ‖E‖∞ + ‖A′‖L∞ ≤ (c4 +
√

c5)
2 then we have ‖Ẽ‖∞ + ‖Ã′‖L∞ ≤ (c4 +

√
c5)

2

and therefore in the NR case we can take R0 = (c4 +
√

c5)
2. Now if (E, A) ∈ D̃R0

we have

‖Ẽ ′‖L∞ ≤ ‖ρext‖L∞ + ‖ρ‖L∞ ≤ ‖ρext‖L∞ + 2G0 + 8G∞
√

2(1 + c2) (‖E‖L∞ + ‖A′‖L∞)
1
2

≤ ‖ρext‖L∞ + 2G0 + 8G∞
√

2(1 + c2) (c4 +
√

c5).

By Proposition 3.1 we have also for any (E, A) ∈ D̃R0

‖Ã′′‖L∞ ≤ c2‖ρ‖L∞ ≤ c2{ 2G0 + 8G∞
√

2(1 + c2) (c4 +
√

c5)}, (51)

and finally we proved that sup(E,A)∈D̃R0
max{‖Ẽ ′‖L∞(]0,1[), ‖Ã′′‖L∞(]0,1[)} < +∞. Let

us analyze now the QR and FR cases. We will use Proposition 2.7. Observe that

in both cases for any |p| >
(

1+|c2|2
3

) 1
2

and A verifying ‖A‖L∞ ≤ c2 we have the

inequality |p|
γ1
≥ 1

2
. Therefore by Proposition 2.7 we deduce

ρ(x) =

∫

R
fα(x, p) dp ≤ 2

(
1 + |c2|2

3

) 1
2

G∞ +

∫

R
2
|p|
γ1

fα(x, p) 1{|p|>(
1+|c2|2

3
)1/2} dp

≤ 2

(
1 + |c2|2

3

) 1
2

G∞ + 4

(∫

p>0

p

γ1

g0(p) dp−
∫

p<0

p

γ1

g1(p) dp

)

≤ 2

(
1 + |c2|2

3

) 1
2

G∞ + 4G0 =: c6.

We obtain from (47), (48) that ‖Ẽ‖L∞ ≤ c1 + c6, ‖Ã′‖L∞ ≤ c3 + c2c6, and in these

cases we can take R0 = c1 + c3 + c6(1 + c2). We check easily that we have also

sup(E,A)∈D̃R0
max{‖Ẽ ′|L∞(]0,1[), ‖Ã′′‖L∞(]0,1[)} < +∞.
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Remark 3.1 We introduce now the set

D = {(E,A) ∈ C0([0, 1])× C1([0, 1]) : ‖E‖L∞ + ‖A′‖L∞ ≤ R0, ‖A‖L∞ ≤ c2,

|E(x)− E(y)| ≤ C0 |x− y|, |A′(x)− A′(y)| ≤ C0 |x− y|,∀ x, y ∈ [0, 1]}.

The previous proposition implies that F̃α(D) ⊂ D and we check easily by using

Arzela-Ascoli theorem that D is a compact set in C0([0, 1])× C1([0, 1]).

Proposition 3.3 Under the hypotheses of Proposition 3.2 and with the notations

of Remark 3.1 for any α > 0 consider Fα = F̃α|D. Then Fα is a continuous map

with respect to the topology of C0([0, 1])× C1([0, 1]).

Proof. The arguments are standard. The uniqueness of the weak solution for (15),

(11) is crucial here. Take (En, An)n ⊂ D converging towards (E, A) in C0([0, 1]) ×
C1([0, 1]). Denote by (fα,n)n the sequence of mild solutions of (15), (11) associated

to (En, An) and by fα the mild solution of (15), (11) associated to (E, A). Since

