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Abstract : We consider a class of equations of the form

−ε2∆u+ V (x)u = f(u), u ∈ H1(RN ).

For a local minimum x0 of the potential V (x), we show that there exists a se-
quence εn → 0, for which corresponding solutions un(x) ∈ H1(RN ) concentrate
at x0. Our assumptions on f(ξ) are mainly the ones under which the associated
autonomous problem

−∆v + V (x0)v = f(v), v ∈ H1(RN ),

admits a non trivial solution.

0. Introduction

In this paper we study the existence of positive solutions for the equation

−ε2∆u+ V (x)u = f(u), u ∈ H1(RN ). (0.1)

* was supported by the grant FONDECYT No 1020298, Chile
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We assume V (x) locally Hölder continuous and that there exists V0 > 0 such that

V (x) ≥ V0 > 0 for all x ∈ RN . (0.2)

A basic motivation to study (0.1) comes from the nonlinear Schrödinger equation

ih̄
∂Φ
∂t

= − h̄2

2m
∆Φ +W (x)Φ− g(|Φ|)Φ. (0.3)

We are interested in standing wave solutions, namely solutions of the form Φ(x, t) =
u(x)e−

iEt
h̄ and it is easily observed that a Φ(x, t) of this form satisfies (0.3) if and only if

u(x) is a solution of (0.1) with V (x) = W (x)− E, ε2 = h̄2

2m and f(u) = g(u)u.

An interesting class of solutions of (0.1), sometimes called semi-classical states, are
families of solutions uε(x) which concentrate and develop a spike shape around one, or
more, special points in RN , while vanishing elsewhere as ε→ 0.

The existence of single and multiple spike solutions was first studied by Floer and
Weinstein [FW]. In the one dimensional case and for f(u) = u3 they construct a single
spike solution concentrating around any given non-degenerate critical point of the potential
V (x). Oh [O1, O2] extended this result in higher dimension and for f(u) = |u|p−1u

(1 < p < N+2
N−2 ). The arguments in [FW, O1, O2] are based on a Lyapunov-Schmidt

reduction and rely on the uniqueness and non-degeneracy of the ground state solutions of
the autonomous problems :

−∆v + V (x0)v = f(v) in H1(RN ) (x0 ∈ RN ). (0.4)

We remark that if we introduce a rescaled (around x0 ∈ RN ) function v(y) = u(εy + x0),
(0.1) becomes −∆v + V (x0 + εy)v = f(v) and (0.4) appears as a limit as ε→ 0.

Subsequently reduction methods were also found suitable to find solutions of (0.1)
concentrating around possibly degenerate critical points of V (x), when the ground state
solutions of the limit problems (0.4) are unique and non-degenerate. In [ABC] Ambrosetti,
Badiale and Cingolani consider concentration phenomena at isolated local minima and
maxima with polynomial degeneracy and in [YYL] Y. Li deals with C1-stable critical
points of V . See also [AMS, CN, Gr, KW, P, S] for related results.

We remark that the uniqueness and non-degeneracy of the ground state solutions of
(0.4) are, in general, rather difficult to prove. They are known so far only for a rather
restricted class of nonlinearities f(ξ). To attack the existence of positive solutions of (0.1)
without these assumptions, the variational approach, initiated by Rabinowitz [R], proved
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to be successful. In [R] he proves, by a mountain pass argument, the existence of positive
solutions of (0.1), for ε > 0 small, whenever

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x).

Later Wang [W] showed that these solutions concentrate at global minimum points of
V (x).

In 1996, del Pino and Felmer [DF1] by introducing a penalization approach, so called
local mountain pass, managed to handle the case of a, possibly degenerate, local minimum
of V (x). They assume that an open bounded set Λ ⊂ RN satisfies

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x) (0.5)

and they show the existence of a single spike solution concentrating around minimizer of
V (x) in Λ. Later, under stronger assumptions on f(ξ), they extended their result to the
existence of multiple spike solutions in a, possibly degenerate, saddle point setting [DF4].
As results in between [DF1] and [DF4] we mention [DF2, DF3, Gu].

In a recent paper Jeanjean and Tanaka [JT3] extend the result of [DF1] to a wider
class of nonlinearities. In particular in [JT3] the monotonicity of the function ξ 7→ f(ξ)

ξ is
not required and asymptotically linear as well as superlinear nonlinearities are deal with.

In the present paper we pursue the weakening of the conditions on f(ξ). Our main
result is the following :
Theorem 0.1. Suppose N ≥ 3 and let Λ ⊂ RN be a bounded open set satisfying (0.5).
We assume on f(ξ),

(f0) f(ξ) ∈ C1(R,R).
(f1) f(ξ) = o(ξ) as ξ ∼ 0.

(f2) For some s ∈ (1, N+2
N−2 )

f(ξ)
ξs

→ 0 as ξ →∞.

(f3) There exists ξ0 > 0 such that

F (ξ0)−
1
2
( inf
x∈Λ

V (x))ξ20 > 0,

where

F (ξ) =
∫ ξ

0

f(τ) dτ.

Then there exists a sequence (εn) decreasing to 0 such that, for any n ∈ N, (0.1) has a

solution uεn
(x) satisfying
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i) uεn(x) has unique local maximum (hence global maximum) in RN at xεn ∈ Λ.

ii) V (xεn
) → infx∈Λ V (x).

iii) There exist constants C1, C2 > 0 such that

uεn(x) ≤ C1 exp
(
−C2

|x− xεn |
εn

)
for x ∈ RN .

