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Abstract. We consider the boundary value problem

(Pλ) −∆u = λc(x)u+ µ(x)|∇u|2 + h(x), u ∈ H1
0 (Ω) ∩ L∞(Ω),

where Ω ⊂ RN , N ≥ 3 is a bounded domain with smooth boundary. It is
assumed that c, h belong to Lp(Ω) for some p > N with c 	 0 as well as
µ ∈ L∞(Ω) and µ ≥ µ1 > 0 for some µ1 ∈ R. It is known that when λ ≤ 0,
problem (Pλ) has at most one solution. In this paper we study, under various
assumptions, the structure of the set of solutions of (Pλ) assuming that λ > 0.
Our study unveils the rich structure of this problem. We show, in particular,
that what happen for λ = 0 influences the set of solutions in all the half-space
]0,+∞[×(H1

0 (Ω) ∩ L∞(Ω)). Most of our results are valid without assuming
that h has a sign. If we require h to have a sign, we observe that the set of
solutions differs completely for h 	 0 and h � 0. We also show when h has a
sign that solutions not having this sign may exists. Some uniqueness results of
signed solutions are also derived. The paper ends with a list of open problems.

1. Introduction

We consider the boundary value problem

(Pλ) −∆u = λc(x)u+ µ(x)|∇u|2 + h(x), u ∈ H1
0 (Ω) ∩ L∞(Ω),

under the assumption

(A)


Ω ⊂ RN , N ≥ 3 is a bounded domain with ∂Ω of class C1,1,

c and h belong to Lp(Ω) for some p > N and satisfy c 	 0,

µ ∈ L∞(Ω) satisfies 0 < µ1 ≤ µ(x) ≤ µ2.
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Depending on the parameter λ ∈ R we study the existence and multiplicity of
solutions of (Pλ). By solutions we mean functions u ∈ H1

0 (Ω)∩L∞(Ω) satisfying∫
Ω

∇u∇v dx = λ

∫
Ω

c(x)uv dx+

∫
Ω

µ(x)|∇u|2v dx+

∫
Ω

h(x)v dx ,

for any v ∈ H1
0 (Ω) ∩ L∞(Ω).

First observe that, by the change of variable v = −u, problem (Pλ) reduces to

−∆v = λc(x)v − µ(x)|∇v|2 − h(x), v ∈ H1
0 (Ω) ∩ L∞(Ω).

Hence, since we make no assumptions on the sign of h, we actually also consider
the case where |∇u|2 has a negative coefficient.

The study of quasilinear elliptic equations with a gradient dependence up to
the critical growth |∇u|2 was essentially initiated by Boccardo, Murat and Puel
in the 80’s and it has been an active field of research until now. Under the
condition λc(x) ≤ −α0 < 0 a.e. in Ω for some α0 > 0, which is usually referred
to as the coercive case, the existence of a unique solution of (Pλ) is guaranteed
by assumption (A). This is a special case of the results of [8, 9] for the existence
and of [6, 7] for the uniqueness. Let us point out that the requirement to deal
with bounded solutions in (Pλ) is essential to the uniqueness results. Indeed if
one admits more general solutions, the existence of infinitely many solutions is
known in several cases, see for example [1, 2].

The limit case where one just require that λc(x) ≤ 0 a.e. in Ω is more complex.
There had been a lot of contributions [2, 13, 19, 21] when λ = 0 (or equivalently
when c ≡ 0) but the general case where λc ≤ 0 may vanish only on some parts of
Ω was left open until the paper [4]. It appears in [4] that under assumption (A)
the existence of solutions is not guaranteed, additional conditions are necessary.
When λ = 0 this was already observed in [13]. By [4], the uniqueness itself holds
as soon as λc(x) ≤ 0 a.e. in Ω. See also [5] for a related uniqueness result in a
more general frame.

The case λc 	 0 remained unexplored until very recently. Following the paper
[23] which consider a particular case, Jeanjean and Sirakov [18] study a problem
directly connected to (Pλ). In [18, Theorem 2], assuming that µ is a positive
constant and h is small (in an appropriate sense) but without sign condition, a
λ0 > 0 is given under which (Pλ) has two solutions whenever λ ∈ ]0, λ0[. This
result have been complemented in [17] where two solutions are obtained, allowing
the function c to change sign but assuming that h ≥ 0 and that max{0, λc} 	 0.
The restriction that µ is a constant was subsequently removed in [4] under the
price of the assumption h ≥ 0.

If multiplicity results can be observed in case λc 	 0, the existence of solution
itself may fail. In [4, Lemma 6.1], letting γ1 > 0 be the first eigenvalue of

(1.1) −∆ϕ1 = γc(x)ϕ1, ϕ1 ∈ H1
0 (Ω),
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it is proved when h ≥ 0 that problem (Pλ) has no solution when λ = γ1 and no
non-negative solutions when λ > γ1. This contrasts to what was observed in [3,
Theorem 3.3], namely that if µ > 0 is a constant and h � 0, then there exists a
negative solution of (Pλ) as soon as λ > 0. In addition this negative solution is
unique [3, Theorem 3.12]. Considered together, the results of [3, 4] show that the
sign of h has definitely an influence on the set of solutions of (Pλ) when λ > 0.

Despite the works [3, 4, 17, 18], having a clear picture of the set of solutions of
(Pλ) in the half-space ]0,+∞[×(H1

0 (Ω)∩L∞(Ω)) is still widely open. The present
paper aims to be a contribution in that direction. Note that both in [3] and [4],
the main results (under this assumption) are obtained assuming that h has a sign,
positive in [4], negative in [3], and then these papers look for solutions having the
same sign as h. In our paper, we remove in particular the assumption that h has
a sign. Also we show that even when h has a sign, solutions not having this sign
may exist.

We point out that with respect to [3, 4] we have strengthened our regularity
assumptions by requiring c and h in Lp(Ω) for some p > N while in [4], c and
h are in Lp(Ω) for some p > N

2
and in [3], the regularity assumptions are even

weaker. Under our assumptions all solutions of (Pλ) lies in W 2,p
0 (Ω) ⊂ C1

0(Ω) (see
Theorem 2.2). This permits to use lower and upper solutions arguments together
with degree theory. Now, for future reference, we recall,

Definition 1.1. Let u, v ∈ C(Ω). We say that
• u ≤ v if, for all x ∈ Ω, u(x) ≤ v(x);
• u � v if, for all x ∈ Ω, u(x) ≤ v(x) and u 6≡ v;
• u < v if, for all x ∈ Ω, u(x) < v(x).

Let ϕ1 be the first eigenfunction of (1.1). We know that, for all x ∈ Ω, ϕ1(x) >
0 and, for x ∈ ∂Ω, ∂ϕ1

∂ν
(x) < 0 where ν denotes the exterior unit normal.

Definition 1.2. Let u, v ∈ C(Ω). We say that
• u� v in case there exists ε > 0 such that, for all x ∈ Ω, v(x)− u(x) ≥ εϕ1(x).

Remark 1.1. Observe that, in case u, v ∈ C1(Ω), the definition of u � v is
equivalent to: for all x ∈ Ω, u(x) < v(x) and, for x ∈ ∂Ω, either u(x) < v(x) or
u(x) = v(x) and ∂u

∂ν
(x) > ∂v

∂ν
(x).

Recall that by [4, Theorems 1.2 and 1.3], we have the following result relying
on [22, Theorem 3.2].

Theorem 1.1. Under assumption (A), for λ ≤ 0 the problem (Pλ) has at most
one solution uλ. Denote

Σ = {(λ, u) ∈ R× C(Ω) | (λ, u) solves (Pλ)}.
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In case (P0) has a solution u0, then there exists a continuum C ⊂ Σ such that
C ∩ ([0,+∞[×C(Ω)) is unbounded in R× C(Ω) and C ∩ ({0} × C(Ω)) = {u0}.

In case h 	 0, this continuum C consists of non-negative functions and its
projection ProjRC on the λ-axis is an interval ] −∞, λ] ⊂ ]−∞, γ1[ containing
λ = 0 and C bifurcates from infinity to the right of the axis λ = 0.

Remark 1.2. From [4, Corollary 3.2], we know that (P0) has a solution if

(1.2) inf
{u∈H1

0 (Ω)| ‖u‖
H1

0(Ω)
=1}

∫
Ω

(
|∇u|2 − µ2h

+(x)u2
)
dx > 0,

where h+ = max{0, h}.

Our first main result gives informations on the behaviour of this continuum
without assuming that h 	 0.

Theorem 1.2. Under assumption (A), in case (P0) has a solution, the continuum
C of Theorem 1.1 satisfies one of the two cases :

(i) it bifurcates from infinity to the right of the axis λ = 0 with the correspond-
ing solutions having a positive part blowing up to infinity as λ→ 0+;

(ii) it is such that its projection ProjRC on the λ-axis is R.

In Corollary 4.1 below, we show that we are in situation (i) of Theorem 1.2 if
(P0) has a solution and ∫

Ω

h(x)ϕ1(x) dx ≥ 0.

In [18, Theorem 2] under conditions insuring that (P0) has a solution it was
proved, assuming that µ is a constant, that (Pλ) has two solutions for λ > 0
small. Here we remove this restriction on µ.

Theorem 1.3. Under assumption (A) and assuming that (P0) has a solution u0,
there exists a λ ∈ ]0,+∞] such that

(i) for every λ ∈ ]0, λ[, the problem (Pλ) has at least two solutions with
• uλ,1 � uλ,2;
• max

Ω
uλ,2 → +∞ and uλ,1 → u0 in C1

0(Ω) as λ→ 0;

(ii) if λ < +∞, the problem (Pλ) has exactly one solution u.

Next we show that having a sign information on the solution u0 of (P0) allows
us to give more precise informations on the set of solutions of (Pλ) when λ > 0.

Theorem 1.4. Under assumption (A) and assuming that (P0) has a solution
u0 ≥ 0 with cu0 	 0, every non- negative solution of (Pλ) with λ > 0 satisfies
u� u0. Moreover, there exists λ ∈ ]0,+∞[ such that
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λ

Figure 1. Illustration of Theorem 1.4

(i) for every λ ∈ ]0, λ[, the problem (Pλ) has at least two solutions with
• 0 ≤ u0 � uλ,1 � uλ,2;
• if λ1 < λ2, we have uλ1,1 � uλ2,1;
• max

Ω
uλ,2 → +∞ and uλ,1 → u0 in C1

0(Ω) as λ→ 0;

(ii) the problem (Pλ) has exactly one non-negative solution u;
(iii) for every λ > λ, the problem (Pλ) has no non-negative solution.

Remark 1.3. Since −∆u0 = µ(x)|∇u0|2+h(x), we deduce by the strong maximum
principle that, in case h 	 0, we have u0 � 0 thus cu0 	 0.

In comparison to Theorem 1.4 we have

Theorem 1.5. Under assumption (A) and assuming that (P0) has a solution
u0 ≤ 0 with cu0 � 0, for every λ > 0, problem (Pλ) has two solutions with

uλ,1 � uλ,2, uλ,1 � u0, and max
Ω

uλ,2 > 0.

Moreover we have
• if λ1 < λ2, then uλ1,1 � uλ2,1;
• max

Ω
uλ,2 → +∞ and uλ,1 → u0 in C1

0(Ω) as λ→ 0.

Remark 1.4. Observe that in case (P0) has a solution u0 with cu0 ≡ 0, then u0 is
solution for all λ ∈ R.

Remark 1.5. In Proposition 4.3, we prove also that, if (P0) has a solution u0 ≤ 0
with cu0 � 0, then (Pλ) has at most one solution u ≤ 0.