0 ≤ fα,n ≤ max{‖g0‖L∞ , ‖g1‖L∞} we can extract a subsequence (fα,nk
)k converging

weakly ? in L∞ towards some function f satisfying 0 ≤ f ≤ max{‖g0‖L∞ , ‖g1‖L∞}.
We check immediately that f is weak solution for (15), (11) and by the uniqueness

of the weak solution we deduce that f = fα. Actually all the sequence (fα,n)n

converges towards fα weakly ? in L∞(]0, 1[×R). For any n ≥ 1 consider Dn given by

(19), (20), (21) in the NR, QR, respectively FR case, corresponding to the stationary

fields (En, An). Obviously the sequence (Dn)n is bounded. By Proposition 2.6 (see

formula (36)) and Remark 2.3 we have

‖ρn‖L∞ =

∥∥∥∥
∫

R
fα,n(·, p) dp

∥∥∥∥
L∞

≤ 8DnG∞ + 2G0, ∀ n,

and (see formula (37))
∥∥∥∥
∫

|p|>R

fα,n(·, p) dp

∥∥∥∥
L∞

≤ 2

∫

p>R−2Dn

g0(p) dp + 2

∫

p<−R+2Dn

g1(p) dp, ∀ n.

Therefore (‖ρn‖L∞)n is bounded and limR→+∞
∥∥∥
∫
|p|>R

fα,n(·, p) dp
∥∥∥

L∞
= 0, uniformly

with respect to n. We deduce easily that (ρn)n converges towards ρ :=
∫
Rfα(·, p) dp
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weakly ? in L∞(]0, 1[). Since limn→+∞An = A in C0([0, 1]) we obtain also that in

the FR case we have

ργ2,n :=

∫

R

fα,n(·, p)√
1 + |p|2 + |An(x)|2 dp ⇀

∫

R

fα(·, p)√
1 + |p|2 + |A(x)|2 dp =: ργ2 ,

weakly ? in L∞(]0, 1[). Then in all three cases we have limn→+∞ργ2,n = ργ2 weakly ?

in L∞(]0, 1[). Since (Ẽn, Ãn) = Fα(En, An) remains in a compact set of C0([0, 1])×
C1([0, 1]) we can extract a subsequence (Enk

, Ank
)k such that limk→+∞ (Ẽnk

, Ãnk
) =

(e, a) in C0([0, 1])×C1([0, 1]). In order to identify the limit we can pass to the limit

in distribution sense in the equations

Ẽ ′
nk

(x) = ρext(x)− ρnk
(x), −Ã′′

nk
(x) + ργ2,nk

(x)Ãnk
(x) = 0, x ∈]0, 1[.

We obtain

e ′(x) = ρext(x)− ρ(x), −a′′(x) + ργ2(x)a(x) = 0, x ∈]0, 1[,

and since
∫ 1

0
e(x) dx = limk→+∞

∫ 1

0
Ẽnk

(x) dx = ϕ1 − ϕ0, a(0) = limk→+∞ Ãnk
(0) =

A0, a(1) = limk→+∞ Ãnk
(1) = A1, we deduce that (e, a) = Fα(E, A). Actually all

the sequence (Ẽn, Ãn) converges towards Fα(E, A) in C0([0, 1]) × C1([0, 1]), saying

that Fα is continuous.

We obtain now the existence result for the stationary solution of the reduced 1

D Vlasov-Maxwell system (NR, QR and FR cases) as stated in Theorem 1.1.

Proof. (of Theorem 1.1) Consider (αn)n a real sequence of positive numbers de-

creasing to 0. Observe that for any n ≥ 1 the map Fαn : D → D satisfies the

hypotheses of Schauder fixed point theorem and therefore there are (En, An) ∈ D
such that Fαn(En, An) = (En, An). Denote also by fn the mild solution of (15),

(11) associated to (En, An). As in the proof of Proposition 3.3 we can extract

subsequences (fnk
)k, (Enk

)k, (Ank
)k such that fnk

⇀ f weakly ? in L∞(]0, 1[×R),

(Enk
, Ank

) → (E,A) ∈ D in C0([0, 1]) × C1([0, 1]) and we deduce that (f, E, A)

solves (6), (7), (8), (9). Note that f is only weak solution. The other estimates for

f follow by passing to the limit for k → +∞ in the analogous estimates for fnk
.
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We can prove that the solution constructed above propagates the impulsion

moments. The computations are very similar to those in the proof of 4) and 5),

Proposition 2.6 and they are left to the reader.