We prove Theorem 0.1 under assumptions on f(ξ) that we believe to be almost neces-
sary. In particular no control on f(ξ) between 0 and ∞ is required and it is a consequence
of Pohozaev’s identity that (f3) is necessary for the associated autonomous problem

−∆v + V (x0)v = f(v), v ∈ H1(RN )

to have a non trivial solution (see [BL]). In turn this condition is required for the existence
of solutions when ε > 0 is small. However this generalization is at the expense of a
weakening of our knowledge on the concentration phenomena. We are only able to prove
that it occurs on a sequence (εn) and not, as in [JT3] or [DF1], that i)-iii) in the statement
of Theorem 0.1 hold for any ε > 0 sufficiently small.

Our solutions are obtained as critical points of penalized functionals

Iε(u) =
1
2

∫
RN

ε2|∇u|2 + V (x)u2 dx−
∫
RN

G(x, u) dx

(see Section 4 for a precise definition). The purpose of introducing these functionals is to
obtain solutions of (0.1) which are localized inside Λ.

We shall prove that Iε(u) has a mountain pass geometry when ε > 0 is small enough,
and get our solutions at the mountain pass levels.

To reach the conclusion of Theorem 0.1 it is necessary to show that such solutions
uε(x) exists but also that they are sufficiently small. Indeed, as it is known from [DF1],
a key point is to show that ∫

RN

ε2|∇uε|2 + V (x)u2
ε dx ≤ CεN (0.6)

for a constant C > 0 independent of ε > 0. In [DF1] this was achieved by requiring
the so called global Ambrosetti-Rabinowitz’s condition. This requirement was weakened in
[JT3] but still a global control on f(ξ) was required. Here we manage to obtain (0.6) on
a sequence, by using techniques which were developped by the second author in [J] (see
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also [GJ]) to deal with a bifurcation phenomena from the essential spectrum. Whether or
not a solution exists and (0.6) holds for any ε > 0 small is an open question.

The proof of Theorem 0.1 consists of several steps. In Section 1, influenced by the
work of del Pino-Felmer [DF1], we introduce the penalized problems. In Section 2, follow-
ing [JT3] we define re-scaled functionals and recall some concentration-compactness type
arguments. In Section 3 we state results on autonomous problems which were already at
the heart of [JT3], in particular for proving that solutions of the penalized problems are
also solutions of (0.1). Roughly speaking these results say that for (0.4) the mountain pass
level corresponds to the ground state level. In Section 4, we prove that the functionals
Iε(u) have a mountain pass geometry and derive estimates on the mountain pass levels.
In Section 5, we prove that for almost every ε > 0 sufficiently small the penalized prob-
lems have a solution. Finally in Section 6 we prove the existence of a special sequence
(εn) decreasing to 0 for which the corresponding critical points satisfies (0.6). Then we
show, following [JT3], that for this sequence the critical points of the modified functionals
satisfies the original problem (0.1).

1. Modification of the nonlinearity f(ξ)

In this section and the next two, we give some preliminaries for the proof of Theorem 0.1.
Since we seek positive solutions, we can assume that f(ξ) = 0 for all ξ ≤ 0. Also, under
(f0)–(f2), for any δ > 0 there exists Cδ > 0 such that

|f(ξ)| ≤ δ|ξ|+ Cδ|ξ|s for all ξ ∈ R . (1.1)

To find a solution uε(x) concentrating in a given set Λ, we modify the nonlinearity f(ξ).
Here our approach is closely related to the one of del Pino-Felmer [DF1] (see also [JT3]).

Let f(ξ) be a function satisfying (f0)–(f2). We choose a number ν ∈ (0, V0
2 ) and we

set

f(ξ) =
{

min{f(ξ), νξ} for ξ ≥ 0,
0 for ξ < 0.

(1.2)

By (f1) we see that there exists a small rν > 0 such that

f(ξ) = f(ξ) for |ξ| ≤ rν .

Moreover it holds that

f(ξ) =
{
νξ for large ξ ≥ 0,
0 for ξ ≤ 0. (1.3)
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Next, let Λ ⊂ RN be a bounded open set satisfying (0.5). We may assume that the
boundary ∂Λ is smooth. We choose an open subset Λ′ ⊂ Λ with a smooth boundary ∂Λ′

and a function χ(x) ∈ C∞(RN ,R) such that

inf
x∈Λ\Λ′

V (x) > inf
x∈Λ

V (x),

min
x∈∂Λ′

V (x) > inf
x∈Λ′

V (x) = inf
x∈Λ

V (x),

χ(x) = 1 for x ∈ Λ′,

χ(x) ∈ (0, 1) for x ∈ Λ \ Λ′,

χ(x) = 0 for x ∈ RN \Λ.

In what follows we assume, without loss of generality, that

0 ∈ Λ′ and V (0) = inf
x∈Λ

V (x). (1.4)

Finally we define

g(x, ξ) = χ(x)f(ξ) + (1− χ(x))f(ξ) for (x, ξ) ∈ RN ×R (1.5)

and we write F (ξ) =
∫ ξ

0
f(τ) dτ , G(x, ξ) =

∫ ξ

0
g(x, τ) dτ = χ(x)F (ξ) + (1− χ(x))F (ξ).