Corollary 1.6. Under assumption (A) and assuming that h � 0, for every λ > 0,
problem (Pλ) has two solutions uλ,1, uλ,2 satisfying the conclusions of Theorem 1.5.

Corollary 1.6 should be compared with [3, Theorem 3.3] where the authors
prove the existence only of uλ,1 under however weaker regularity assumptions.
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λ
u0

Figure 2. Illustration of Theorem 1.5

λ
λ0λ

Figure 3. Illustration of Theorem 1.7

Our Theorems 1.3 - 1.5 require (P0) to have a solution and thus we are in a
situation where a branch of solutions starts from (0, u0). In our next results we
consider the situation for λ > 0 “large”.

Theorem 1.7. Under assumption (A) and assuming that

(a) (P0) does not have a solution u0 ≤ 0;
(b) there exists λ0 > 0 and β0 an upper solution of (Pλ0) with β0 ≤ 0.

Then there exists 0 < λ ≤ λ0 such that

(i) for every λ ∈ ]λ,+∞[, the problem (Pλ) has at least two solutions with
uλ,1 � 0 and uλ,1 � uλ,2.
Moreover, if λ1 < λ2, we have uλ1,1 � uλ2,1;

(ii) the problem (Pλ) has a unique solution uλ ≤ 0;
(iii) for λ < λ, the problem (Pλ) has no solution u ≤ 0.

In our last results we change our point of view and consider no more the
dependence in λ but in ‖h+‖. In proving Theorem 1.8, we shall also obtain, in
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case ‖h+‖ is small enough, the existence of a negative upper solution of (Pλ0) for
some λ0 ≥ 0 as needed in the assumptions of Theorem 1.7.

Theorem 1.8. Under assumption (A), let h̃ ∈ Lp(Ω) and consider h̃+ and h̃−

respectively its positive and its negative part. Assume that h̃+ 6≡ 0. Let ν1 > 0 be
the first eigenvalue of

(1.3) −∆u+ µ2h̃
−(x)u = ν1c(x)u, u ∈ H1

0 (Ω).

Then, for all λ > ν1, there exists k = k(λ) ∈ ]0,+∞[ such that:

(i) for all k ∈ ]0, k[, the problem

(Qλ,k) −∆u = λc(x)u+ µ(x)|∇u|2 + kh̃+(x)− h̃−(x), u ∈ H1
0 (Ω) ∩ L∞(Ω)

has at least two solutions uλ,1 � uλ,2;

(ii) for all k > k, the problem (Qλ,k) has no solution;

(iii) for k = k, the problem (Qλ,k) has exactly one solution.

We deduce from Theorems 1.4 and 1.8 the following Corollary that concerns
the case h 	 0.

Corollary 1.9. Under assumption (A) and assuming that h 	 0, for all λ̃ > γ1

where γ1 > 0 is the first eigenvalue (1.1), there exists k̃ > 0 such that, for all

k ∈ ]0, k̃],

(i) there exists λ1 ∈ ]0, γ1[ such that:
• for all λ ∈ ]0, λ1[, the problem

(1.4) −∆u = λc(x)u+ µ(x)|∇u|2 + kh(x), u ∈ H1
0 (Ω) ∩ L∞(Ω)

has at least two positive solutions;
• for λ = λ1, the problem (1.4) has exactly one positive solution;
• for λ > λ1, the problem (1.4) has no non-negative solution;

(ii) for λ = γ1 the problem (1.4) has no solution;

(iii) there exists λ2 ∈ ]γ1, λ̃] such that:
• for λ > λ2, the problem (1.4) has at least two solutions with uλ,1 � 0
and minuλ,2 < 0;
• for λ = λ2, the problem (1.4) has a unique non-positive solution;
• for λ < λ2, the problem (1.4) has no non-positive solution.

Remark 1.6. Observe that, as h ≥ 0, we have γ1 = ν1, where ν1 is the first
eigenvalue of (1.3) and γ1 is the first eigenvalue of (1.1).

We conclude this paper considering the case h ≡ 0 which can be seen as
intermediate between the case h 	 0 considered in Corollary 1.9 and the case
h � 0 considered in Corollary 1.6. Observe also that if we consider the problem

(1.4) with k ∈ ]−∞, k̃], then, it is easy to see that the lower of the two solutions
tends to 0 and that λ1 → γ1, λ2 → γ1 as k → 0.
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λ
λ1γ1

λ2

Figure 4. Illustration of Corollary 1.9

λγ1

Figure 5. Illustration of Theorem 1.10

Theorem 1.10. Under assumption (A) with h ≡ 0 and recalling that γ1 > 0
denotes the first eigenvalue (1.1), we have

(i) for all λ ∈ ]0, γ1[, the problem

(1.5) −∆u = λc(x)u+ µ(x)|∇u|2, u ∈ H1
0 (Ω) ∩ L∞(Ω)

has at least two solutions uλ,1 ≡ 0 and uλ,2 	 0 with max
Ω

uλ,2 → +∞ as

λ→ 0;
(ii) for λ = γ1 the problem (1.5) has only the trivial solution;
(iii) for λ > γ1, the problem (1.5) has at least two solutions uλ,1 ≡ 0 and

uλ,2 � 0.

Remark 1.7. Considering the solutions of (Pλ) as stationary solutions for the
corresponding parabolic problem, assuming (A) together with ∂Ω is of class C2

and c, h ∈ Lp(Ω) with p > N + 2, and applying [12, Corollary 2.34 and Propo-
sition 2.41], we can prove that, in the above results, the first solution uλ,1 is
L-asymptotically stable from below and uλ,2 is L-unstable from below. In the
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particular case of Theorem 1.5, as (Pλ) has a unique negative solution uλ,1 � u0,
we have also uλ,1 is L-asymptotically stable. Fore more informations, see [12].

Our existence results relies on the obtention of a priori bounds on the solutions,
see Lemma 3.1 and Theorem 3.3. These results, which are valid for arbitrary
solutions, use in a central way the assumption µ(x) ≥ µ1 > 0 for some µ1 > 0.
Removing this condition seems delicate and in that direction some results are
obtained in [24] for non-negative solutions. In [24] it is also shown that some
conditions are necessary to obtain a priori bounds for non-negative solutions.

In the case µ > 0 constant it is possible to precise the blow-up rate, as λ→ 0+,
of our solutions uλ,2 obtained in Theorems 1.3, 1.4, 1.5 and 1.10. As a by-product,
we also obtain that the a priori estimates obtained in Theorem 3.3 are sharp.

The paper is organized as follows. In Section 2 we present some preliminary
results. Section 3 is devoted to our a priori bounds results. In Section 4 we
prove our main results. Section 5 is devoted to the special case µ constant and
in Section 6 the reader can find a list of open problems.

Acknowledgments The authors thank D. Mercier and C. Troestler for fruitful
discussions on the interpretation of the results and for providing them the figures
of the paper. The authors also thank warmly B. Sirakov for pointing to them a
mistake in an earlier version of this work.

Notations For v ∈ H1
0 (Ω) we set v+ = max{0, v} and v− = max{0,−v}.

2. Preliminary results

In our proofs we shall need some results on lower and upper solutions that we
present here adapted to our setting. We consider the problem

(2.1)
−∆u = f(x, u,∇u), in Ω,

u = 0, on ∂Ω,

where f is an Lp-Carathéodory function with p > N and solutions are sought in
W 2,p

0 (Ω).

Definition 2.1. A regular lower solution (respectively a regular upper solution)
of (2.1) is a function α (resp. β) in W 2,p(Ω) such that

−∆α(x) ≤ f(x, α(x),∇α(x)), for a.e. x ∈ Ω,
α(x) ≤ 0, for all x ∈ ∂Ω,

(respectively

−∆β(x) ≥ f(x, β(x),∇β(x)), for a.e. x ∈ Ω,
β(x) ≥ 0, for all x ∈ ∂Ω).
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Definition 2.2. We define as a lower solution α of (2.1) a function of the form
α := max{αi | 1 ≤ i ≤ k} where α1, . . . , αk are regular lower solutions of (2.1).
Similarly, an upper solution, β of (2.1) is a function of the form β = min{βj | 1 ≤
j ≤ l} where β1, . . . , βl are regular upper solutions of (2.1).

Remark 2.1. The set of functions w such that u� w � v is open in C1
0(Ω) (the

space of the C1-functions in Ω which vanish on the boundary of Ω).

Problem (2.1) can be transformed into a fixed point problem. The operator

(2.2) L : W 2,p
0 (Ω)→ Lp(Ω); u 7→ −∆u

is a linear homeomorphism.
Since f is an Lp-Carathéodory function, the operator

(2.3) N : C1
0(Ω)→ Lp(Ω) ; u 7→ f(., u(.),∇u(.))

is well defined, continuous and maps bounded sets to bounded sets. Since p > N ,
as W 2,p

0 (Ω) is compactly embedded in C1
0(Ω), the operator M : C1

0(Ω)→ C1
0(Ω)

defined by
M(u) = L−1Nu,

where L and N are given respectively by (2.2) and (2.3), is completely continuous
and the problem (2.1) is equivalent to

u =Mu.

To be able to associate a degree to a pair of lower and upper solutions we also
need to reinforce the definition.

Definition 2.3. A lower solution α of (2.1) is said to be strict if every solution
u of (2.1) such that α ≤ u on Ω satisfies α� u.

In the same way a strict upper solution β of (2.1) is an upper solution such
that every solution u with u ≤ β is such that u� β.

Our main tool regarding the existence and characterizations of solutions of
problem (2.1) by a lower and upper solutions approach is the following theorem.
This result, which can be obtained adapting some ideas from [11, 12], will be
proved in the Appendix.

Theorem 2.1. Let Ω is a bounded domain in RN with boundary ∂Ω of class
C1,1 and f be an Lp-Carathéodory function with p > N . Assume that there
exists a lower solution α and an upper solution β of (2.1) such that α ≤ β.
Denote α := max{αi | 1 ≤ i ≤ k} where α1, . . . , αk are regular lower solutions of
(2.1) and β = min{βj | 1 ≤ j ≤ l} where β1, . . . , βl are regular upper solutions
of (2.1). If there exists K > 0 and h ∈ Lp(Ω) such that for a.e. x ∈ Ω, all
u ∈ [min{αi | 1 ≤ i ≤ k},max{βj | 1 ≤ j ≤ l}] and all ξ ∈ RN ,

(2.4) |f(x, u, ξ)| ≤ h(x) +K|ξ|2,
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then the problem (2.1) has at least one solution u satisfying

α ≤ u ≤ β.

Moreover, problem (2.1) has a minimal solution umin and a maximal solution umax

in the sense that, umin and umax are solutions of (2.1) with α ≤ umin ≤ umax ≤ β
and every solution u of (2.1) with α ≤ u ≤ β satisfies umin ≤ u ≤ umax.

If moreover α and β are strict and satisfy α � β, then, there exists R > 0
such that

deg(I −M,S) = 1,

where

S = {u ∈ C1
0(Ω) | α� u� β, ‖u‖C1 < R}.

Remark 2.2. If α and β are respectively strict lower and upper solutions of (2.1)
with α ≤ β then α � β. Indeed, from the first part of Theorem 2.1, we deduce
the existence of a solution u with α ≤ u ≤ β. By definition of strict lower and
upper solutions, we obtain α� u� β and hence α� β.

Remark 2.3. We shall apply Theorem 2.1 with N (u) = λc(x)u+µ(x)|∇u|2+h(x).
Hence, as we are concerned with the λ-dependance, we will denote the fixed point
operator Mλ instead of M.

Our assumption (A) implies that the following regularity result applies to prob-
lem (Pλ).

