Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS
UFC
CNRS


Accueil > Pages web personnelles > Boussaid Nabile

Boussaid Nabile

Page professionnelle

par Boussaïd Nabile - publié le , mis à jour le

nabile.boussaid@univ-fcomte.fr
http://lmb.univ-fcomte.fr/nabile-boussaid

Équipe de recherche : Équations aux Dérivées Partielles

Bureau B403
Laboratoire de Mathématiques de Besançon
16, route de Gray - 25030 Besancon Cedex, France

Téléphone : +33 3 81 66 63 37

Curiculum vitæ

Thèmes de recherche :

  • Stabilité asymptotique des états stationnaires d’équations dispersives non-linéaires
  • Théorie spectrale
  • Analyse des propriétés dispersives d’équations de Dirac linéaires
  • Pollution spectrale
  • Controllabilité approchée des équations de Schrödinger bilinéaires
  • Problèmes de Cauchy d’équations dispersives non-linéaires

Publications

Thèse & Habilitation

[T1] N. BOUSSAID. « Étude de la stabilité des petites solutions stationnaires pour une classe déquations de Dirac non linéaires ». Thèse de Doctorat. Université Paris-Dauphine, juil. 2006. URL : http://tel.archives-ouvertes.fr/tel-00108459.

[T2] N. BOUSSAID. « Non linear models from relativistic quantum mechanics : spectral and asymptotic analysis and related problems ». Habilitation à diriger des recherches. Université de Franche-Comté, nov. 2014. URL : https://tel.archives-ouvertes.fr/tel-01094575.

Articles

[A1] N. BOUSSAID. Stable directions for small nonlinear Dirac standing waves. Comm. Math. Phys. 268.(3) (2006), p. 757– 817. DOI : 10.1007/s00220-006-0112-3.

[A2] N. BOUSSAID. On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case. SIAM J. Math. Anal. 40.(4) (2008), p. 1621–1670. DOI : 10.1137/070684641.

[A3] L. BOULTON et N. BOUSSAID. Non-variational computation of the eigenstates of Dirac operators with radially symme- tric potentials. LMS J. Comput. Math. 13 (2010), p. 10–32. DOI : 10.1112/S1461157008000429.
Code added to T. BETCKE, N. J. HIGHAM, V. MEHRMANN, C. SCHRÖDER et F. TISSEUR. NLEVP : A Collection of Nonlinear Eigenvalue Problems. Fév. 2013. DOI : 10.1145/2427023.2427024. URL : http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html.

[A4] N. BOUSSAID et S. GOLÉNIA. Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies. Comm. Math. Phys. 299.(3) (2010), p. 677–708. DOI : 10.1007/s00220-010-1099-3.

[A5] N. BOUSSAID, P. D’ANCONA et L. FANELLI. Virial identity and weak dispersion for the magnetic Dirac equation. J. Math. Pures Appl. (9) 95.(2) (2011), p. 137–150. DOI : 10.1016/j.matpur.2010.10.004.

[A6] L. BOULTON, N. BOUSSAID et M. LEWIN. Generalised Weyl theorems and spectral pollution in the Galerkin method. J. Spectr. Theory 2.(4) (2012), p. 329–354. DOI : 10.4171/JST/32.

[A7] N. BOUSSAID et S. CUCCAGNA. On stability of standing waves of nonlinear Dirac equations. Comm. Partial Differential Equations 37.(6) (2012), p. 1001–1056. DOI : 10.1080/03605302.2012.665973.

[A8] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Weakly coupled systems in quantum control. IEEE Trans. Automat. Control 58.(9) (2013), p. 2205–2216. DOI : 10.1109/TAC.2013.2255948.

[A9] G. R. BARRENECHEA, L. BOULTON et N. BOUSSAID. Finite element eigenvalue enclosures for the Maxwell operator. SIAM J. Sci. Comput. 36.(6) (2014), A2887–A2906. DOI : 10.1137/140957810.