From now on we try to find a solution of the following problem :

−ε2∆u+ V (x)u = g(x, u) in RN . (1.6)

We will find a solution uε(x) of (1.6) via a mountain pass argument and besides other
properties we will show that uε(x) satisfies for small ε > 0

|uε(x)| ≤ rν for x ∈ RN \Λ′, (1.7)

that is, uε(x) also solves the original problem (0.1).

We give some properties of f(ξ).

Lemma 1.2. (i) f(ξ) = 0, F (ξ) = 0 for all ξ ≤ 0.

(ii) f(ξ) ≤ νξ, F (ξ) ≤ F (ξ) for ξ ≥ 0.

(iii) f(ξ) ≤ f(ξ) for ξ ≥ 0.

The proofs are direct from the definition of f(ξ). Also we clearly have
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Corollary 1.3. (i) g(x, ξ) ≤ f(ξ), G(x, ξ) ≤ F (ξ) for all (x, ξ) ∈ RN ×R.

(ii) g(x, ξ) = f(ξ) if |ξ| < rν .

(iii) For any δ > 0 there exists Cδ > 0 such that

|g(x, ξ)| ≤ δ|ξ|+ Cδ|ξ|s for all (x, ξ) ∈ RN ×R . (1.8)

2. Modified functionals and concentration-compactness type arguments

Introducing the re-scaled function v(y) = u(εy) we can rewrite (1.6) as

−∆v + V (εy)v = g(εy, v) in RN . (2.1)

The functional corresponding to (2.1) is

Jε(v) =
1
2

∫
RN

|∇v|2 + V (εy)v2 dy −
∫
RN

G(εy, v) dy.

We consider Jε(v) on the following function space :

Hε = {v ∈ H1(RN );
∫
RN

V (εy)v2 dy <∞}

equipped with norm

‖v‖2Hε
=
∫
RN

|∇v|2 + V (εy)v2 dy.

Note that, because of (0.2), Hε ⊂ H1(RN ). In Proposition 3.2 of [JT3] we obtained
a description of the sequences of points (vεn) ⊂ Hεn which satisfies, when εn → 0,

Jεn
(vεn

) → c ∈ R, (2.2)

J ′εn
(vεn) = 0, (2.3)

||vεn
||Hεn

≤ m, (2.4)

where the constants c, m are independent of ε.
To state this result, we need some definitions. For x0 ∈ RN , let Φx0 : H1(RN ) → R

be given by

Φx0(v) =
1
2

∫
RN

|∇v|2 + V (x0)v2 dy −
∫
RN

G(x0, v) dy.

We choose a function ψ(y) ∈ C∞0 (RN ,R) such that

ψ(y) = 1 for y ∈ Λ,

ψ(y) ∈ [0, 1] for all y ∈ RN .
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We also define ψε(y) = ψ(εy). Finally we set

H(x, ξ) = −1
2
V (x)ξ2 + χ(x)F (ξ) + (1− χ(x))F (ξ)

and

Ω = {x ∈ RN ; sup
ξ>0

H(x, ξ) > 0}.

Remark 2.1. (i) Ω ⊂ Λ and 0 ∈ {x ∈ Λ′; V (x) = infx∈Λ V (x)} ⊂ Ω.
(ii) Φx0(v) has non-zero critical points if and only if x0 ∈ Ω. Indeed applying Proposition
3.1 with H(ξ) = H(x0, ξ) = − 1

2V (x0)ξ2 +G(x0, ξ), we can see that (h3) of Proposition 3.1
holds if and only if x0 ∈ Ω.

Now Proposition 3.2 of [JT3] is

Proposition 2.2. Assume that f(ξ) satisfies (f0)–(f2) and (vεn
) ⊂ Hεn

satisfies (2.2)–
(2.4). Then there exists a subsequence, still denoted εn → 0, ` ∈ N∪{0}, sequences

(yk
εn

) ⊂ RN , xk ∈ Ω, ωk ∈ H1(RN ) \ {0} (k = 1, 2, · · · , `) such that

(i) |yk
εn
− yk′

εn
| → ∞ as j →∞ for k 6= k′. (2.5)

(ii) εny
k
εn
→ xk ∈ Ω as j →∞. (2.6)

(iii) ωk 6≡ 0 and Φ′
xk(ωk) = 0. (2.7)

(iv)

∥∥∥∥∥vεn
− ψεn

(∑̀
k=1

ωk(y − yk
εn

)

)∥∥∥∥∥
Hεn

→ 0 as j →∞. (2.8)

(v) Jεn(vεn) →
∑̀
k=1

Φxk(ωk). (2.9)

Remark 2.3. (i) When ` = 0 in the statement of Proposition 2.2, it means that

‖vεn
‖Hεn

→ 0 and Jεn
(vεn

) → 0.

(ii) Since we do not assume any growth condition on V (x), in general ω 6∈ Hε for a critical
point ω(y) of Φx0(v) and ε > 0. This motivates the introduction of a cut-off function ψε(y)
in (iv) of Proposition 2.2.

3. Some results on autonomous problems

In this section we deal with the the limit functionals Φx0(v) for x0 ∈ RN . The
following result is due to Berestycki-Lions [BL].
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Proposition 3.1. ([BL]). Assume that N ≥ 3 and that h(ξ) satisfies

(h0) h(ξ) ∈ C(R,R) is continuous and odd.

(h1) −∞ < lim infξ→0
h(ξ)

ξ ≤ lim supξ→0
h(ξ)

ξ < 0.

(h2) lim
ξ→∞

h(ξ)

ξ
2N

N−2
= 0.