Proposition 3.4 Assume that the hypotheses of Theorem 1.1 hold. Moreover sup-

pose that for some m ≥ 2 we have

∫

p>0

|p|m
γ1

g0(p) dp +

∫

p<0

|p|m
γ1

g1(p) dp < +∞,

and denote by (f, E, A) the solution of (6), (7), (8), (9) constructed in Theorem 1.1.

Then
∫
R
|p|m
γ1

f(·, p) dp belongs to L∞(]0, 1[) and

lim
R→+∞

∥∥∥∥
∫

|p|>R

|p|m
γ1

f(·, p) dp

∥∥∥∥
L∞(]0,1[)

= 0.

4 Appendix

We give here the proof of the impulsion variation lemma for the QR and FR cases.

The NR case was analyzed in [2]. We have the following easy results, cf. [2]

Lemma 4.1 Consider the quadratic function F : R → R given by F (s) = 1
2
a(s −

s1)
2 − b(s − s1) + c, with a, b, c > 0, ∆ = b2 − 2ac > 0 and s1 ≤ s2 such that

F (s) ≥ 0 ∀s1 ≤ s ≤ s2. Then we have s2 − s1 ≤ (b−√∆)/a ≤ 2c/b.

Remark 4.1 If a = 0 we still have the inequalities s2 − s1 ≤ c/b < 2c/b.

Corollary 4.1 Consider the function F1 : R → R given by F1(s) = 1
2
a(s − t)2 −

b|s − t| + c with a ≥ 0, b, c > 0, ∆ = b2 − 2ac > 0 and s1 ≤ t ≤ s2 such that

F1(s) ≥ 0 ∀s1 ≤ s ≤ s2. Then we have max{t−s1, s2−t} ≤ 2c/b and s2−s1 ≤ 4c/b.

For checking the impulsion variation lemma in the QR and FR cases we will use the

following immediate results
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Lemma 4.2 1) Denote by v : R→ R the function v(p) = p√
1+|p|2 . Then we have

|v(p1)− v(p2)| ≤ 2
|p1 − p2|√
1 + |p1|2

, ∀ p1, p2 ∈ R, |p1 − p2| ≤ |p1|
2

.

2) Denote by w : R2 → R the function w(p, a) = p√
1+|p|2+|a|2 . Then we have

|w(p1, a1)−w(p2, a2)| ≤ 2
√

2√
1 + |p1|2 + |a1|2

(|p1−p2|+|a1−a2|), ∀ (p1, a1), (p2, a2) ∈ R2,

satisfying |p1 − p2| ≤ |p1|
2

, |a1| ≤ |p1|.

Proof. 1) We write

|v(p1)− v(p2)| =
∣∣∣∣∣
∫ 1

0

(p1 − p2)dτ

(1 + |τp1 + (1− τ)p2|2) 3
2

∣∣∣∣∣ ≤ |p1 − p2|
∫ 1

0

dτ

(1 + |τp1 + (1− τ)p2|2) 1
2

.

Notice that for any τ ∈ [0, 1] we have

|τp1 + (1− τ)p2| ≥ |p1| − (1− τ)|p1 − p2| ≥ |p1| − |p1 − p2| ≥ |p1|
2

,

and therefore

|v(p1)− v(p2)| ≤ |p1 − p2|√
1 + |p1|2

4

≤ 2|p1 − p2|√
1 + |p1|2

.

