Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS
UFC
CNRS


Accueil > Pages web personnelles > Jeanjean Louis > English version

English version

par Richard FERRERE - publié le , mis à jour le

Louis Jeanjean

Professor - Université de Franche-Comté

Laboratoire de Mathématiques
UMR CNRS 6623
Université de Franche-Comté
16 route de Gray
25030 Besançon Cedex

Research Team  : Partial Differential Equations

Bâtiment métrologie, bureau 424
Tél : +33 (0)3 81 66 64 66
Fax : +33 (0)3 81 66 66 23
louis.jeanjean@univ-fcomte.fr

EVENT TO COME : Variational and topological methods in the study of Nonlinear Problems

Editorial Activities  : Member of the Editorial board of Advances in Nonlinear Analysis.

Research interests  :

  • Nonlinear elliptic equations
  • Minimax methods in the calculus of variations
  • Homoclinics and heteroclinics solutions for Hamiltonian systems
  • Bifurcation from the essential spectrum
  • Existence and multiplicity of peak solutions

Lists of publications

  • [1] Buffoni B. and Jeanjean L., Bifurcation from the essential spectrum towards regular values, J. Reine Angew. Math., 445, 1993, 1-29.
  • [2] Buffoni B. and Jeanjean L., Minimax characterisation of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré, Anal. non-lin., 10, 1993, 377-404.
  • [3] Buffoni B., Jeanjean L. and Stuart C.A., Existence of a non-trivial solution to a strongly indefinite semilinear equation , Proc. A.M.S., 119, 1993, 179-186.
  • [4] Jeanjean L., Solution in spectral gaps for a nonlinear equation of Schrödinger type , J. Diff. Eqs., 112, 1994, 53-80.
  • [5] Jeanjean L., Approche minimax des solutions d’une équation semi-linéaire elliptique en l’absence de compacité, Ph. D. Thesis, EPFL, Lausanne, 1992.
  • [6] Jeanjean L., Existence of connecting orbits in a potential well, Dyn. Sys. Appl., 3, 1994, 537-562.
  • [7] Giannoni F., Jeanjean L. and Tanaka K., Homoclinic orbits on non-compact Riemannian manifolds for second order Hamiltonian systems, Rend.Sem. Mat. Univ. Padova, 3, 1995, 153-176.
  • [8] Bertotti M.L. and Jeanjean L., Multiplicity of homoclinic solutions for singular second order conservative systems, Proc. Roy. Soc. Edinburgh, 128 A, 1996, 1169-1180.
  • [9] Jeanjean L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Analysis TMA, 28, 1997, 10, 1633-1659.
  • [10] Jeanjean L., Two positive solutions for a class of nonhomogeneous elliptic equations, Diff. Int. Eqs., 10, 1997, 609-624.
  • [11] Caldiroli P. and Jeanjean L., Homoclinics and Heteroclinics for a class of conservative singular Hamiltonian systems, J. Diffs. Eqs., 136, 1997, 76-114.