Then the problem

−∆u = h(u) in RN , u(x) ∈ H1(RN ) (3.1)

has a non-zero solution if and only if the following condition is satisfied.

(h3) There exists ξ0 > 0 such that H(ξ0) > 0, where H(ξ) =
∫ ξ

0
h(τ) dτ .

Moreover under (h0)–(h3), (3.1) has a least energy solution u(x) which satisfies u(x) > 0
and is radially symmetric in RN .

By a least energy solution we mean a solution ω(x) which satisfies Ĩ(ω) = m, where

m = inf{Ĩ(u); u ∈ H1(RN ) \ {0} is a solution of (4.1)}, (3.2)

Ĩ(u) =
∫
RN

1
2
|∇u|2 −H(u) dy.

It is also shown that m > 0.
In our recent work [JT2], we have revisited (3.1) and enlighten a mountain pass

characterization of least energy solutions.

Proposition 3.2. ([JT2]). Assume that (h0)–(h3) hold. Then Ĩ(u) has a mountain pass

geometry and there holds that

b = m, (3.3)

where m is defined in (3.2) and b is the mountain pass value for Ĩ(u);

b = inf
γ∈Γ

max
t∈[0,1]

Ĩ(γ(t)),

Γ = {γ(t) ∈ C([0, 1],H1(RN )); γ(0) = 0, Ĩ(γ(1)) < 0}.

Moreover for any least energy solution ω(x) of (3.1) there exists a path γ(t) ∈ Γ such that

Ĩ(γ(t)) ≤ m = Ĩ(ω) for all t ∈ [0, 1], (3.4)

ω ∈ γ([0, 1]). (3.5)

Remark 3.3. Both Propositions 3.1 and 3.2 are stated for odd nonlinearities h(ξ). Since
we just consider positive solutions, extending the nonlinearity f(ξ) to an odd function on

R, we can apply Propositions 3.1 and 3.2 to our setting (see [JT1] for more details).
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For x ∈ RN we set

m(x) =
{

least energy level of Φx(v) if x ∈ Ω,
∞ if x ∈ RN \Ω.

By Proposition 3.2, m(x) is equal to the mountain pass value for Φx(v) if x ∈ Ω. We have
the following.

Proposition 3.4. m(x0) = infx∈RN m(x) if and only if x0 ∈ Λ and V (x0) = infx∈Λ V (x).
In particular, m(0) = infx∈RN m(x).

Proof. Suppose that x0 ∈ Λ satisfies V (x0) = infx∈Λ V (x). By our choice of Λ′ and χ, we
have x0 ∈ Λ′ and χ(x0) = 1. We also have x0 ∈ Ω by Remark 2.1. Using V (x) ≥ V (x0) in
Λ, G(x, ξ) ≤ F (ξ) for all (x, ξ), we have for any x ∈ Ω,

Φx(v) =
1
2
‖∇v‖22 +

1
2
V (x)‖v‖22 −

∫
RN

G(x, v) dy

≥ 1
2
‖∇v‖22 +

1
2
V (x0)‖v‖22 −

∫
RN

F (v) dy

= Φx0(v) for all v ∈ H1(RN ).
(We remark that this inequality is strict if V (x) > V (x0) and v 6≡ 0). Thus m(x0) ≤ m(x)
for all x ∈ RN .

Next suppose that x′ ∈ Λ satisfies V (x′) > V (x0). We take a path γ ∈ Γ such that
(3.4)–(3.5) are satisfied for Ĩ(v) = Φx′(v). Then

m(x0) ≤ max
t∈[0,1]

Φx0(γ(t)) < max
t∈[0,1]

Φx′(γ(t)) = m(x′).

Therefore Proposition 3.4 holds.

4. Mountain pass geometry for Iε and estimates

After these preliminaries we now turn back to equation (1.6). Associated to (1.6) is the
energy functional

Iε(u) =
1
2

∫
RN

ε2|∇u|2 + V (x)u2 dx−
∫
RN

G(x, u) dx

which is well defined for u ∈ H where

H = {u ∈ H1(RN ,R) :
∫
RN

V (x)u2(x)dx <∞}.

H becomes a Hilbert space, continuously embedded in H1(RN ) when equipped with the
inner product

< u, v >=
∫
RN

∇u∇v + V (x)uv dx

whose associated norm we denote by || · ||. Let us show that Iε has a mountain pass
geometry in H.
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Proposition 4.1. Iε(u) ∈ C1(H,R) and it has a Mountain Pass Geometry that is uniform

with respect to ε ∈ (0, 1] in the following sense :

1◦ Iε(0) = 0.

2◦ There are constants ρε > 0 and δε > 0 such that

Iε(u) ≥ δε for all ‖u‖H1(RN ) = ρε

and

Iε(u) > 0 for all 0 < ‖u‖H1(RN ) ≤ ρε.

3◦ There is a u0(x) ∈ C∞0 (RN ) and ε0 > 0 such that

Iε(u0) < 0 for all ε ∈ (0, ε0].

Proof. From (1.8) it is clear that Iε(u) ∈ C1(H,R). 1◦ is also trivial. To show 2◦, we use
(0.2) and (1.8) with s = N+2

N−2 = 2∗ − 1. We get, for ε ∈ (0, 1],

Iε(v) ≥
ε2

2
||u||2 − ε2

4
V0

∫
RN

u2 dx− C(ε)
∫
RN

|u|2
∗
dx,

≥ ε2

4
||u||2 − C(ε)

∫
RN

|u|2
∗
dx

(4.1)

for some positive constant C(ε). Thus, by the Sobolev’s embeddings, there are constants
ρε > 0 and δε > 0 such that the statement 2◦ holds. To show 3◦, we choose v0 ∈ C∞0 (RN )
such that

1
2

∫
RN

|∇v0|2 + V (0)v2
0 dy −

∫
RN

F (v0) dy < 0.