Theorem 2.2. Let Ω is a bounded domain in RN with boundary ∂Ω of class C1,1,
c ∈ Lp(Ω), h ∈ Lp(Ω) with p > N and µ ∈ L∞(Ω). Let u be a solution of

(2.5) −∆u = c(x)u+ µ(x)|∇u|2 + h(x), u ∈ H1
0 (Ω) ∩ L∞(Ω).

Then u ∈ W 2,p
0 (Ω) ⊂ C1

0(Ω).

Remark 2.4. This result is not a simple consequence of classical bootstrap argu-
ments as, for u ∈ H1

0 (Ω) ∩ L∞(Ω), µ|∇u|2 ∈ L1(Ω) which does not allow to start
a bootstrap process.

Remark 2.5. Observe that any solution u ∈ C1
0(Ω) of (2.5) belongs to W 2,p

0 (Ω).

Proof. Let u ∈ H1
0 (Ω) ∩ L∞(Ω) and define the function g = c u+ u+ h. Observe

that g ∈ Lp(Ω) with p > N and u is solution of

(2.6) −∆v = −v + µ(x)|∇v|2 + g(x), v ∈ H1
0 (Ω) ∩ L∞(Ω).

From [5, Theorem 1.1] we know that (2.6) admits at most one solution in H1
0 (Ω)∩

L∞(Ω). Thus, if we prove that (2.6) has a solution v ∈ W 2,p
0 (Ω), we obtain

u = v ∈ W 2,p
0 (Ω). To prove that (2.6) has a solution v ∈ W 2,p

0 (Ω), we shall use
Theorem 2.1. Thus, we need to prove that (2.6) has a lower α and an upper
solution β with α ≤ β.
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We set µ = ||µ||∞. Clearly any solution of

(2.7)
−∆u = −u+ µ|∇u|2 + g+(x), in Ω,

u = 0, on ∂Ω,

is an upper solution of (2.6) and any solution of

(2.8)
−∆u = −u− µ|∇u|2 − g−(x), in Ω,

u = 0, on ∂Ω,

is a lower solution of (2.6). Now, observe that, if w ∈ W 2,p
0 (Ω) is a solution of

(2.9)
−∆w = −w + µ|∇w|2 + g−(x), in Ω,

w = 0, on ∂Ω,

then u = −w satisfies (2.8). Thus, if we find a non-negative solution u1 ∈ W 2,p
0 (Ω)

of (2.7) and a non-negative solution u2 ∈ W 2,p
0 (Ω) of (2.9) then, setting β = u1

and α = −u2, we have the couple of lower and upper solutions required to apply
Theorem 2.1.

Let us construct u1, the construction of u2 being similar. Our construction
makes use of the classical Hopf-Cole change of variable. Let w1 ∈ H1

0 (Ω) be the
non-negative solution of

−∆w1 = µg+(x)w1 −m(w1) + g+(x), in Ω,
w1 = 0, on ∂Ω

where

(2.10) m(s) =

{ 1
µ
(1 + µs) ln(1 + µs), if s ≥ 0,

− 1
µ
(1− µs) ln(1− µs), if s < 0,

given by [4, Lemma 3.3]. By [25, Lemma 3.22] and a bootstrap argument, it is
easy to prove that w1 ∈ W 2,p(Ω). Hence

u1 =
ln(µw1 + 1)

µ
∈ W 2,p(Ω),

and one readily shows that u1 ≥ 0 is a solution of (2.7). �

Proposition 2.3. Under assumption (A) if α is a lower solution of (P0) and β
an upper solution of (P0) then α ≤ β.

Proof. By Definition 2.2 we have that α = max{αi | 1 ≤ i ≤ k}, β = min{βj |
1 ≤ j ≤ l} with αi and βj being respectively regular lower and upper solutions

of (P0). Since αi and βj are in W 2,p(Ω) they belong to H1(Ω)∩W 1,N
loc (Ω)∩C(Ω)

and we deduce using [5, Lemma 2.2] that αi ≤ βj. By using again the definition
of α and β it follows that α ≤ β. �

The following estimates will also be useful.
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Lemma 2.4 (Nagumo Lemma). Let p > N , h ∈ Lp(Ω), K > 0, R > 0. Then
there exists C > 0 such that, for all u ∈ W 2,p(Ω) satisfying

|∆u| ≤ h(x) +K|∇u|2, a.e. in Ω,
u = 0, on ∂Ω,

and

‖u‖∞ ≤ R,

we have

‖u‖W 2,p ≤ C.

Proof. see [25, Lemma 5.10]. �

Lemma 2.5. Assume that c, h ∈ Lq(Ω) for some q > N
2

. Then if u ∈ H1
0 (Ω) is

solution of

−∆u ≤ c(x)u+ h(x), (resp. −∆u ≥ c(x)u+ h(x))

in a weak sense, then u is bounded above (resp. below) and

sup
Ω
u+ ≤ C(‖u+‖2 + ‖h‖q), (resp. sup

Ω
u− ≤ C(‖u−‖2 + ‖h‖q)),

where C > 0 depends on N, q, |Ω| and ‖c‖q.

Proof. This is a consequence of [26, Theorem 1] combined with Remark 1 on p.
289 in that paper. It can also be obtained by adapting the proof of [15, Theorem
8.15] (which implies the result in the case where c ∈ L∞(Ω)), as remarked at the
end of p. 293 of that book. �

We also need the following formulation of the anti-maximum principle. Under
slightly more smooth data, this result was established in [16]. Nevertheless, the
proof given in [16] directly extend to our regularity assumptions.

Proposition 2.6. Let c̄, h̄, d̄ ∈ Lp(Ω) with p > N and assume that h̄ 	 0. We
denote by ν̄1 > 0 the first eigenvalue of

(2.11) −∆u+ d̄(x)u = ν̄1c̄(x)u, u ∈ H1
0 (Ω).

Then there exists ε0 > 0 such that, for all λ ∈ ]ν̄1, ν̄1 + ε0], the solution w of

(2.12) −∆w + d̄(x)w = λc̄(x)w + h̄(x), u ∈ H1
0 (Ω)

satisfies w � 0.
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3. A priori bound

This section is devoted to the derivation of some a priori bounds results for the
solutions of (Pλ). Most of our results hold under more general assumptions than
(A).

First, using ideas of [3], we obtain the following lower bound on the upper
solutions of (Pλ).

Lemma 3.1. Under conditions (A), for any Λ2 > 0, there exists a constant
M := M(Λ2, µ1, ‖c‖N/2, ‖h−‖N/2) > 0 such that, for any λ ∈ [0,Λ2], any function
u ∈ H1

0 (Ω) ∩ L∞(Ω) verifying u ≥ 0 on ∂Ω and such that, for all v ∈ H1
0 (Ω) ∩

L∞(Ω) with v ≥ 0 a.e. in Ω,

(3.1)

∫
Ω

∇u∇v dx ≥
∫

Ω

[λc(x)u+ µ(x)|∇u|2 + h(x)]v dx

satisfies
min

Ω
u > −M.

Remark 3.1. This result is valid under less regularity conditions than (A) and
without sign conditions on c and h. More precisely, it holds under the conditions:
Ω ⊂ RN , N ≥ 2 is a bounded domain with ∂Ω of class C1,1, c and h belong to
Lp(Ω) for some p > N/2, µ ∈ L∞(Ω) satisfies 0 < µ1 ≤ µ(x) ≤ µ2.

Moreover, the lower bound does not depend on h+ and depends only on an
upper bound on λ ≥ 0.

Proof. Let us take v = u− as test function in (3.1). We obtain

−
∫

Ω

|∇u−|2 dx ≥ −λ
∫

Ω

c+(u−)2 dx+ µ1

∫
Ω

|∇u−|2u− dx−
∫

Ω

h−u− dx

≥ −Λ2

∫
Ω

c+(u−)2 dx+ µ1
4

9

∫
Ω

|∇(u−)3/2|2 dx−
∫

Ω

h−u− dx

and hence

µ1
4

9

∫
Ω

|∇(u−)3/2|2 dx+

∫
Ω

|∇u−|2 dx ≤
∫

Ω

h−u− dx+ Λ2

∫
Ω

c+(u−)2 dx.

For every ε > 0 we have

Λ2

∫
Ω

c+(u−)2 dx =

∫
Ω

(Λ2c
+)1/2(u−)1/2(Λ2c

+)1/2(u−)3/2 dx

≤ 1

2ε
Λ2

∫
Ω

c+u− dx+
ε

2
Λ2

∫
Ω

c+
(
(u−)3/2

)2
dx.

Also, for some constant CN , by Sobolev’s embedding, we get∫
Ω

c+
(
(u−)3/2

)2
dx ≤ ‖c+‖N/2‖(u−)3/2‖2

2∗ ≤
1

CN
‖c+‖N/2‖∇(u−)3/2‖2

2.
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We then obtain

µ1
4

9

∫
Ω

|∇(u−)3/2|2 dx+

∫
Ω

|∇u−|2 dx

≤
∫

Ω

h−u− dx+
1

2ε
Λ2

∫
Ω

c+u− dx+
ε

2

Λ2

CN
‖c+‖N/2‖∇(u−)3/2‖2

2.

Hence, by choosing ε =
CN

Λ2‖c+‖N/2
µ1

4

9
, it comes

µ1
2

9

∫
Ω

|∇(u−)3/2|2 dx +

∫
Ω

|∇u−|2 dx

≤
∫

Ω

h−u− dx+
9Λ2

2‖c+‖N/2
8µ1CN

∫
Ω

c+u− dx

≤ C
(
‖h−‖N/2‖∇u−‖2 +

Λ2
2

µ1

‖c+‖2
N/2‖∇u−‖2

)
from which we deduce that

‖u−‖H1
0
≤ C(‖h−‖N/2 +

Λ2
2

µ1

‖c+‖2
N/2).

By Lemma 2.5 we obtain that

u ≥ −M := −M(Λ2, µ1, ‖c‖N/2, ‖h−‖N/2),

which allows to conclude. �

As a simple corollary, we have the following result.

Corollary 3.2. Under conditions (A), for any Λ2 > 0, there exists a constant
M := M(Λ2, µ1, ‖c‖N/2, ‖h−‖N/2) > 0 such that, for any λ ∈ [0,Λ2], any upper
solution β of (Pλ) satisfies

min
Ω
β > −M.

Proof. As β = min{βj | 1 ≤ j ≤ l} where βj are regular upper solutions, they
belong to H1(Ω) ∩ L∞(Ω) and satisfy (3.1). We conclude by Lemma 3.1. �

Let ν̃1 > 0 denotes the first eigenvalue of

(3.2) −∆u+ µ1h
−(x)u = νc(x)u, u ∈ H1

0 (Ω),

with corresponding eigenfunction ψ1 > 0.

Theorem 3.3. Under condition (A), for any Λ2 > Λ1 > 0, any A > 0, there
exists a constant M > 0 such that, for any λ ∈ [Λ1,Λ2], a ∈ [0, A], any solution
u of

(3.3) −∆u = λc(x)u+ µ(x)|∇u|2 + h(x) + ac(x), u ∈ H1
0 (Ω) ∩ L∞(Ω),

satisfies
‖u‖∞ < M.
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Moreover, viewed as a function of Λ1, M = O0+(1/Λ1).

In the above theorem, the notation M = O0+(g(Λ1)) means the existence of
C > 0 such that ∣∣∣∣M(Λ1)

g(Λ1)

∣∣∣∣ ≤ C, as Λ1 → 0+.