2) With the notation (pτ , aτ ) = τ(p1, a1) + (1− τ)(p2, a2) for any τ ∈ [0, 1], we have

|w(p1, a1)− w(p2, a2)| =
∣∣∣∣
∫ 1

0

{
(p1 − p2)

∂w

∂p
(pτ , aτ ) + (a1 − a2)

∂w

∂a
(pτ , aτ )

}
dτ

∣∣∣∣(52)

As before we have |pτ | ≥ |p1|
2

for any τ ∈ [0, 1] and by taking into account that

|p1| ≥ |a1| we can write

∣∣∣∣
∂w

∂p
(pτ , aτ )

∣∣∣∣ ≤
1

(1 + |pτ |2) 1
2

≤ 1

(1 + |p1|2
4

)
1
2

≤ 2
√

2

(1 + |p1|2 + |a1|2) 1
2

, (53)

and

∣∣∣∣
∂w

∂a
(pτ , aτ )

∣∣∣∣ ≤
1

(1 + |pτ |2) 1
2

≤ 2
√

2

(1 + |p1|2 + |a1|2) 1
2

. (54)

The conclusion follows by combining (52), (53), (54).
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Proof. (Lemma 2.1, QR case)

1) By using the equation dP
ds

= −(E(s,X(s)) + A(s,X(s))∂xA(s,X(s))) we obtain

|P (s) − P (t)| ≤ |s − t| ‖F‖L∞ ≤ |P (t)|
2

, for any s ∈ [sin, sout] ∩ [t − |P (t)|
2‖F‖L∞

, t +

|P (t)|
2‖F‖L∞

] if ‖F‖L∞ > 0 and s ∈ [sin, sout] if ‖F‖L∞ = 0, where F (t, x) = −E(t, x) −
A(t, x)∂xA(t, x), ∀ (t, x) ∈ R×]0, 1[. By Lemma 4.2 we have

|v(P (s))− v(P (t))| ≤ 2
|P (s)− P (t)|
(1 + |P (t)|2) 1

2

≤ 2
|s− t| ‖F‖L∞

(1 + |P (t)|2) 1
2

, ∀ s ∈ [r1, r2], (55)

where r1 = max{sin, t − |P (t)|
2‖F‖L∞

}, r2 = min{sout, t + |P (t)|
2‖F‖L∞

} if ‖F‖L∞ > 0 and

r1 = sin, r2 = sout if ‖F‖L∞ = 0. By using the equation dX
ds

= P (s)
γ1(s)

= v(P (s)) and

(55) we find for any r1 ≤ s ≤ r2

1 ≥ |X(s)−X(t)| ≥ |s− t| |v(P (t))| −
∣∣∣∣
∫ s

t

{v(P (τ))− v(P (t))}dτ

∣∣∣∣

≥ |s− t| |v(P (t))| − |s− t|2 ‖F‖L∞

(1 + |P (t)|2) 1
2

.

We consider the function

F1(s) =
1

2
|s− t|2 2(‖E‖L∞ + ‖A‖L∞‖∂xA‖L∞)

(1 + |P (t)|2) 1
2

− |s− t| |P (t)|
(1 + |P (t)|2) 1

2

+ 1.

By the above computations we have F1(s) ≥ 0 for any s ∈ [r1, r2]. Moreover,

the condition ∆ > 0 is equivalent to |P (t)|2 > 4(‖E‖L∞ + ‖A‖L∞‖∂xA‖L∞)(1 +

|P (t)|2) 1
2 , which can be written (|P (t)|2 − β2/2)

2
> β2+β4/4, where β = 4(‖E‖L∞+

‖A‖L∞‖∂xA‖L∞). By the hypothesis we have

|P (t)|2 − β2

2
> β(1 + β)− β2

2
= β +

β2

2
,

and thus (
|P (t)|2 − β2

2

)2

> β2

(
1 +

β

2

)2

≥ β2 +
β4

4
.