Because of (f3) the existence of such v0 ∈ C∞0 (RN ) follows from Proposition 3.2. Since we
are assuming 0 ∈ Λ′, we observe that

Jε(v0) →
1
2

∫
RN

|∇v0|2 + V (0)v2
0 dy −

∫
RN

F (v0) dy < 0 as ε→ 0.

Now setting u0(x) = v0(
x

ε
) we have that Iε(u0) = εNJε(v0) and thus we get 3◦ for a ε0 > 0

small enough.

By Proposition 4.1, we can define the mountain pass value. For ε ∈ (0, ε0] we set

cε = inf
γ∈Γε

max
t∈[0,1]

Iε(γ(t)), (4.2)

Γε = {γ ∈ C([0, 1],H); γ(0) = 0, Iε(γ(1)) < 0}. (4.3)

Next we derive estimates on the behavior of cε as ε→ 0.
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Proposition 4.2. Let (cε)ε∈(0,ε0] be the mountain pass value of Iε(v) defined in (4.2)–
(4.3). Then

cε ≤ εN (m(0) + o(1)) (4.4)

as ε→ 0, where m(0) is the mountain pass value of the functional Φ0. Also we have that

cε ≥ CεN (4.5)

for a C > 0 independent of ε > 0.

Proof. By Proposition 3.2 there exists a path γ ∈ C([0, 1],H) such that

γ(0) = 0, Φ0(γ(1)) < 0,

Φ0(γ(t)) ≤ m(0) for all t ∈ [0, 1],

max
t∈[0,1]

Φ0(γ(t)) = m(0).

Let ϕ(y) ∈ C∞0 (RN ) be such that ϕ(0) = 1 and ϕ ≥ 0. Setting

γR(t)(y) = ϕ(y/R)γ(t)(y),

we have γR(t) ∈ C([0, 1],H), γR(0) = 0 and Φ0(γR(1)) < 0 for sufficiently large R > 1.
Also for any fixed R > 0,

Jε(γR(t)) → Φ0(γR(t)) as ε→ 0 uniformly in t ∈ [0, 1]

and thus
max

t∈[0,1]
Jε(γR(t)) → max

t∈[0,1]
Φ0(γR(t)) as ε→ 0. (4.6)

Also we have
max

t∈[0,1]
Φ0(γR(t)) → m(0) as R→∞. (4.7)

Now defining γ̃R(t) by γ̃R(t)(x) = γR(t)(
x

ε
) we see immediately that γ̃R(t) ∈ Γε for

sufficiently large R > 1 and thus

cε ≤ max
t∈[0,1]

Iε(γ̃R(t)) = εN max
t∈[0,1]

Jε(γR(t)). (4.8)

Then from (4.6)-(4.8) we get that

lim sup
ε→0

cε ≤ εNm(0).
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Finally we see that (4.5) hold from (4.1) noting that we can take ρε to be CεN−2 with
C > 0 sufficiently small.

5. Solutions for the modified problems

In this section we establish the existence of a sequence (εn) decreasing to 0 for which
the corresponding critical points uεn(x) of Iεn(u) satisfies∫

RN

ε2n|∇uεn
|2 + V (x)u2

εn
dx ≤ CεN

n (5.1)

for a C > 0 independent of n ∈ N.
Observe that if ε1 < ε2 we have that Iε1(u) ≤ Iε2(u) for all u ∈ H. Thus, Γε2 ⊂ Γε1

and we see that cε is a nondecreasing function of ε. Consequently c′ε, the derivative of cε,
exists almost everywhere.

From now one we make the change of variables λ := ε2 to simplify the calculations.
We also denote Iλ = Iε, Γλ = Γε and by c′λ the derivative of cλ with respect to λ.

We claim that for any λ > 0 small enough where c′λ exists, there is a sequence of paths
(γm) ⊂ Γλ with

max
t∈[0,1]

Iλ(γm(t)) → cλ

having “nice” localization properties. Namely, starting from a level strictly below cλ, the
“top” of each path is contained in a same ball centered at the origin whose radius β(λ) > 0
is sufficiently small as λ → 0. To see this let λ ∈ (0,

√
ε0] be an arbitrary but fixed value

where c′λ exists. Let (λm) be a strictly decreasing sequence to λ. Our claim is a direct
consequence of the following result.

Proposition 5.1. For any δ > 0 there exists a sequence of paths (γm) ⊂ Γλ such that for

m large enough we have

i) ‖∇γm(t)‖22 ≤ 2c′λ + 5δ when

Iλm
(γm(t)) ≥ cλm

− δ(λm − λ) (5.2)

ii)
max

t∈[0,1]
Iλ(γm(t)) ≤ cλ + (c′λ + 2δ)(λm − λ). (5.3)

iii) Making the choice δ = cλ we have when (5.2) hold that∫
RN

λ|∇γm(t)|2 + V (x)γ2
m(t) dx ≤ C

(
λ(2c′λ + 5cλ) + (cλ + (2c′λ + 5cλ)

2∗
2

)
:= β(λ).