Remark 3.2. The above theorem is valid under less restrictive conditions. In fact
it is valid if we replace the regularity c and h ∈ Lp(Ω) with p > N by c and
h ∈ Lp(Ω) with p > N/2 and h− ∈ Lq(Ω) for some q > N . This last condition
is used to prove that the first eigenfunction ψ1 > 0 of (3.2) satisfies ψ1 ≥ dδ(x)
for some constant d > 0 where δ(x) denotes the distance from x to ∂Ω. This is
needed to insure that the conclusion of Lemma 3.5 holds. Following the proof of
[4, Lemma 6.3] it is possible to prove that this condition on ψ1 holds under this
stronger regularity.

In the proof of the Theorem 3.3 the following technical lemmas will be used.

Lemma 3.4. Let p > N
2

and θ ∈ ]0, 1[. There exist r ∈ ]0, 1[ and α ∈]0, p−1
2p−1

[

such that if we define

(3.4) q = 1 + r +
1 + θα

1− α
, τ =

1

q

α

1− α
,

then it holds

(3.5)
1

p
≤ q ≤ 2N(p− 1)

p(N − 2 + 2τ)

and

(3.6) 1− α < 2

q
.

Proof. See [4, Lemma 6.2]. �

Lemma 3.5. Let b ∈ Lp(Ω) with p > N
2

. For any p, q ≥ 1 and τ ∈ [0, 1]
satisfying (3.5), there exists C > 0 such that, for all w ∈ H1

0 (Ω),∥∥∥∥b1/qw

ψτ1

∥∥∥∥
q

≤ C‖b‖p‖∇w‖2,

where ψ1 > 0 denotes the first eigenfunction (3.2).

Proof. See [4, Lemma 6.3] or [10]. �

Proof of Theorem 3.3. Let λ ∈ [Λ1,Λ2], a ∈ [0, A] and u be a solution of (3.3).
Assume without loss of generality that Λ1 ≤ 1 ≤ Λ2. We define

wi(x) =
1

µi
(eµiu(x) − 1) and gi(s) =

1

µi
ln(1 + µis) i = 1, 2.
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Then we have

u = g1(w1) = g2(w2),(3.7)

eµiu = 1 + µiwi, i = 1, 2.(3.8)

Direct calculations give us

−∆wi = eµiu(λc(x)u+ h(x) + ac(x)) + eµiu(µ(x)− µi)|∇u|2

= (1 + µiwi)(λc(x)gi(wi) + h(x) + ac(x)) + (1 + µiwi)(µ(x)− µi)|∇u|2.

Since µ1 ≤ µ(x) ≤ µ2, we have

−∆w1 ≥ (1 + µ1w1)[λc(x)g1(w1) + h(x) + ac(x)],(3.9)

−∆w2 ≤ (1 + µ2w2)[λc(x)g2(w2) + h(x) + ac(x)],(3.10)

in a weak sense.
From the inequalities (3.9) and (3.10), we shall deduce that w2 is uniformly

bounded in H1
0 (Ω). This will lead to the proof of the theorem by Lemma 2.5. We

shall denote by C a generic constant independent of Λ1 and by C(Λ1), a generic
constant depending on Λ1. We then precise its dependence on Λ1.

We divide the proof into three steps.

Step 1. Let θ = (µ2 − µ1)/µ2 ∈ ]0, 1[. Then there exists D = D(Λ1) > 0
independent of λ ∈ [Λ1,Λ2] and of a ∈ [0, A] such that∫

Ω

(1 + µ1w
+
1 )[cg1(w+

1 ) + h+ + ac]ψ1 dx ≤ D(Λ1),(3.11) ∫
Ω

(1 + µ2w
+
2 )1−θ[cg2(w+

2 ) + h+ + ac]ψ1 dx ≤ D(Λ1).(3.12)

Moreover D(Λ1) = O0+(e1/Λ1).

Indeed, using ψ1 > 0 (defined in (3.2)) as a test function in (3.9) and integrating
we have∫

Ω

[ν̃1c− µ1h
−]w1ψ1 dx ≥

∫
Ω

(1 + µ1w1)[λcg1(w1) + h+ ac]ψ1 dx.

Recording that λ ≤ Λ2 and then, by Lemma 3.1, that g1(w−1 ) = u− is uniformly
bounded we then obtain

ν̃1

∫
Ω

cw1ψ1 dx ≥
∫

Ω

(1 + µ1w1)[λcg1(w1) + h+ ac]ψ1 dx+ µ1

∫
Ω

h−w1ψ1 dx

=

∫
Ω

(1 + µ1w1)[λcg1(w1) + h+ + ac]ψ1 dx−
∫

Ω

h−ψ1 dx

≥
∫

Ω

(1 + µ1w
+
1 )[λcg1(w+

1 ) + h+ + ac]ψ1 dx− C.
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Then, since λ ≥ Λ1 and Λ1 ≤ 1, we deduce that

(3.13) ν̃1

∫
Ω

cw1ψ1 dx ≥ Λ1

∫
Ω

(1 + µ1w
+
1 )[cg1(w+

1 ) + h+ + ac]ψ1 dx− C.

Note that for any ε > 0 there exists Cε > 0 such that, for all t > 0,

(3.14) t ≤ ε(1 + µ1t)g1(t) + Cε.

A direct calculation shows that we can assume that Cε = O0+(εe1/ε). Using (3.14)

with ε =
Λ1

2ν̃1

, we get that

ν̃1

∫
Ω

cw1ψ1 dx ≤ ν̃1

∫
Ω

cw+
1 ψ1 dx

≤ Λ1

2

∫
Ω

(1 + µ1w
+
1 )[cg1(w+

1 ) + h+ + ac]ψ1 dx+ CΛ1 .(3.15)

We then obtain (3.11) from (3.13) and (3.15). Now observe that by (3.8),

1 + µ1w1 = eµ1u = (eµ2u)1−θ = (1 + µ2w2)1−θ.

Thus from (3.7) we see that (3.12) is nothing but (3.11).

Step 2. There exists a constant D = D(Λ1) > 0 independent of a ∈ [0, A] and
λ ∈ [Λ1,Λ2] such that

(3.16) ‖∇w+
2 ‖2 ≤ D(Λ1).

Moreover D(Λ1) = O0+(eβ/Λ1) with β = α
2−q(1−α)

.

First we use Lemma 3.4 to choose r ∈ ]0, 1[ and α ∈ ]0, p−1
2p−1

[ such that q and τ

defined by (3.4) satisfy (3.5) and (3.6).
Using w+

2 as a test function in (3.10) it follows that

‖∇w+
2 ‖2

2 ≤
∫

Ω

(1 + µ2w
+
2 )[λcg2(w+

2 ) + h+ + ac]w+
2 dx.

Setting H = h+ + Ac, we have

‖∇w+
2 ‖2

2 ≤ Λ2

∫
Ω

(1 + µ2w
+
2 )[cg2(w+

2 ) +H]w+
2 dx.
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Now, using Hölder’s inequality and since w+
2 ≤ (1 +µ2w

+
2 )/µ−1

2 , we obtain, using
(3.12) of Step 1 and for a D(Λ1) = O0+(e1/Λ1),

‖∇w+
2 ‖2

2 ≤
Λ2

µ2

∫
Ω

(1 + µ2w
+
2 )[cg2(w+

2 ) +H)]
ψα1

(1 + µ2w
+
2 )θα

(1 + µ2w
+
2 )1+θα

ψα1
dx

≤ Λ2

µ2

(∫
Ω

(1 + µ2w
+
2 )[cg2(w+

2 ) +H]
ψ1

(1 + µ2w
+
2 )θ

dx

)α
×

(∫
Ω

(1 + µ2w
+
2 )[cg2(w+

2 ) +H]
(1 + µ2w

+
2 )

1+θα
1−α

ψ
α

1−α
1

dx

)1−α

≤ Λ2

µ2

D(Λ1)α

(∫
Ω

(1 + µ2w
+
2 )[cg2(w+

2 ) +H]
(1 + µ2w

+
2 )

1+θα
1−α

ψ
α

1−α
1

dx

)1−α

.

We note that, for r > 0 given by Lemma 3.4, there exists C > 0 such that

g2(t) ≤ tr + C for all t ≥ 0.

Thus, direct calculations shows that

(1 + µ2w
+
2 )[cg2(w+

2 ) +H](1 + µ2w
+
2 )

1+θα
1−α ≤ (c+H)(w+

2
q

+ C),

where q is given in (3.4). Therefore for some D(Λ1) = O0+(e1/Λ1),

‖∇w+
2 ‖2

2 ≤ D(Λ1)α

[(∫
Ω

(
(c+H)1/qw+

2

ψτ1

)q
dx

)1−α

+ 1

]
,

with q and τ given in (3.4). Applying Lemma 3.5, we then obtain

‖∇w+
2 ‖2

2 ≤ D(Λ1)α
[
‖c+H‖q(1−α)

p ‖∇w+
2 ‖

q(1−α)
2 + 1

]
.

By (3.6), we have q(1− α) < 2 and this concludes the proof of Step 2.

Step 3. Conclusion.

By Lemma 3.1 we already know that u > −M for some M > 0. Hence we just
have to show that the estimate (3.16) derived in Step 2 gives an estimate in the
L∞(Ω) norm of w+

2 . Since w2 satisfies (3.10) we can use Lemma 2.5 with

d = (1 + µ2w2)λc
ln(1 + µ2w2)

µ2w2

+ µ2 (h+ Ac)

and
f = h+ Ac.

Observe that, for any r ∈ ]0, 1[, there exists C > 0 such that, for all x ∈ Ω and
all λ ≤ Λ2,

λc
∣∣∣(1 + µ2w2)

ln(1 + µ2w2)

µ2w2

∣∣∣ ≤ Cc(|w2|r + 1),
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where C depends on Λ2, r, µ2.

Thus, since c(x) ∈ Lp(Ω) with p > N
2

and w2 is bounded in L
2N
N−2 (Ω), taking

r > 0 sufficiently small we see, using Hölder’s inequality, that c(x)|w2(x)|r ∈
Lp1(Ω) for some p1 >

N
2

. Now as h ∈ Lp(Ω) for some p > N
2

, clearly all the
assumptions of Lemma 2.5 are satisfied. From (3.16) we then deduce that there
exists a constant D(Λ1) > 0 with D(Λ1) = O0+(eβ/Λ1) and β given by Step 2,
such that

‖w+
2 ‖∞ ≤ D(Λ1).

Now since u+ = g2(w+
2 ) we deduce that

‖u+‖∞ ≤M(Λ1),

for some M(Λ1) = O0+(1/Λ1). �

Lemma 3.6. For every Λ2 > 0, there exists A1 > 0, independent of λ ∈ [0,Λ2],
such that the problem (3.3) has no solution for a ≥ A1.

Proof. Let φ ∈ C∞0 (Ω) such that
∫

Ω
c(x)φ2 dx > 0 and use φ2 as test function in

(3.3). Then we obtain∫
Ω

1

|µ(x)|
|∇φ|2 dx ≥ 2

∫
Ω

φ∇u∇φ dx−
∫

Ω

|µ(x)||∇u|2φ2 dx

= λ

∫
Ω

c u φ2 dx+

∫
Ω

hφ2 dx+ a

∫
Ω

c φ2 dx

≥ λminu

∫
Ω

c φ2 dx+

∫
Ω

hφ2 dx+ a

∫
Ω

c φ2 dx.

Since, by Lemma 3.1, there exists M > 0 such that, for all a ≥ 0, any solution u
satisfies u > −M , this gives a contradiction for a > 0 large enough. �

4. Results

This section is devoted to the proof of our main results.

Proof of Theorem 1.2. Let C ⊂ Σ be the continuum obtained in Theorem 1.1.
Either its projection ProjRC on the λ-axis is R or its projection on the λ-axis is
]−∞, λ] with 0 < λ < +∞. In the first case, the result is proved. In the second
case, as by Theorem 1.1 we know that C ∩ ([0,+∞[×C(Ω)) is unbounded, its
projection on C(Ω) has to be unbounded.