[A10] G. R. BARRENECHEA, L. BOULTON et N. BOUSSAÏD. Local two-sided bounds for eigenvalues of self-adjoint operators. Numerische Mathematik (2016), 1 ? ?34. DOI : 10.1007/s00211-016-0822-1.

[A11] N. BOUSSAID et A. COMECH. On spectral stability of the nonlinear Dirac equation. J. Funct. Anal. 271.(6) (2016), p. 1462–1524. DOI : 10.1016/j.jfa.2016.04.013.

[A12] J. BELLAZZINI, N. BOUSSAID, L. JEANJEAN et N. VISCIGLIA. Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm. Math. Phys. 353.(1) (2017), p. 229–251. DOI : 10.1007/s00220-017-2866-1.

[A13] N. BOUSSAID et A. COMECH. Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity. SIAM J. Math. Anal. 49.(4) (2017), p. 2527–2572. DOI : 10.1137/16M1081385.

[A14] N. BOUSSAID et A. COMECH. Spectral stability of bi-frequency solitary waves in Soler and Dirac–Klein–Gordon models. To appear in Commun. Pure Appl. Anal. (2018). arXiv : 1711.05654 [math-ph].

Chapitre de livre

[C1] J. CUEVAS-MARAVER, N. BOUSSAÏD, A. COMECH, R. LAN, P. G. KEVREKIDIS et A. SAXENA. Solitary waves in the Nonlinear Dirac Equation. Juil. 2017. arXiv : 1707.01946 [nlin.PS]. a chapter in the book Nonlinear Systems ; Vol. 1 : Mathematical Theory and Computational Methods, Springer ; to appear.

Prépublications

[P1] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Approximate controllability of the Schrödinger Equation with a pola- rizability term in higher Sobolev norms. Juin 2014. arXiv : 1406.3846 [math.AP].

[P2] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Regular propagators of bilinear quantum systems. Juin 2014. arXiv : 1406.7847 [math.AP].

[P3] N. BOUSSAID et A. COMECH. Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler- type nonlinearity. Mai 2017. arXiv : 1705.05481 [math.AP].

[P4] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. On the Ball–Marsden–Slemrod obstruction in bilinear control systems. working paper or preprint. Juin 2017. URL : https://hal.archives-ouvertes.fr/hal-01537743.

Actes de conférences avec comité de lecture

[AC1] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Approximate controllability of the Schrödinger equation with a polarizability term. Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE. 2012, p. 3024–3029. DOI : 10.1109/CDC.2012.6426619.

[AC2] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Implementation of logical gates on infinite dimensional quantum oscillators. American Control Conference (ACC), 2012. IEEE. 2012, p. 5825–5830.

[AC3] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Periodic control laws for bilinear quantum systems with discrete spectrum. American Control Conference (ACC), 2012. IEEE. 2012, p. 5819–5824.

[AC4] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Small time reachable set of bilinear quantum systems. Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE. 2012, p. 1083–1087. DOI : 10.1109/CDC.2012.6426208.

[AC5] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Which notion of energy for bilinear quantum systems ? Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, pp 226-230, 29-31 août 2012. 2012, p. 226–230. DOI : 10.3182/20120829-3-IT-4022.00034.

[AC6] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Energy Estimates for Low Regularity Bilinear Schrödinger Equa- tions. Control of Systems Governed by Partial Differential Equations. T. 1. 1. 2013, p. 25–30. DOI : 10.3182/20130925- 3-FR-4043.00046.

[AC7] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Total variation of the control and energy of bilinear quantum systems. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. Déc. 2013, p. 3714–3719. DOI : 10.1109/CDC.2013.6760455.

[AC8] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. Efficient finite dimensional approximations for the bilinear Schro- dinger equation with bounded variation controls. Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS2014). Groningen, Netherlands, juin 2014, p. 1889–1891. arXiv : 1406.2260 [math.AP].

[AC9] N. BOUSSAID, M. CAPONIGRO et T. CHAMBRION. An approximate controllability result with continuous spectrum : the Morse potential with dipolar interaction. SIAM Conference on Control and its applications. Paris, France, juil. 2015.