Therefore the condition ∆ > 0 is satisfied. By Corollary 4.1 we deduce that

max{t− r1, r2 − t} ≤ 2

|P (t)|(1 + |P (t)|2) 1
2 . (56)
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Suppose that ‖F‖L∞ > 0 and t + |P (t)|
2‖F‖L∞

< sout, or r2 = t + |P (t)|
2‖F‖L∞

. By using (56)

we have
|P (t)|

2‖F‖L∞
≤ 2

|P (t)|
(
1 + |P (t)|2)

1
2 ,

which is equivalent to |P (t)|2 ≤ 4‖F‖L∞ (1 + |P (t)|2) 1
2 , and thus |P (t)|2 ≤ 4(‖E‖L∞+

‖A‖L∞‖∂xA‖L∞) (1 + |P (t)|2) 1
2 , saying that ∆ ≤ 0. But we have already proved

that ∆ > 0 and finally we deduce that sout ≤ t + |P (t)|
2‖F‖L∞

and similarly we have

sin ≥ t− |P (t)|
2‖F‖L∞

if ‖F‖L∞ > 0. It follows that r1 = sin, r2 = sout and

max{t− sin, sout − t} ≤ 2

|P (t)|
(
1 + |P (t)|2)

1
2 , sout − sin ≤ 4

|P (t)|
(
1 + |P (t)|2)

1
2 .

We check easily that if |P (t)| > DQR =
√

β(1 + β) then

|P (t)| (
1 + |P (t)|2)−

1
2 >

√
β(1 + β)√

1 + β(1 + β)
.

We obtain that

max{t− sin, sout − t} ≤ 2

√
1 + β(1 + β)√

β(1 + β)
.

Finally we find for any s ∈ [sin, sout] that

|P (s)− P (t)| ≤ β

2

√
1 + β(1 + β)√

β(1 + β)
≤ 1

2

√
β(1 + β) =

1

2
DQR ≤ DQR.

By using (55) we deduce also that for any s ∈ [sin, sout] we have

∣∣∣∣
P (s)

γ1(s)
− P (t)

γ1(t)

∣∣∣∣ ≤
2

γ1(t)
max{t− sin, sout − t}β

4
≤ β

γ1(t)

√
1 + β(1 + β)√

β(1 + β)
≤ DQR

γ1(t)
.

2) If |P (s1)| ≤ DQR and |P (s2)| ≤ DQR we have |P (s1) − P (s2)| ≤ 2DQR. If

|P (s1)| > DQR, by applying the previous point with t = s1 one gets |P (s2)−P (s1)| ≤
DQR ≤ 2DQR. If |P (s2)| > DQR we apply the previous point with t = s2.

The proof in the FR case is very similar to those of the QR case. For the sake

of completeness we give some details.
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Proof. (Lemma 2.1, FR case)

1) Consider β = 8
√

2 (‖E‖L∞ + ‖∂tA‖L∞ + ‖∂xA‖L∞). By using the equation dP
ds

=

−
(
E(s,X(s)) + A(s,X(s))

γ2(s)
∂xA(s,X(s))

)
we obtain

|P (s)− P (t)| ≤ |s− t| (‖E‖L∞ + ‖∂xA‖L∞) ≤ |s− t| β

8
√

2
≤ |P (t)|

2
, (57)

for any s ∈ [sin, sout] ∩ [t− 4
√

2|P (t)|
β

, t + 4
√

2|P (t)|
β

] if β > 0 and s ∈ [sin, sout] if β = 0.

Since |P (t)| > DFR ≥ ‖A‖L∞ we have |P (t)| > |A(t,X(t))| and therefore Lemma

4.2 implies
∣∣∣∣
P (s)

γ1(s)
− P (t)

γ1(t)

∣∣∣∣ ≤ 2
√

2

γ1(t)
(|P (s)− P (t)|+ |A(s,X(s))− A(t,X(t))|)

≤ 2
√

2

γ1(t)
(|s− t| (‖E‖L∞ + ‖∂xA‖L∞) + |s− t|(‖∂tA‖L∞ + ‖∂xA‖L∞))