(5.4)
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Proof. Let (γm) ⊂ Γλ be an arbitrary sequence such that

max
t∈[0,1]

Iλm(γm(t)) ≤ cλm + δ(λm − λ). (5.5)

Note that such sequence exists since Γλm
⊂ Γλ for all m ∈ N . From the definitions of

Iλ(u) and Iλm
(u) we obtain

‖∇γm(t)‖22 = 2
Iλm

(γm(t))− Iλ(γm(t))
λm − λ

.

Thus if γm(t) satisfies (5.2), by (5.5) we obtain, for m large enough, that

‖∇γm(t)‖22 ≤ 2
cλm

− cλ
λm − λ

+ 4δ ≤ 2c′λ + 5δ.

This proves (i). For m large enough we have

cλm
≤ cλ + (c′λ + δ)(λm − λ). (5.6)

Thus since Iλm
(v) ≥ Iλ(v) for all v ∈ H, we get from (5.5), (5.6), and for any t ∈ [0, 1]

Iλ(γm(t)) ≤ Iλm
(γm(t)) ≤ cλ + (c′λ + 2δ)(λm − λ). (5.7)

To prove (iii) we observe that∫
RN

V (x)γ2
m(t) dx ≤ 2

(
Iλ(γm(t)) +

∫
RN

G(x, γm(t)) dx
)
.

Applying (1.8) with s = N+2
N−2 = 2∗ − 1 we can write∫

RN

G(x, γm(t))dx ≤ ρ‖γm(t)‖22 + Cρ‖γm(t)‖2
∗

2∗ , (5.8)

for any ρ > 0. Also, choosing m large enough such that δ(λm−λ) ≤ cλ and c′λ(λm−λ) ≤ cλ

we obtain from (5.7)
Iλ(γm(t)) ≤ 4cλ. (5.9)

Gathering (5.8) and (5.9) it follows that∫
RN

V (x)γ2
m(t) dx ≤ 2

(
4cλ + ρ‖γm(t)‖22 + Cρ‖γm(t)‖2

∗

2∗

)
.

Now using the Sobolev embedding ||u||2∗ ≤ C||∇u||2,∀u ∈ H, and choosing ρ < V0
4 we get∫

RN

V (x)γ2
m(t) dx ≤ C

(
cλ + (2c′λ + 5cλ)

2∗
2

)
(5.10)

14



for some C > 0. Now we get (iii) from Point i) and (5.10).

We shall now prove that when c′λ exists the functional Iλ(u) has a critical point at
the mountain pass level cλ which is contained in the set

C = {u ∈ H;
∫
RN

λ|∇u|2 + V (x)u2 dx ≤ 2β(λ)}

where β(λ) is defined in Proposition 5.1. When λ > 0 is fixed, the norm

||u||2λ =
∫
RN

λ|∇u|2 + V (x)u2 dx

is equivalent to the norm || · ||. For a > 0 we define the set

Fa = C ∩ I−1
λ ([cλ − a, cλ + a]).

Proposition 5.2. For all a > 0,

inf
u∈Fa

‖I ′λ(u)‖ = 0. (5.11)

Proof. Seeking a contradiction we assume that (5.11) does not hold. Then, because of
the mountain pass geometry (see Proposition 4.1), a > 0 can be choosen such that for
any u ∈ Fa, ||I ′λ(u)|| ≥ a and 0 < a < 1

2cλ. Using a deformation argument, there exist
µ ∈ (0, a) and a homeomorphism η : H → H such that

i) η(u) = u outside I−1
λ ([cλ − a, cλ + a]) and

Iλ(η(u)) ≤ Iλ(u), for all u ∈ H, (5.12)

ii) for ||u||2λ ≤ β(λ) such that Iλ(u) ≤ cλ + µ,

Iλ(η(u)) ≤ cλ − µ. (5.13)

Let (γm) ⊂ Γλ be the sequence obtained in Proposition 5.1 where the choice δ = 2
5cλ is

made. By Proposition 5.1 (ii) we can select a k ∈ N sufficiently large so that

max
t∈[0,1]

Iλ(γk(t)) ≤ cλ + µ. (5.14)

Clearly by i), η ◦ γk ∈ Γλ. Now if u = γk(t) with Iλ(u) ≤ cλ − cλ(λk − λ) then (5.12)
implies that

Iλ(η(u)) ≤ cλ − cλ(λk − λ). (5.15)

On the other hand if u = γk(t) with Iλ(u) > cλ − cλ(λk − λ) then Proposition 5.1 and
(5.14) imply that u is such that ||u||2λ ≤ β(λ) with Iλ(u) ≤ cλ + µ. Now (5.13) gives that

Iλ(η(u)) ≤ cλ − µ (5.16)

which, combined with (5.15), yields

max
t∈[0,1]

Iλ(η ◦ γk(t)) < cλ.

This contradicts the variational characterization of cλ and proves the proposition.
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Lemma 5.3. Let λ be small enough and such that c′λ exists. Then there exists a critical

point of (1.6), uλ ∈ H satisfying Iλ(uλ) = cλ and such that∫
RN

λ|∇uλ|2 + V (x)u2
λ dx ≤ 2β(λ).

