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Context and objectives

The project [4] is devoted to a recently introduced ma-
chine learning paradigm called Reservoir Computing (RC),
also referred to in the literature as liquid state machines,
echo state networks, or nonlinear transient computing. We
study time-delay reservoirs (TDRs) that are constructed
out of the sampling of the solution of a time-delay differen-
tial equation and show their good performance in the fore-
casting of the conditional covariances associated to multi-
variate discrete-time nonlinear stochastic processes of VEC-
GARCH type as well as in the prediction of factual daily
market realized volatilities computed with intraday quotes,
using as training input daily log-return series of moderate
size. We tackle some problems associated to the lack of task-
universality for individually operating reservoirs and propose
a solution based on the use of parallel arrays of time-delay
reservoirs.

Stochastic nonlinear time series
forecasting using TDRs

The VEC-GARCH family is the multivariate extension of
the one-dimensional generalized autoregressive condition-
ally heteroscedastic (GARCH) models [3, 2]. The VEC-
GARCH(1,1) model is determined by:{

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In),

ht = c + Aηt−1 +Bht−1,
(1)

where {zt} is n-dimensional conditionally heteroscedastic
discrete-time process, {Ht} is a conditional covariance ma-
trix process of {zt}, ht := vech(Ht), ηt := vech(ztzTt ),
c ∈ bRN , N := n(n + 1)/2, and A,B ∈ MN . The model
requires N(2N+1)) parameters for a complete specification.
Volatility forecasting. The main use of the VEC(1,1)
model (1) is the forecasting of the volatility of financial time
series: {zt} are considered as market log-returns and {Ht}
are the associated conditional covariance matrices. The op-
timal h-step ahead forecast ĥT+h for the covariance matrix
hT+h knowing the log-returns {z0, . . . , zT} is given by the
conditional expectation with respect to that information set:

ĥT+h := E [hT+h | FT ] .
For the VEC-GARCH(1,1) it can be explicitly computed via
the recursion on the horizon h:

ĥT+1 = hT+1 = c + AηT +BhT ,

ĥT+2 = c + (A +B)ĥT+1,
... (2)

ĥT+h = c + (A +B)ĥT+h−1.

The functional dependence of the forecast ĥT+h on the ele-
ments {z0, . . . , zT} that generate the information set FT is
quadratic.
The objective is to prove empirically that TDRs are ca-
pable of forecasting performances comparable to those at-
tained using the parametric Box-Jenkins approach when
the nonlinear VEC-GARCH volatility models are taken
as data generating process (DGP).

TDR architecture

We work with a TDR with the same nonlinear kernel as in [1]

f (x(t− τ ), u(t), η, γ, p) = η (x(t− τ ) + γu(t))
1 + (x(t− τ ) + γu(t))p

, (3)

where γ, η, and p are real valued parameters, and τ is the
time delay. Reservoirs contain N neurons with separation
θ := τ/N . As a teaching signal we use {h1+h, . . . ,hTtrain}
generated by the model together with the time series val-
ues {z1, . . . , zTtrain−h}, that is, y(k) := hk+h ∈ Rn, k ∈
{1, . . . , Ttrain − h} and the trained output layer is given by
the solution of the ridge (or Tikhonov) regression

Wout := (XXT + λIN)−1Xy, (4)
where X ∈ Mat(N, Ttrain) is the reservoir output given by
Xi,j := xi(j) and y ∈ Mat(Ttrain, n) is the teaching matrix
containing the vectors y(k), k ∈ {1, . . . , Ttrain}, organized
by rows, λ is the strength of the ridge penalty introduced in
order to regularize the regression problem hence helping to
avoid overfitting.
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Figure 1. Parallel array of p TDRs.

Reservoir configurations under study

The different devices whose performances are compared have
the following architectures:
1 Individually operating TDR of 400 neurons and grid
optimized parameters;

2 Individually operating TDR of 400 neurons and random
optimized parameters;

3 Parallel array of 40 TDRs of 10 neurons each with
random optimized parameters (Figure 1);

4 Parallel array of 80 TDRs of 5 neurons each with
random optimized parameters (Figure 1).

Empirical results with synthetic data

1 All the TDRs considered are capable of competitively
accomplishing forecasting tasks for stochastic nonlinear
processes without the need to solve the sophisticated
model selection and estimation problems that arise in the
parametric approach;

2 The good performance in the forecasting task is mostly
due to the presence of the time-delay reservoir;

3 The kernel parameters for the individually operating
TDR need to be optimized in order to achieve adequate
predictions;

4 Advantages of using the parallel pools of TDRs:
possibility of random parameter optimization and
limitation of the computational effort (Figure 2), better
performance for smaller training sample sizes (Figure 3),
and improved universality with respect to changes in the
forecasting horizon (Figure 4) and in the model
specification (Figure 5).

Figure 2. Forecasting performance in the three dimensional VEC-GARCH volatility
forecasting task achieved with the different RC based methods in comparison with the
theoretical error as a function of the forecasting horizon.

Figure 3. Comparison of the sMSFE committed for different training sample sizes by a
single grid optimized TDR with 400 neurons and by the parallel pools of TDRs.

Figure 4. Comparison of the forecasting performances obtained by using horizon
adapted parameter configurations and constant parameters.

Figure 5. Forecasting performance for three misspecified models.

Empirical results with real market data

The dataset consists of 2483 daily log-returns for the NYSE
quoted assets with Yahoo tickers AAPL, ABT, AXP, BA,
BAC, BMY, BP, C, and CAT (Jan 6th, 1999–Dec 31st,
2008). The realized covariance matrices {Ht} are con-
structed using six minutes sampled intraday data. The first
2000 observations are used for training/estimation purposes
and the remaining part is used for an out-of-sample test.

Figure 6. The sMSFE reported is an average over the sMSFEs associated to the realized
volatility forecasting task for the 84 different three dimensional combinations of the nine
assets considered. For each asset combination, forecasting with the VEC(1,1) approach
is carried out with a different model estimated via MLE using the historical evolution of
that particular combination. In the case of RC, for a given horizon, a single parameter
set is used for all the combinations, chosen by minimizing the training error.
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