≤ β

2γ1(t)
|s− t|, ∀ s ∈ [r1, r2], (58)

where r1 = max{sin, t− 4
√

2|P (t)|
β

}, r2 = min{sout, t + 4
√

2|P (t)|
β

} if β > 0 and r1 = sin,

r2 = sout if β = 0. Notice that in the second line of the above formula we used

the inequality |X(s)−X(t)| ≤ |s− t|, ∀ s ∈ [sin, sout]. By using now the equation

dX
ds

= P (s)
γ1(s)

we find for any s ∈ [r1, r2]

1 ≥
∣∣∣∣
∫ s

t

P (t)

γ1(t)
dτ

∣∣∣∣−
∣∣∣∣
∫ s

t

{
P (τ)

γ1(τ)
− P (t)

γ1(t)

}
dτ

∣∣∣∣ ≥ |s− t| |P (t)|
γ1(t)

− 1

2
|s− t|2 β

2γ1(t)
.

We consider the function F1(s) = 1
2
|s − t|2 β

2γ1(t)
− |s − t| |P (t)|

γ1(t)
+ 1. By the above

computations we have F1(s) ≥ 0 for any s ∈ [r1, r2]. Moreover, the condition

∆ > 0 is equivalent to |P (t)|2 > β(1+ |P (t)|2 + |A(t, X(t))|2) 1
2 which can be written(

|P (t)|2 − β2

2

)2

> β2(1 + |A(t,X(t))|2) + β4

4
. By the hypothesis we have |P (t)|2 >

β(β +
√

1 + |A(t, X(t))|2) and therefore

(
|P (t)|2 − β2

2

)2

>

(
β2

2
+ β

√
1 + |A(t,X(t))|2

)2

≥ β2(1 + |A(t,X(t))|2) +
β4

4
,

which says that the condition ∆ > 0 is satisfied. By Corollary 4.1 we deduce that

max{t− r1, r2 − t} ≤ 2γ1(t)

|P (t)| =
2

|P (t)|(1 + |P (t)|2 + |A(t, X(t))|2) 1
2 . (59)
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Suppose that β > 0 and t + 4
√

2
β
|P (t)| < sout, or r2 = t + 4

√
2

β
|P (t)|. The inequality

(59) implies 4
√

2
β
|P (t)| ≤ 2γ1(t)

|P (t)| , and we deduce that

|P (t)|2 ≤ β

2
√

2
γ1(t) ≤ β

(
1 + |P (t)|2 + |A(t,X(t))|2)

1
2 , (60)

saying that ∆ ≤ 0. But we have already proved that ∆ > 0 and finally we deduce

that sout ≤ t + 4
√

2
β
|P (t)| and similarly we have sin ≥ t − 4

√
2

β
|P (t)| if β > 0. It

follows that r1 = sin, r2 = sout and

max{t− sin, sout − t} ≤ 2γ1(t)

|P (t)| , sout − sin ≤ 4γ1(t)

|P (t)| . (61)

Since the function p → p√
1+|p|2+|a|2 is nondecreasing with respect to p for any a ∈ R

and |P (t)|2 > β(β +
√

1 + |A(t,X(t))|2) we have

β
γ1(t)

|P (t)| ≤ β

√
1 + |A(t, X(t))|2 + β(β +

√
1 + |A(t,X(t))|2)

√
β(β +

√
1 + |A(t,X(t))|2)

≤
√

β(β +
√

1 + |A(t,X(t))|2)

≤
√

β(β +
√

1 + ‖A‖2
L∞) ≤ DFR. (62)

Combining (57), (61), (62) yields for any s ∈ [sin, sout]

|P (s)− P (t)| ≤ β

4
√

2

γ1(t)

|P (t)| ≤
DFR

4
√

2
≤ DFR.

We deduce from (58), (61), (62)

∣∣∣∣
P (s)

γ1(s)
− P (t)

γ1(t)

∣∣∣∣ ≤
β

γ1(t)

γ1(t)

|P (t)| ≤
DFR

γ1(t)
, ∀ s ∈ [sin, sout].

2) The second statement follows as in the QR case.
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