By Theorem 3.3 we know that for every 0 < Λ1 < Λ2, there is an a priori
bound on the solutions for λ ∈ [Λ1,Λ2]. This means that the projection of
C ∩ ([Λ1,Λ2] × C(Ω)) on C(Ω) is bounded. Now by Lemma 3.1 there is a lower
bound on the solutions for λ ≤ Λ2. Thus C must emanate from infinity to the
right of λ = 0 with the positive part of the corresponding solution blowing up to
infinity. �
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Corollary 4.1. Under assumption (A) and assuming that (P0) has a solution,
let ϕ1 > 0 the first eigenfunction of (1.1). If∫

Ω

h(x)ϕ1(x) dx ≥ 0,

then we are in case (i) of Theorem 1.2 and max ProjRC < γ1.

Proof. Let u be a solution of (Pλ). Multiplying by ϕ1 > 0 and integrating we
have

(γ1 − λ)

∫
Ω

c(x)uϕ1 dx =

∫
Ω

µ(x)|∇u|2ϕ1 dx+

∫
Ω

h(x)ϕ1 dx > 0,

which is a contradiction for λ = γ1. Hence (Pλ) has no solution for λ = γ1 which
proves that we are in the first situation in Theorem 1.2. �

In order to consider the situation where (P0) has a solution with minu < 0, we
need the following lemmas.

Lemma 4.2. Under assumption (A), for every λ ≥ 0, there exists a strict lower
solution vλ of (Pλ) such that, every upper solution β of (Pλ) satisfies vλ ≤ β.

Proof. Let M > 0 be given by Corollary 3.2 such that, for every upper solution
β of

(4.1)
−∆u = λc(x)u+ µ(x)|∇u|2 − h−(x)− 1, in Ω,

u = 0, on ∂Ω,

we have β ≥ −M .
Let k > M and consider αk the solution of

−∆v = −λkc(x)− h−(x)− 1, in Ω,
v = 0, on ∂Ω.

As −λkc(x)− h−(x)− 1 < 0, we have αk � 0 by the strong maximum principle
(see [25, Theorem 3.27]).

Claim 1: Every upper solution β of (Pλ) satisfies β ≥ αk. In fact, β = min{βj |
1 ≤ j ≤ l} where β1, . . . , βl are regular upper solutions of (Pλ). Setting w =
βj − αk for some 1 ≤ j ≤ l we have

−∆w ≥ λc(x)(βj + k) ≥ 0, in Ω,
w = 0, on ∂Ω.

By the maximum principle w ≥ 0 i.e. βj ≥ αk. This proves the Claim.

Consider then the problem

(4.2)
−∆v = λc(x)Tk(v) + µ(x)|∇v|2 − h−(x)− 1, in Ω,

v = 0, on ∂Ω,
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where
Tk(v) = −k, if v ≤ −k,

= v, if v > −k.
It is easy to prove that αk and β are lower and upper solutions of (4.2) and hence,
by Theorem 2.1, this problem has a minimal solution vk with αk ≤ vk ≤ β.

Claim 2: Every upper solution β of (Pλ) satisfies β ≥ vk. Observe that, by
construction of (4.2), every upper solution β of (Pλ) is also an upper solution of
(4.2). As, by Claim 1, we have β ≥ αk, the minimality of vk implies that vk ≤ β.

Claim 3: vk is a lower solution of (Pλ). Observe that vk is an upper solution
of (4.1). Hence vk ≥ −M > −k and vk satisfies

−∆v = λc(x)v + µ(x)|∇v|2 − h−(x)− 1, in Ω,
v = 0, on ∂Ω.

This implies that vk is a lower solution of (Pλ).

Claim 4: vk is a strict lower solution of (Pλ). Let u be a solution of (Pλ) with
u ≥ vk. Then w = u− vk satisfies

−∆w − µ(x)〈∇u+∇vk | ∇w〉 ≥ λc(x)w + h+(x) + 1 ≥ 1, in Ω,
w = 0, on ∂Ω.

By the strong maximum principle (see [25, Theorem 3.27]), we deduce that w � 0
i.e. u� vk. �

Remark 4.1. Lemma 4.2 shows that, for (P0), to have an upper solution is equiv-
alent to have a solution.

Proof of Theorem 1.3. We proceed in several steps.

Step 1: For all ε > 0, there exists R > 0 such that deg(I −M0,S) = 1 with

S = {u ∈ C1
0(Ω) | u0 − ε� u� u0 + ε, ‖u‖C1 < R}.

It is easy to prove that u0 − ε and u0 + ε are lower and upper solutions of (P0).
Moreover, as u0 is the unique solution of (P0), we deduce that u0 − ε and u0 + ε
are strict lower and upper solutions of (P0). The result then follows by Theorem
2.1.

Step 2: There exists a λ0 > 0 such that deg(I −Mλ,S) = 1 for λ ∈ ]0, λ0[ with
S defined in Step 1.

Let us prove first the existence of λ0 > 0 such that, for λ ∈ ]0, λ0[, (Pλ) has
no solution on ∂S. Otherwise, there exist a sequence {λn} with λn → 0 and
a corresponding sequence of solution {un} ⊂ W 2,p(Ω) of (Pλ) with un ∈ ∂S.
Increasing R if necessary, this means that u0 − ε ≤ un ≤ u0 + ε and either
max(un − u0) = ε or min(un − u0) = −ε. By Lemma 2.4, there exists a R > 0
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such that, for all n ∈ N, ‖un‖W 2,p < R. Hence, up to a subsequence, un → u in
C1

0(Ω). From this strong convergence we easily observe that

−∆u = µ(x)|∇u|2 + h(x), in Ω,
u = 0, on ∂Ω,

and either max(u− u0) = ε or min(u− u0) = −ε i.e. u is a solution of (P0) with
u ∈ ∂S which contradicts Step 1.

We conclude by the invariance by homotopy of the degree that

deg(I −Mλ,S) = deg(I −M0,S) = 1.

Step 3: (Pλ) has two solutions when λ ∈ ]0, λ0[. By Step 2, the existence of a first
solution u0 − ε� uλ,1 � u0 + ε is proved.

Also, using Lemma 3.6, there exists A1 > 0 large enough such that (3.3) has no
solution for a ≥ A1. By Theorem 3.3 and Lemma 2.4 there exists a R0 > R > 0
such that, for all a ∈ [0, A1], every solution of (3.3) satisfies ‖u‖C1 < R0. Hence,
by homotopy invariance of the degree, we have

deg(I −Mλ, B(0, R0)) = deg(I −Mλ − L−1(A1c), B(0, R0)).

As for a = A1, the problem (3.3) has no solution, we have

deg(I −Mλ − L−1(A1c), B(0, R0)) = 0.

We then conclude that

deg(I −Mλ, B(0, R0) \ S) = deg(I −Mλ, B(0, R0))− deg(I −Mλ,S) = −1.

This proves the existence of a second solution uλ,2 of (Pλ) with uλ,2 ∈ B(0, R0)\S.

Step 4: Existence of λ such that, for all λ ∈ ]0, λ[, the problem (Pλ) has at least
two solutions with uλ,1 � uλ,2. Define

λ = sup{µ | ∀λ ∈ ]0, µ[, (Pλ) has at least two solutions}.
For λ ∈ ]0, λ[, (Pλ) has at least two solutions uλ,1 and uλ,2. Let us consider the
strict lower solution α given by Lemma 4.2. As α ≤ u for all u solution of
(Pλ), we can choose uλ,1 as the minimal solution with uλ,1 ≥ α. Hence we have
uλ,1 � uλ,2 as otherwise there exists a solution u with α ≤ u ≤ min(uλ,1, uλ,2)
which contradicts the minimality of uλ,1.

Now observe that, by convexity of y 7→ |y|2, the function β = 1
2
(uλ,1 + uλ,2) is

an upper solution of (Pλ) which is not a solution. Let us prove that β is a strict
upper solution of (Pλ). Let u be a solution of (Pλ) with u ≤ β. Then v := β − u
satisfies

−∆v − µ(x)〈∇β +∇u | ∇v〉 ≥ λc(x)v ≥ 0, in Ω,
v ≥ 0, in Ω.

By the strong maximum principle, we deduce that either v � 0 or v ≡ 0. If
v ≡ 0, then β = u is solution which contradicts the construction of β. As
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uλ,1 � β � uλ,2, we deduce from the fact that β is strict that uλ,1 � β � uλ,2
and hence we have proved the step.

Step 5: In case λ < +∞, the problem (Pλ) has at least one solution u. Let
{λn} ⊂ ]0, λ[ be a sequence such that λn → λ and {un} ⊂ W 2,p(Ω) be a sequence
of corresponding solutions. By Theorem 3.3, there exists a constant M > 0 such
that, for all n ∈ N, ‖un‖∞ < M and, by Lemma 2.4, we have R > 0 such that, for
all n ∈ N, ‖un‖W 2,p < R. Hence, up to a subsequence, un → u in C1

0(Ω). From
this strong convergence we easily observe that

−∆u = λc(x)u+ µ(x)|∇u|2 + h(x), in Ω,
u = 0, on ∂Ω,

namely u ∈ W 2,p(Ω) is a solution of (Pλ).

Step 6: Uniqueness of the solution of (Pλ) in case λ < +∞. Otherwise, if we
have two distincts solutions u1 and u2 of (Pλ), then, as in Step 4, we prove that
β = 1

2
(u1 + u2) is a strict upper solution of (Pλ). Let us consider the strict lower

solution α � β of (Pλ) given by Lemma 4.2. By Theorem 2.1, we then have
R > 0 such that

deg(I −Mλ, S̃) = 1,

where

S̃ = {u ∈ C1
0(Ω) | α� u� β, ‖u‖C1 < R}.

Arguing as in Step 2, we prove the existence of ε > 0 such that, for all λ ∈
[λ − ε, λ + ε], deg(I −Mλ, S̃) = 1 and, as in Step 3, we prove that (Pλ) has at
least two solutions for λ ∈ [λ, λ+ ε] which contradicts the definition of λ.

Step 7: Behaviour of the solutions for λ → 0. Let {λn} ⊂ ]0, λ[ be a decreasing
sequence such that λn → 0. Without loss of generality, we suppose λn ∈ ]0, λ0[.
Then, by Steps 2 and 4, the corresponding solutions uλn,1 satisfy uλn,1 ≤ u0 + ε.
Recall that, by Corollary 3.2, there exists M > 0 such that, for all n, uλn,1 ≥ −M .
This implies that the sequence {uλn,1} is bounded in C(Ω). We argue then as in
Step 5 to prove that uλn,1 → u in C1

0(Ω) with u solution of (P0). By uniqueness
of the solution of (P0), we deduce that u = u0.

Now let us consider the sequence {uλn,2}. If {uλn,2} is bounded, then as in
Step 5, we have that uλn,2 → u in C1

0(Ω) with u solution of (P0). By Step
3 and the facts that uλn,2 6∈ S, uλn,2 � uλn,1 and uλn,1 → u0, we know that
max{uλn,2 − u0} > ε. This implies that u 6= u0 which contradicts the uniqueness
of the solution of (P0). �

Remark 4.2. Observe that, by the above proof, we see that the set of λ for which
the problem (Pλ) has at least two solutions is open in ]0,+∞[.
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Proof of Theorem 1.4. We proceed in several steps.

Step 1: Every non-negative upper solution of (Pλ) satisfies u � u0. If u is a
non-negative upper solution of (Pλ) then u is an upper solution of (P0). By
Proposition 2.3 we deduce that u ≥ u0 and hence u is not a solution of (P0). As
in Step 4 of the proof of Theorem 1.3, we prove that u� u0.