Proof. From Proposition 5.2 when c′λ exists, Iλ(u) has a Palais-Smale sequence (un) ⊂ H

at the level cλ which satisfies ||un||2λ ≤ 2β(λ). Since (un) is bounded inH, after extracting a
subsequence if necessary, we may assume that un ⇀ uλ inH. To show that the convergence
is actually strong we adapt an argument of [DF1] who observe that it suffices to show that
for any given δ > 0 there exists R > 0 such that

lim sup
j→∞

∫
|y|≥R

λ|∇un|2 + V (x)u2
n dx < δ. (5.17)

Let ηR ∈ C∞(RN , [0, 1]) such that ηR(x) = 1 for |x| > R, ηR(x) = 0 for |x| ≤ R
2 and

|∇ηR(x)| ≤ C
R in RN for some positive constant C > 0.

Since I ′λ(un)(ηRun) = o(1), we obtain that sufficiently large R > 0,∫
RN

(λ|∇un|2 + V (x)u2
n)ηR + λun∇un∇ηR dx =

∫
RN

f(un)unηR dx+ o(1)

≤ ν

∫
RN

|un|2ηR dx+ o(1).

Therefore
1
2

∫
|y|≥R

λ|∇un|2 + V (x)u2
n dx ≤

λC

R
‖un‖2‖∇un‖2 + o(1)

and (5.17) clearly follows.

6. End of the proof of Theorem 0.1

In this final section we end the proof of Theorem 0.1. First we show that there exist a
special sequence (εn) decreasing to 0 on which the corresponding solutions uεn

(x) satisfies
the estimate (5.1). Having derive this bound the rest of the proof follows closely [JT3].

Lemma 6.1. There exists a strictly decreasing sequence λn → 0 such that

c′λn
≤ Cλ

N
2 −1

n

for some constant C > 0 independent of n ∈ N. In particular, for the corresponding

critical points uεn
(x) of Iεn

(u) obtained in Lemma 5.3 we have

∫
RN

ε2n|∇uεn
|2 + V (x)u2

εn
dx ≤ Cε

N
2

n . (6.1)
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Proof. Assume it is not true. We then have for any fixed C > 0,

lim inf
λ→0

c′λ
λ

N
2 −1

≥ C.

Thus for any λ small enough,

cλ ≥ cλ − lim
h→0

ch ≥ lim
h→0

∫ λ

h

c′tdt ≥ lim
h→0

∫ λ

h

C

2
t

N
2 −1dt =

C

N
λ

N
2

and we conclude that, for λ small enough, cλ

λ
N
2
≥ C

N . This contradicts (4.5).

Proposition 6.2. Let (εn) be the sequence obtained in Lemma 6.1 and let vεn(x) denote

the critical points of Jεn(v) defined by vεn(x) = uεn(εnx). Then for any subsequence of

(εn) there exist a subsequence — denoted by εj — and (yεj ), x
1, ω1 such that

(i) εjyεj → x1. (6.2)
(ii) x1 ∈ Λ′ satisfies V (x1) = infx∈Λ V (x). (6.3)
(iii) ω1(y) is a least energy solution of Φ′

x1(v) = 0. (6.4)
(iv)

∥∥vεj − ψεjω
1(y − yεj )

∥∥
Hεj

→ 0. (6.5)

(v) Jεj (vεj ) → m(x1) = m(0). (6.6)

Proof. Taking into account Proposition 3.4, Proposition 6.2 hold true if ` = 1 in Propo-
sition 2.2. To see this let us apply Proposition 2.2 to the sequence (vεn

). By Proposition
2.2 there exist a subsequence denoted (εj), ` ∈ N∪{0}, (yk

εj
), xk, ωk (k = 1, 2, · · · , `)

satisfying (2.5)–(2.9). If we assume that ` = 0, then (2.9) implies that bεj
= Jεj

(vεj
) → 0

in contradiction with (4.5) (see Remark 2.3 (i)). Thus ` ≥ 1 and again from (2.9) it follows
that

lim
j→∞

bεj =
∑̀
k=1

Φxk(ωk) ≥
∑̀
k=1

m(xk) ≥ `m(0) ≥ m(0). (6.7)

Combining (4.4) and (6.7), we deduce that l = 1.
Now we are ready to give the proof of Theorem 0.1. Here we follow closely [JT3].

Proof of Theorem 0.1. To prove that the sequence uεn(x) obtained in Lemma 6.1 has
the desired properties we shall work on the associated sequence vεn(x) of solutions of (1.6).
Because of (6.1) we have that ||vεn ||Hεn

≤ C for a C > 0 and in particular (vεn) is bounded
in H1(RN ).

Let us show that for any subsequence of (εn) there exists a subsequence — denoted
by εj — such that for large j, vεj takes a unique local maximum at x̄εj ∈ Λ/εj with
V (εj x̄εj ) → infx∈Λ V (x) and decreases sufficiently fast away from x̄εj . If this is the case
it readily implies Theorem 0.1 by a contradiction argument.
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We shall proceed in several steps. Let εj → 0 be an arbitrary fixed sequence. Applying
Proposition 6.2 we can assume that there exists (yεj ), x

1, ω1 such that (6.2)–(6.6) hold.
Moreover, by the maximum principle, vεj (y) ≥ 0 for all y ∈ RN .

Step 1 : If a sequence (zεj
) ⊂ RN satisfies

lim inf
j→∞

∫
B1(zεj

)

|vεj
|2 dy > 0,

then lim supj→∞ |zεj
− yεj

| < ∞. In particular we have limj→∞ |εjzεj
− x1| = 0. Con-

versely if (zεj
) satisfies |zεj

− yεj
| → ∞, we have

∫
B1(zεj

)
|vεj

|2 dy → 0.