Step 2: The problem (Pλ) has no non-negative solution for λ large. Let ϕ1 > 0
the first eigenfunction of (1.1). If (Pλ) has a non-negative solution, multiplying
(Pλ) by ϕ1 > 0 and integrating we obtain

γ1

∫
Ω

c(x)uϕ1 dx = −
∫

Ω

∆uϕ1 dx

= λ

∫
Ω

c(x)uϕ1 dx+

∫
Ω

µ(x)|∇u|2ϕ1 dx+

∫
Ω

h(x)ϕ1 dx,

and hence, for λ > γ1, as u ≥ u0, we have

0 ≥ (λ− γ1)

∫
Ω

c(x)uϕ1 dx+

∫
Ω

µ(x)|∇u|2ϕ1 dx+

∫
Ω

h(x)ϕ1 dx

≥ (λ− γ1)

∫
Ω

c(x)u0ϕ1 dx+

∫
Ω

µ(x)|∇u|2ϕ1 dx+

∫
Ω

h(x)ϕ1 dx,

which gives a contradiction for λ large enough.

Step 3: Define λ = sup{λ | (Pλ) has a solution uλ ≥ 0}, then, λ < +∞ and, for
all λ > λ, (Pλ) has no non-negative solution. This is obvious by definition of λ
and Step 2.

Step 4: For all 0 < λ < λ, (Pλ) has well ordered strict lower and upper solutions.
Observe that u0 is a lower solution of (Pλ) which is not a solution. By definition

of λ, we can find λ̃ ∈ ]λ, λ[ and a non-negative solution uλ̃ of (Pλ̃). Then uλ̃ is an
upper solution of (Pλ) and satisfies uλ̃ � u0 by Step 1. At this point following
the arguments of Step 4 of the proof of Theorem 1.3, we prove that u0 and uλ̃
are strict lower and upper solutions of (Pλ).

Step 5: For all λ ∈ ]0, λ[, (Pλ) has at least two positive solutions with u0 �
uλ,1 � uλ,2. By Step 4, Theorem 2.1 and Remark 2.2, we have R0 > 0 such that
deg(I −Mλ,S) = 1 with

S = {u ∈ C1
0(Ω) | u0 � u� uλ̃, ‖u‖C1 < R0},

and we have the existence of a first solution uλ,1 of (Pλ) with u0 ≤ uλ,1 ≤ uλ̃. Let
us choose uλ,1 as the minimal solution between u0 and uλ̃.

Now, using Lemma 3.6, there exists A1 > 0 large enough such that (3.3) has
no solution for a ≥ A1. By Theorem 3.3 and Lemma 2.4 there exists R1 > R0 >
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0 such that, for any a ∈ [0, A1], every solution of (3.3) with u ≥ u0 satisfies
‖u‖C1 < R1. Hence, by homotopy invariance of the degree we have

deg(I −Mλ,D) = deg(I −Mλ − L−1(A1c),D),

where
D = {u ∈ C1

0(Ω) | u0 � u, ‖u‖C1 < R1}.
As for a = A1, (3.3) has no solution, deg(I −Mλ − L−1(A1c),D) = 0 and we
obtain

deg(I −Mλ,D \ S) = deg(I −Mλ,D)− deg(I −Mλ,S) = 0− 1 = −1.

This proves the existence of a second solution uλ,2 of (Pλ) with uλ,2 � u0. As
uλ,1 is the minimal solution between u0 and uλ̃, we have uλ,1 � uλ,2 as otherwise,
by Theorem 2.1, we have a solution u with u0 ≤ u ≤ min{uλ,1, uλ,2, uλ̃} which
contradicts the minimality of uλ,1. We proceed as in Step 4 of the proof of
Theorem 1.3 to conclude that uλ,1 � uλ,2.

Step 6: For λ1 < λ2, we have uλ1,1 � uλ2,1. As uλ,1 is the minimal solution above
u0 and, as in Step 4, uλ2,1 is a strict upper solution of (Pλ1) with uλ2,1 ≥ u0, we
deduce that uλ1,1 � uλ2,1.

Step 7: The problem (Pλ) has at least one solution. Let {λn} ⊂ ]0, λ[ be a sequence
such that λn → λ and {un} ⊂ W 2,p(Ω) be a sequence of corresponding non
negative solutions. We argue as in Step 5 of the proof of Theorem 1.3 to obtain
that, up to a subsequence, un → u in C1

0(Ω) with u ∈ W 2,p(Ω) solution of (Pλ).

Step 8: Uniqueness of the non-negative solution of (Pλ). The proof follows the
lines of Step 6 of the proof of Theorem 1.3.

Step 9: Behaviour of the solutions for λ→ 0. This can be proved as in Step 7 of
the proof of Theorem 1.3. �

Proposition 4.3. Under assumption (A), assume that (P0) has a solution u0 ≤ 0
with cu0 � 0. Then, for all λ ≥ 0, problem (Pλ) has at most one solution u ≤ 0.

Proof. The proof is divided in three steps.

Step 1: If u is a lower solution of (Pλ) with u ≤ 0, then u � u0. In fact, u is a
lower solution of (P0) and, by Proposition 2.3, we have u ≤ u0. In addition, for
w = u0 − u, as cu ≤ cu0 � 0, we have

−∆w − µ(x)〈∇u+∇u0 | ∇w〉 = −λc(x)u 	 0, in Ω,
w = 0, on ∂Ω.

This implies that w � 0 i.e. u� u0 ≤ 0.

Step 2: If we have two solutions u1 ≤ 0 and u2 ≤ 0 of (Pλ) then we have two
ordered solutions ũ1 � ũ2 ≤ u0. By Step 1, we have u1 � u0 and u2 � u0.
In case u1 and u2 are not ordered, as u0 is an upper solution of (Pλ), applying
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Theorem 2.1, there exists a solution u3 of (Pλ) with max{u1, u2} ≤ u3 ≤ u0. This
proves the step by choosing ũ1 = u1 and ũ2 = u3.

Step 3: Conclusion. Let us assume by contradiction that we have two solutions
u1 ≤ 0 and u2 ≤ 0. By Step 2, we can suppose u1 � u2. As |u2| � 0, the
set {v ∈ C1

0(Ω) | v ≤ |u2|} is an open neighborhood of 0 and hence the set
{ε > 0 | u2 − u1 ≤ ε|u2|} is not empty. Then defining

ε̄ = inf{ε > 0 | u2 − u1 ≤ ε|u2|},
we have that 0 < ε̄ <∞ and

(4.3) ε̄ = min{ε > 0 | u2 − u1 ≤ ε|u2|}.
Letting

wε̄ =
(1 + ε̄)u2 − u1

ε̄
,

we can write

∇u2 = (
ε̄

1 + ε̄
)∇wε̄ + (

1

1 + ε̄
)∇u1,

and by convexity

|∇u2|2 ≤ (
ε̄

1 + ε̄
)|∇wε̄|2 + (

1

1 + ε̄
)|∇u1|2.

We then obtain

−∆wε̄ ≤ λc(x)wε̄ + µ(x)|∇wε̄|2 + h(x).

By the choice of ε̄ > 0, wε̄ ≤ 0 and, by Step 1, wε̄ � u0 ≤ 0. At this point, we
have a contradiction with the definition of ε given in (4.3). �

Our next result can be viewed as a generalization of [3, Theorem 3.12].

Corollary 4.4. Under assumption (A), assume that h � 0. Then, for all λ > 0,
the problem (Pλ) has exactly one solution u ≤ 0.

Proof. Clearly u ≡ 0 is an upper solution of (Pλ) for all λ ≥ 0. By Lemma 4.2,
for all λ ≥ 0, (Pλ) has a lower solution αλ ≤ 0. From Theorem 2.1 it follows that
(Pλ) has a solution uλ with αλ ≤ uλ ≤ 0. Now, as u0 satisfies

−∆u0 = µ(x)|∇u0|2 + h(x),

the strong maximum principle and h � 0, implies that u0 � 0 and in particular
cu0 � 0. We now conclude with Proposition 4.3. �

Proof of Theorem 1.5. We proceed in several steps.

Step 1: For all λ > 0, u0 is a strict upper solution of (Pλ). Clearly u0 is an
upper solution of (Pλ) which is not a solution. To prove that it is a strict upper
solution, we argue as in Step 4 of the proof of Theorem 1.3.
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Step 2: For all λ > 0, (Pλ) has a strict lower solution α with α ≤ β for all upper
solution β of (Pλ). This is Lemma 4.2.

Step 3: For all λ > 0, (Pλ) has at least two solutions with

uλ,1 � u0, uλ,1 � uλ,2 and maxuλ,2 > 0.

By Steps 1, 2 and Theorem 2.1, there exists a R > 0 such that deg(I−Mλ,S) = 1
with

S = {u ∈ C1
0(Ω) | α� u� u0, ‖u‖C1 < R}.

In particular the existence of a first solution uλ,1 � u0 is proved.

The proof of the existence of a second solution uλ,2 with uλ,1 � uλ,2 is derived
exactly as in Step 3 and 4 of the proof of Theorem 1.3. By Proposition 4.3, we
have maxuλ,2 > 0.

Step 4: If λ1 < λ2, then uλ1,1 � uλ2,1. As uλ1,1 is a strict upper solution of (Pλ2)
and uλ2,1 is the minimal solution of (Pλ2), we have uλ1,1 � uλ2,1.

Step 5: Behaviour of the solutions for λ→ 0. This can be proved as in Step 7 of
the proof of Theorem 1.3. �

Proof of Corollary 1.6. By the proof of Corollary 4.4, as h � 0, we have the
existence of a solution u0 of (P0) with u0 � 0 and hence the result follows by
Theorem 1.5. �

Proof of Theorem 1.7. First observe that if (Pλ) has an upper solution βλ ≤ 0,
then βλ satisfies also cβλ � 0 as otherwise, it is also an upper solution of (P0),
which contradicts the assumption (a) by Lemma 4.2 and Theorem 2.1.

Let us define

λ = inf{λ ≥ 0 | (Pλ) has an upper solution βλ ≤ 0 with cβλ � 0}.

Let λ > λ. By definition of λ, there exists λ̃ ∈ ]λ, λ[ such that (Pλ̃) has an
upper solution βλ̃ ≤ 0 with cβλ̃ � 0. Clearly βλ̃ is an upper solution of (Pλ)
which is not a solution and hence, as in Step 4 of the proof of Theorem 1.3, β is
a strict upper solution of (Pλ).

By Lemma 4.2, (Pλ) has a strict lower solution α ≤ βλ̃ and α ≤ u for all solution
u of (Pλ). Using Theorem 2.1 there exists R > 0 such that deg(I −Mλ,S) = 1
with

S = {u ∈ C1
0(Ω) | α� u� βλ̃, ‖u‖C1 < R}.

In particular the existence of a first solution uλ,1 � 0 follows.

To obtain a second solution uλ,2 satisfying uλ,1 � uλ,2 we now just repeat the
arguments of Steps 3 and 4 of the proof of Theorem 1.3.

Again, following the arguments of Step 4 of the proof of Theorem 1.5, we prove
that if λ1 < λ2, then uλ1,1 � uλ2,1.
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To show that (Pλ) has at least one solution with u ≤ 0, let {λn} ⊂ ]λ,+∞[ be
a decreasing sequence such that λn → λ and {un} ⊂ W 2,p(Ω) be a sequence of
corresponding solutions with un ≤ un+1 ≤ 0. As {un} is increasing and bounded
above, there exists M > 0 such that, for all n ∈ N, ‖un‖∞ < M and hence,
arguing as in Step 5 of the proof of Theorem 1.3, we prove that (Pλ) has at least
one solution with u ≤ 0.

By assumption (a), we have that λ > 0 as we just proved that (Pλ) has at least
one solution with u ≤ 0. The proof of the uniqueness of the non-positive solution
of (Pλ) follows then as in Step 6 of the proof of Theorem 1.3. Finally (iii) follows
by definition of λ > 0 and the first part of the proof. �

Proof of Theorem 1.8. Let λ > ν1. We proceed in several steps.

Step 1: For k > 0 small, (Qλ,k) admits a solution. In view of Lemma 4.2 and of
Theorem 2.1 it suffices to show that (Qλ,k) admits an upper solution.

Let ε0 > 0 be given by Proposition 2.6 corresponding to c̄ = c, d̄ = µ2h̃
− and

h̄ = µ2h̃
+ and choose λ0 ∈ ]ν1,min(ν1 + ε0, ν1 + λ−ν1

2
)]. Then let w � 0 be the

solution of

−∆u+ µ2h̃
−(x)u = λ0c(x)u+ µ2h̃

+(x), in Ω,
u = 0, on ∂Ω.

Also, taking δ > 0 small enough, we have that

λ0s ≥ (1 + λs) ln(1 + λs),

for all s ∈ [−δ, 0]. Thus, defining β̃k = k
λ
w for k > 0 small enough, it follows that

β̃k ∈ [−δ, 0] and

−∆β̃k + µ2h̃
−(x)β̃k ≥ c(x)(1 + λβ̃k) ln(1 + λβ̃k) + k µ2

λ
h̃+(x), in Ω,

β̃k = 0, on ∂Ω.

At this point defining βk = 1
µ2

ln(λβ̃k+1) we see, after some standard calculations,

that βk � 0 is an upper solution for (Qλ,k).

Step 2: For k large, the problem (Qλ,k) has no solution. Let φ ∈ C∞0 (Ω) such
that φ2 � 0. Then, using φ2 as test function we obtain, by Lemma 3.1,∫

Ω

1

µ(x)
|∇φ|2 dx ≥ 2

∫
Ω

φ〈∇u,∇φ〉 dx−
∫

Ω

µ(x)|∇u|2φ2 dx

= λ

∫
Ω

c(x)uφ2 dx+ k

∫
Ω

h̃+(x)φ2 dx−
∫

Ω

h̃−(x)φ2 dx

≥ −λM
∫

Ω

c(x)φ2 dx+ k

∫
Ω

h̃+(x)φ2 dx−
∫

Ω

h̃−(x)φ2 dx,

which is a contradiction for k > 0 large enough.



30 C. DE COSTER AND L. JEANJEAN

Step 3: Define

k = sup{k ∈ ]0,+∞[ | the problem (Qλ,k) has at least one solution},

then k ∈ ]0,+∞[ and for k ∈ ]0, k[, the problem (Qλ,k) has a strict upper solution.

By Step 1 and 2 we have easily k ∈ ]0,+∞[.

Let k ∈ ]0, k[ and k̃ ∈ ]k, k[ be such that (Qλ,k̃) has a solution β̃. Then β = k
k̃
β̃

is an upper solution of (Qλ,k) as

−∆β = λc(x)β + k̃
k
µ(x)|∇β|2 + kh̃+(x)− k

k̃
h̃−(x)

≥ λc(x)β + µ(x)|∇β|2 + kh̃+(x)− h̃−(x), in Ω,

β ≥ 0, on ∂Ω,

i.e. β is an upper solution of (Qλ,k). Now, as in Step 4 of the proof of Theorem
1.4 we can prove that β is a strict upper solution of (Qλ,k).

Step 4: Conclusion. At this point the proof follows as in the proof of Theorems
1.4 or 1.5. This is possible in view of Step 2 and of Theorem 3.3. �

Proof of Corollary 1.9. First observe that, by [4, Lemma 6.1] (see also the proof
of Corollary 4.1 above), we know that (Pγ1) has no solution. Hence also, for all
λ > 0, (Pλ) has no solution with cu ≡ 0 as otherwise u is solution for every λ ∈ R
which contradicts the non existence of a solution for λ = γ1.

By Step 3 of the proof of Theorem 1.8, there exists k̃ > 0 such that, for all
k ∈ ]0, k̃], the problem (Pλ̃) has a strict upper solution β0 with β0 � 0. The
existence of λ2 > γ1 as in (iii) can then be deduced from Theorem 1.7.

By [4, Theorem 1.1], decreasing k̃ if necessary, we know that for all k ∈ ]0, k̃],
the problem (P0) has a solution u0 � 0. Hence the existence of λ1 as in (i) can
be deduced from Theorem 1.4. �

Proof of Theorem 1.10. First observe that, for all λ ∈ R, u ≡ 0 is solution of
(1.5).
Step 1: for all λ ∈ ]0, γ1[, the problem (1.5) has a second solution uλ,2 	 0. Let
us prove that the problem (1.5) has a strict upper solution β � 0. To this end,

let λ < γ1 and ε > 0 such that, for all v ∈ [0, ε], λ (1+µ2v) ln(1+µ2v)
µ2

≤ γ1v. Consider

then the function β̃ = εϕ1 where ϕ1 denotes the first eigenfunction of (1.1) with
‖ϕ1‖∞ = 1 and observe that

−∆β̃ 	 λc(x)
(1 + µ2β̃) ln(1 + µ2β̃)

µ2

, a.e. in Ω,

β̃ = 0, on ∂Ω.
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Hence for β being defined by β = ln(µ2β̃+1)
µ2

, we have

−∆β 	 λc(x)β + µ2|∇β|2 ≥ λc(x)β + µ(x)|∇β|2, a.e. in Ω,
β = 0, on ∂Ω.

This implies, as in Step 4 of the proof of Theorem 1.3, that β � 0 is a strict
upper solution of (1.5).

By [4, Lemma 6.1], we know that, every solution u of (1.5) satisfies u ≥ 0 and
by Lemma 4.2, the problem (1.5) has a strict lower solution α � 0. Hence we
conclude the proof of (i) following the same lines as in the proof of Theorem 1.4,
the solution uλ,1 being u ≡ 0.

Step 2: For λ = γ1 the problem (1.5) has only the trivial solution. This can be
proved as in Corollary 4.1.

Step 3: For λ > γ1, the problem (1.5) has a second solution uλ,2 � 0. Let
λ > γ1 and λ0 ∈ ]γ1, λ] such that, by Proposition 2.6, the problem

(4.4) −∆u = λ0c(x)u+ 1, u ∈ H1
0 (Ω) ∩ L∞(Ω)

has a solution u � 0. This implies that for ε > 0 small enough, the function
β0 = εu satisfies

−∆β0 = λ0c(x)β0 + ε ≥ λ0c(x)β0 + µε2|∇u|2 = λ0c(x)β0 + µ|∇β0|2,
and the problem (Pλ0) has an upper solution β0 with β0 ≤ 0 and cβ0 � 0. The
result follows by Theorem 1.7. �

5. Complement in case µ constant

In that case it is possible to precise the blow-up rate, as λ→ 0+, of our solutions
uλ,2 obtained in Theorems 1.3, 1.4, 1.5 and 1.10.

Proposition 5.1. Assume that (A) holds with µ a positive constant and the
problem (P0) has a solution. Moreover, assume the existence of a sequence {λn} ⊂
]0,+∞[ with λn → 0 and two sequences {uλn}, {ũλn} of solutions of (Pλn) such
that

λn‖uλn‖∞ → 0 and λn‖ũλn‖∞ → 0,

as λn → 0. Then, for any n ∈ N sufficiently large, uλn = ũλn .

Proof. First we recall that if (P0) has a solution then, by [4, Remark 3.2]

inf
{u∈H1

0 (Ω)| ‖u‖
H1

0(Ω)
=1}

∫
Ω

(
|∇u|2 − µh(x)u2

)
dx > 0.

Hence in particular ξ1(c) > 0 where ξ1(c) is the first eigenvalue of the problem

−∆w − µh(x)w = ξ c(x)w, in Ω,
w = 0, on ∂Ω.
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Now, if un is a solution of (Pλn), by the change of variable un = 1
µ

ln(vn + 1) we

have that vn > −1 is solution of

(5.1)
−∆vn − µh(x)vn = λn c(x) (1 + vn) ln(1 + vn) + µh(x), in Ω,

vn = 0, on ∂Ω.

Setting D(λn) := ‖un‖∞, since vn = eµun − 1 we deduce that ‖vn‖∞ ≤ C(λn)
where

C(λn) = eµD(λn) − 1.

If we assume that λnD(λn)→ 0, then

lim
λn→0

λn(ln(1 + C(λn)) + 1) = lim
λn→0

λnD(λn) = 0.

Since ξ1(c) > 0, there exists n0 ∈ N such that, for all n ≥ n0

λn(ln(1 + C(λn)) + 1) < ξ1(c).

If we assume by contradiction that, for n ≥ n0, uλn 6= ũλn then (5.1) has also
two distinct solutions vn,1 and vn,2 and wn = vn,1 − vn,2 is a solution of

(5.2)
−∆w − µh(x)w = λn c(x)ρn(x)w, in Ω,

w = 0, on ∂Ω

with

ρn(x) =
(1 + vn,1(x)) ln(1 + vn,1(x))− (1 + vn,2(x)) ln(1 + vn,2(x))

vn,1(x)− vn,2(x)
,

if vn,1(x) 6= vn,2(x),
= ln(1 + vn,1(x)) + 1, if vn,1(x) = vn,2(x),

and by assumption 0 < λnρn < ξ1(c).

As (5.2) has a nontrivial solution, we have ξi(λncρn) = 1 for some i ∈ N.
Moreover, as λnρn < ξ1(c), we know by [14] that 1 = ξi(λncρn) > ξi(cξ1(c)) =
ξi(c)/ξ1(c). This contradicts that the sequence of eigenvalues (ξi(c))i is strictly
increasing and proves the proposition. �

Under the assumption that µ is constant, the following lemma gives informa-
tions on the set of solutions of (Pλ) for λ > 0 small.

Corollary 5.2. Assume that assumption (A) holds with µ a positive constant
and that (P0) has a solution u0. Let {uλn} be a sequence of solutions of (Pλn)
satisfying λn‖uλn‖∞ → 0 as λn → 0+. Then we have, for any n ∈ N sufficiently
large,

(i) uλn = uλn,1 where uλn,1 is the minimal solution given in Theorem 1.3. In
particular uλn → u0 in C1

0(Ω).

(ii) (λn, uλn) belongs to C where C is defined in Theorem 1.1.
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Proof. Since {uλn,1} satisfies λn‖uλn,1‖∞ → 0 as λn → 0 it directly follows from
Proposition 5.1 that, for any n ∈ N large enough, uλn = uλn,1. In particular it
follows from Theorem 1.3 that uλn → u0 in C1

0(Ω). Now by Theorem 1.1 we know
that, for n ∈ N large enough, there exists uλn such that (λn, uλn) ∈ C. Since, by
continuity, we have that λn‖uλn‖∞ → 0 we deduce by (i) that uλn = uλn,1. Thus
uλn = uλn . �

Also using again that λn‖uλn,1‖∞ → 0 as λn → 0, we immediately deduce from
Proposition 5.1 the following result.

Corollary 5.3. Assume that (A) holds with µ a positive constant.

(i) In Theorems 1.3, 1.4, 1.5 and 1.10 we have that

lim inf
λ→0+

λ‖uλ,2‖∞ > 0.

(ii) The bound derived in Theorem 3.3, ‖u‖∞ ≤ M(λ) for any solution u of
(3.3) with

lim sup
λ→0+

M(λ)λ ≤ C,

for some C > 0 is sharp.