This clearly follows from (6.2), (6.5).

Step 2 : supz∈(Λ\Λ′)/εj
|vεj (z)| → 0 as j →∞. (6.8)

It follows from Step 1 that

sup
z∈(Λ\Λ′)/εj

∫
B1(z)

|vεj
|2 dy → 0 as j →∞.

It also follows from the boundedness of (vεj ) in H1(RN ) that

‖vεj‖Ls+1(B1(z)) → 0 uniformly in z ∈ (Λ \ Λ′)/εj . (6.9)

We remark that V (εjy), χ(εjy) stay bounded uniformly in (Λ \ Λ′)/εj as j → ∞. Thus
since vεj (y) is a solution of

−∆v + V (εjy)v = g(εjy, v) in B1(z).

By standard regularity arguments we have vεj (y) ∈ C(B1(z)), and (6.8) implies

‖vεj‖L∞(B1(z)) → 0 as j →∞

uniformly in z ∈ (Λ \ Λ′)/εj .

Step 3 : For the constant rν > 0 given in Section 1, there holds

vεj (y) ≤ rν in RN \(Λ′/εj). (6.10)

By Step 2, supz∈(Λ\Λ′)/εj
|vεj

(y)| ≤ rν

2 for small εj . Since (vεj
(y)− rν)+ |

R
N \(Λ′/εj)

∈ Hε

it follows from J ′ε(vεj
)
(

(vεj
(y)− rν)+ |

R
N \(Λ′/εj)

)
= 0 that

∫
RN \(Λ′/εj)

|∇(vεj − rν)+|2 + V (εjy)vεj (vεj − rν)+ − f(vεj
)(vεj

− rν)+ dy = 0.
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By Lemma 1.2 (ii),∫
RN \(Λ′/εj)

|∇(vεj
− rν)+|2 + (V0 − ν)vεj

(vεj
− rν)+ dy ≤ 0.

Thus (vεj
− rν)+ ≡ 0 in RN \(Λ′/εj). That is, (6.10) holds.

By Step 3 we see that vεj (y) is a solution of the rescaled original problem :

−∆v + V (εjy)v = f(v) in RN

for sufficiently small εj > 0. Since f(ξ) ∈ C1(RN ,R), we have vεj
(y) ∈ C2(RN ) from

a standard regularity argument. From the boundedness of ‖vεj
‖Hε

we can see also that
‖vεj

‖C2(K/εj) is bounded on any compact set K ⊂ RN as j →∞. We remark that V (εjy)
and χ(εjy) stay bounded uniformly in K/εj as j →∞.

Step 4 : Suppose that vεj
(y) takes a local maximum at zεj

. Then (zεj
) satisfies

lim sup
j→∞

|zεj
− yεj

| <∞ and εjzεj
→ x1.

By the maximum principle, we see that vεj
(zεj

) ≥ rν . Since vεj
(y) is bounded in C2

loc, we
can also get lim infj→∞

∫
B1(zεj

)
|vεj

|2 dy > 0. We conclude by Step 1.

Step 5 : vεj
has only one local maximum for εj small.

Assume that vεj
(y) takes a local maximum at y = zεj

. By the maximum principle,
vεj

(zεj
) ≥ rν . Since vεj

is bounded in H1(RN ) and C2
loc(R

N ), after extracting a subse-
quence, we may assume vεj

(y + zεj
) → ω(y) weakly in H1(RN ) and strongly in C2

loc with
ω(y) satisfying

−∆ω + V (x1)ω = f(ω) in RN

and having a local maximum at y = 0. Thus by the result of [GNN], ω(y) is radially
symmetric with respect to 0 and strictly decreasing with respect to r = |y|. Thus if
vεj

(y) takes two local maxima at y = zεj
and y = z′εj

, then necessarily |zεj
− z′εj

| → ∞.
However Step 4 implies lim sup |zεj

− z′εj
| ≤ lim sup |zεj

− yεj
| + lim sup |z′εj

− yεj
| < ∞.

This contradiction shows that vεj
(y) takes only one local maximum.

Step 6 : There exists `0 > 0 such that for small εj > 0

|vεj
(y)| < rν for all |y − x̄εj

| ≥ `0,

where x̄εj
is the unique local maximum of vεj

(y).
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Indeed, if zεj satisfies vεj (zεj ) ≥ rν , then we have lim infj→∞
∫

B1(zεj
)
|vεj |2 dy > 0 and

Steps 1,4 implies that lim sup |zεj − x̄εj | ≤ lim sup |zεj − yεj | + lim sup |yεj − x̄εj | < ∞.
Thus there is no sequence (zεj ) satisfying |zεj − x̄εj | → ∞ and vεj (zεj ) ≥ rν . Step 6
follows.

Step 7 : Conclusion.

Consider the unique solution η(y) ∈ H1(|y| ≥ `0) of the following problem :

−∆η +
V0

2
η = 0 in |y| ≥ `0,

η(y) = rν on |y| = `0.

It is easily seen that η(y) has an exponential decay and since
f(vεj

(y))

vεj
(y) ≤ V0

2 when |y| ≥ `0,
we have, by the maximum principle that vεj

(y+ x̄εj
) ≤ η(y) for |y| ≥ `0. Thus vεj

(y) also
has an exponential decay.

At this point it is clear that uεj
(x) = vεj

(x/εj) has the desired properties. This
concludes the proof of Theorem 0.1.
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