6. Case N = 1 and open problems

In case Ω = [−T
2
, T

2
] i.e. N = 1 and µ > 0, c > 0 and h 6= 0 are constants, we

can make a more precise study of the situation.
By the classical change of variable v = eµu − 1, we are reduce to the problem

(6.1)

−v′′ − µhv = λ(v + 1) ln(v + 1) + µh, in [−T
2
, T

2
]

v > −1, in [−T
2
, T

2
]

v(−T
2
) = 0, v(T

2
) = 0.

It is easy to prove that in case λ = 0 this problem has a solution if and only if
µh < (π/T )2 which corresponds to the condition (1.2).

As this problem is autonomous, we can make a phase-plane analysis. There
are three different situations: h > 0 and λ > 0 small, h > 0 and λ large, h < 0.
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Case 1: 0 < λ < 2µh. In that case the phase plane is given by

v

v′

−1

We then see that the only possibility is to have positive solutions. Moreover
considering the time map T+(a) which gives the time for the positive part of the
orbit to go from (0, a) to (0,−a) with a > 0, it is easy to prove that

lim
a→0

T+(a) = 0 and lim
a→+∞

T+(a) = 0.

This implies the existence of T0 > 0 such that, for all T < T0, the problem (6.1)
has two solutions and, for T > T0 the problem (6.1) has no solution. Numerical
experiment shows that the count is exact.

This corresponds to what we prove in Theorem 1.4 together with [4, Lemma
6.1] where it is shown that, in case h 	 0, for all λ < γ1, every solution of (Pλ) is
non-negative.

Open problem 1 Can we prove that, for all λ < γ1, every solution of (Pλ)
is non-negative under the sole condition that (P0) has a solution u0 with u0 ≥ 0
and cu0 	 0?

Open problem 2 Can we prove, under the assumptions of Theorem 1.4 or
even under the assumptions of Theorem 1.3, that, for all λ < γ1, we have at most
two solutions?
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Case 2: λ > 2µh > 0. In that case the phase plane is richer and is given by

v

v′

−1

We see the possibilities of positive solutions but also of negative or sign-changing
ones.

We can prove that if µh ≥ (π/T )2 or λ ≥ (π/T )2 then the problem (6.1) has
no non-negative solutions i.e. the time T+(a) for the positive part of the orbit to
go from (0, a) to (0,−a) with a > 0 is too short with respect to the length of the
interval we consider.

For what concerns negative or sign-changing solutions, we see that, if we denote
by T0 the time needed by the solution with max]−T

2
,T

2
[ u = 0 to make a turn in

the phase plane, then for T > T0, there is a negative solution as well as a sign-
changing one. This is the situation studied in Theorem 1.7.

But for T > kT0 we have also solutions making k turns in the phase plane.

Open problem 3 Can we prove in Theorem 1.7 that the second solution
changes sign?

Open problem 4 Can we prove that in a small interval below λ in Theorem
1.7, the problem (Pλ) has no solution and that uλ ≤ 0 but uλ 6� 0 ?

Open problem 5 Can we prove the existence of more then two solutions for
λ large? Is there a link with the spectrum of the problem

(6.2) −∆ϕ1 = γc(x)ϕ1, ϕ1 ∈ H1
0 (Ω)?
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Case 3: h < 0. In that case, the phase portrait is given by

v

v′

−1

and we see that we have always a negative solution. Moreover, if we denote by
T1 the time needed by the solution with min]−T

2
,T

2
[ u = 0 to make a turn in the

phase plane, then, for T < T1 the problem (6.1) has a positive solution (as again,
considering the time map T+(a) which gives the time for the positive part of the
orbit to go from (0, a) to (0,−a) with a > 0, we have lim

a→+∞
T+(a) = 0) and for

T > T1 we have a sign-changing solution. This is the situation considered in
Theorem 1.5.

Open problem 6 Can we prove in Theorem 1.5 that the second solution is
positive for λ > 0 small and changes sign for λ large?

Moreover, for T > kT1 we have also solutions making k turns in the phase
plane.

Open problem 7 As in open problem 5, can we prove the existence of more
than two solutions for λ large?

In addition to the above open problems directly induced by the phase plane
analysis, we also propose the following questions.

Open problem 8 Can we give a more precise characterization of the situation
in case h changes sign or u0 changes sign?

Open problem 9 In [24] some a priori bounds for non-negative solutions have
been derived without assuming that µ(x) ≥ µ1 > 0. Can a similar result be
obtained in the general case ?

Open problem 10 In [4], the results are obtained under less regularity as-
sumptions (c, h ∈ Lp(Ω) with p > N/2). In [3], the regularity is even weaker. If
some of our results are still valid when (A) is weakened, how dependent is the
structure of the set of solutions of our regularity assumption ?
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7. Appendix : Proof of Theorem 2.1.

Let us denote α := max{αi | 1 ≤ i ≤ k} where α1, . . . , αk are regular lower
solutions of (2.1) and β = min{βj | 1 ≤ j ≤ l} where β1, . . . , βl are regular upper
solutions of (2.1). The proof is divided into three parts.

Part 1. Existence of a solution u of (2.1) with α ≤ u ≤ β. Observe that by
Lemma 2.4, there exist R > 0 such that, for every function f satisfying (2.4) and
every solution u of (2.1) with α ≤ u ≤ β, we have

(7.1) ‖u‖W 2,p < R and ‖u‖C1
0
< R.

Step 1. Construction of a modified problem. Take R such that

R > max{R, max
1≤i≤k

‖αi‖C1 , max
1≤j≤l

‖βj‖C1},

and set, for a.e. x ∈ Ω and every (s, ξ) ∈ R× RN ,

f(x, s, ξ) =

{
f(x, s, ξ), if |ξ| ≤ R,

f(x, s, R ξ
|ξ|), if |ξ| > R.

Now we define the functions

pi(x, s, ξ) =

{
f(x, αi(x), ξ) + ω1,i(x, αi(x)− s), if s < αi(x),
f(x, s, ξ), if s ≥ αi(x),

where

ω1,i(x, δ) = max
|ξ|≤δ
|f(x, αi(x),∇αi(x) + ξ)− f(x, αi(x),∇αi(x))|,

and

qj(x, s, ξ) =

{
f(x, βj(x), ξ)− ω2,j(x, s− βj(x)), if s > βj(x),
f(x, s, ξ), if s ≤ βj(x),

where

ω2,j(x, δ) = max
|ξ|≤δ
|f(x, βj(x),∇βj(x) + ξ)− f(x, βj(x),∇βj(x))|,

for i ∈ {1, ..., k} and j ∈ {1, ..., l}. At last, we define for a.e. x ∈ Ω and every
(s, ξ) ∈ R× RN ,

F (x, s, ξ) =


max
1≤i≤k

pi(x, s, ξ), if s ≤ α(x),

f(x, s, ξ), if α(x) < s < β(x),

min
1≤j≤l

qj(x, s, ξ), if s ≥ β(x).

Then we consider the modified problem

(7.2)
−∆u = F (x, u,∇u), in Ω,

u = 0, on ∂Ω.
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Notice that F is a Lp-Carathéodory function and that there exists γ ∈ Lp(Ω),
such that

|F (x, s, ξ)| ≤ γ(x),

for a.e. x ∈ Ω and every (s, ξ) ∈ R× RN .

Step 2. Every solution u of (7.2) satisfies α ≤ u ≤ β. Let u be a solution of
(7.2). Assume by contradiction that min

Ω
(u − α) < 0. Let i ∈ {1, . . . , k} and

x ∈ Ω such that

min
Ω

(u− α) = min
Ω

(u− αi) = (u− αi)(x) < 0.

Define v = u − αi. As v ≥ 0 on ∂Ω, we have x ∈ Ω. Therefore ∇v(x) = 0 and
there is an open ball B ⊆ Ω, with x ∈ B such that, a.e. in B,

|∇v(x)| ≤ |v(x)|, v(x) < 0,

and

−∆v ≥ F (x, u(x),∇u(x))− f(x, αi(x),∇αi(x))
≥ f(x, αi(x),∇u(x)) + ω1i(x, αi(x)− u(x))− f(x, αi(x),∇αi(x))
≥ −ω1i(x, |∇v(x)|) + ω1i(x, |v(x)|)
≥ 0,

since ω1i(x, ·) is increasing and |v(x)| ≥ |∇v(x)|. This contradicts the strong
maximum principle.

Similarly, one proves that u ≤ β.

Step 3. Every solution of (7.2) is a solution of (2.1) and satisfies α ≤ u ≤ β. In
Step 2, we proved that every solution u of (7.2) satisfies α ≤ u ≤ β and hence is
a solution of

−∆u = f(x, u,∇u), in Ω,
u = 0, on ∂Ω.

As f satisfies (2.4), we have ‖u‖C1(Ω) < R and hence u is a solution of (2.1).

Step 4. Problem (7.2) has at least one solution. Let us consider the solution
operator M : C1(Ω) → C1(Ω) associated with (7.2), which sends any function
u ∈ C1(Ω) onto the unique solution v ∈ W 2,p(Ω) of

−∆v = F (x, u,∇u), in Ω,
v = 0, on ∂Ω.

The operatorM is continuous, has a relatively compact range and its fixed points
are the solutions of (7.2). Hence there exists a constant R > 0, that we can
suppose larger than R, such that, for every u ∈ C1(Ω),

‖Mu‖C1(Ω) < R,
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and hence (see, e.g., [27])

(7.3) deg(I −M, B(0, R)) = 1,

where I is the identity operator in C1(Ω) and B(0, R) is the open ball of center
0 and radius R in C1(Ω). Therefore M has a fixed point and problem (7.2) has
at least one solution.

Step 5. Problem (2.1) has at least one solution. By Step 4, we get the existence
of a solution u of the problem (7.2) and Step 2 implies that u is a solution of
(2.1) satisfying α ≤ u ≤ β.

Part 2. Existence of extremal solutions. We know, from Part 1, that the solutions
u of (2.1), with α ≤ u ≤ β, are precisely the fixed points of the solution operator
M associated with (7.2), i.e.

H = {u ∈ C1(Ω) | u =Mu}

and H is a non-empty compact subset of C1(Ω). Next, for each u ∈ H, define
the closed set Cu = {z ∈ H | z ≤ u}. The family {Cu | u ∈ H} has the finite
intersection property, as it follows from Part 1 observing that if u1, u2 ∈ H,
then min{u1, u2} is an upper solution of (7.2) with α ≤ min{u1, u2}. Hence
Cu1 ∩ Cu2 6= ∅. By the compactness of H there exists v ∈

⋂
u∈H Cu; clearly, v is

the minimum solution in [α, β] of (2.1) in Ω.

Part 3. Degree computation. Now, let us assume that α and β are strict lower
and upper solutions respectively. Since there exists a solution u of (2.1), which
satisfies α ≤ u ≤ β, and every such solution satisfies α� u� β, it follows that
α � β. Hence S is a non-empty open set in C1(Ω) and there is no fixed point
either of M or of M on its boundary ∂S. Moreover, by (7.1), the sets of fixed
points of M and M coincide on S ∩B(0, R) and we have

deg(I −M,S ∩B(0, R)) = deg(I −M,S ∩B(0, R)).

Furthermore, by the excision property of the degree (see, e.g., [27]), we get from
(7.1) and (7.3)

deg(I −M, B(0, R)) = 1.

Finally, since all fixed points of M are in S ∩B(0, R), we conclude

deg(I −M,S ∩B(0, R)) = deg(I −M,S ∩B(0, R)) = deg(I −M, B(0, R)) = 1.

This ends the proof.
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