Integrating the XXX-Heisenberg spin chain while building conserved charges

by Sylvain Labopin

31 March, 2017

Table of contents

(1) The XXX Heisenberg spin chains

- Definition
- Generalisation to spins in superposition of k states
(2) First commuting conserved charges
- Idea of the method
- Auxiliary space, partial trace
- Commutation relations
- The first T-operators
(3) Generalizations of the first

T-operators

- Twist
- Auxiliary space $\not \not \mathbb{C}^{k}$

4 Differentiation with respect to the twist

- Definition
- T-operators via co-derivative
- Representations of $G L\left(\mathbb{C}^{k}\right)$
- Other formulas obtained via the coderivative
(5) Recover the spectrum of the theory via the T-operators
- Idea
- "Undressing procedure" for a spin chain with no length
- Generalization to spin chains with non zero length
- Bethe equations as conditions satisfied by the initial datas
- Recover the Bethe equations for $X X X_{\frac{1}{2}}$ Heisenberg spin chain

Quantum system proposed by Heisenberg in 1928

The $X_{X X} X_{\frac{1}{2}}$ Heisenberg spin chain :

$$
\frac{\mathcal{H}=\bigotimes_{i=1}^{L} \mathbb{C}^{2}}{(\text { Hilbert space) }}
$$

where :

Quantum system proposed by Heisenberg in 1928

The $\mathrm{XXX}_{\frac{1}{2}}$ Heisenberg spin chain :

$$
\begin{array}{|c|}
\hline \mathcal{H}=\bigotimes_{i=1}^{L} \mathbb{C}^{2} \\
\text { (Hilbert space) } \\
\text { (hamiltonian) }
\end{array}
$$

where:

$$
\begin{gathered}
\mathcal{P}_{i, i+1}\left(v_{1} \otimes \ldots \otimes v_{L}\right)=v_{1} \otimes \ldots \otimes \underbrace{v_{i+1}}_{i^{\text {th }} \text { factor }} \otimes \underbrace{v_{i}}_{(i+1)^{\text {th factor }}} \otimes \ldots \otimes v_{L} \\
\mathcal{P}_{L, L+1}=\mathcal{P}_{1, L}
\end{gathered}
$$

Generalisation to spins in superposition of k states

Generalisation to spins in superposition of k states

$$
\begin{array}{|l|}
\hline \mathcal{H}=\bigotimes_{i=1}^{L} \mathbb{C}^{k} \\
\text { (Hilbert space) }
\end{array}
$$

$$
H=\frac{2 L}{k}-2 \sum_{i=1}^{L} \mathcal{P}_{i, i+1}
$$

The XXX Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Idea of the method

Aim : diagonalisation of H

 Ideas\rightarrow Study the operators having the same eigenvalues than H.

The $X X X$ Heisenberg spin chains

Idea of the method

Aim : diagonalisation of H Ideas:
\rightarrow Study the operators having the same eigenvalues than H.
\rightarrow Study the operators \mathcal{O} commuting with H, i.e:

$$
[\mathcal{O} ; H] \equiv \mathcal{O} \circ H-H \circ \mathcal{O}=0
$$

We call them the conserved charges

Idea of the method

Aim : diagonalisation of H Ideas:
\rightarrow Study the operators having the same eigenvalues than H.
\rightarrow Study the operators \mathcal{O} commuting with H, i.e:

$$
[\mathcal{O} ; H] \equiv \mathcal{O} \circ H-H \circ \mathcal{O}=0
$$

We call them the conserved charges .
\rightarrow Build conserved charges

Idea of the method

Aim : diagonalisation of H Ideas:
\rightarrow Study the operators having the same eigenvalues than H.
\rightarrow Study the operators \mathcal{O} commuting with H, i.e:

$$
[\mathcal{O} ; H] \equiv \mathcal{O} \circ H-H \circ \mathcal{O}=0
$$

We call them the conserved charges .
\rightarrow Build conserved charges .

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Building operators with auxiliary space and partial trace

\mathcal{A} : finite dimensional \mathbb{C}-vector space with a basis $\left(e_{k}\right)_{k \in \llbracket 1 ; d \rrbracket}$ \mathcal{A} is called the auxiliary space.

$$
\mathcal{O} \in \mathcal{L}\left(\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right) \bigotimes \mathcal{A}\right) \stackrel{?}{\bullet} \operatorname{Tr}_{\mathcal{A}} \mathcal{O} \in \mathcal{L}\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right)
$$

Definition: (partial trace of \mathcal{O} with respect to \mathcal{A})

where $\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{L}}\right)_{\left(i_{u}\right)_{u} \in \llbracket 1: k \rrbracket^{\llbracket 1: L \rrbracket}}$ canonical basis of $\otimes_{i=1}^{L} \mathbb{C}^{k}$

Building operators with auxiliary space and partial trace

\mathcal{A} : finite dimensional \mathbb{C}-vector space with a basis $\left(e_{k}\right)_{k \in \llbracket 1 ; d \rrbracket}$ \mathcal{A} is called the auxiliary space.

$$
\mathcal{O} \in \mathcal{L}\left(\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right) \bigotimes \mathcal{A}\right) \stackrel{?}{?} \operatorname{Tr}_{\mathcal{A}} \mathcal{O} \in \mathcal{L}\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right)
$$

Definition: (partial trace of \mathcal{O} with respect to $\mathcal{A})$:

$$
\underbrace{\left(\operatorname{Tr}_{\mathcal{A}} \mathcal{O}\right)_{j_{1} \ldots j_{L}}^{i_{1}}}_{\left.\Delta e_{i_{L}}\right)^{*}\left(\operatorname{Tr}_{\mathcal{A}} \mathcal{O}\left(e_{j_{1}} \otimes \ldots \otimes e_{j_{L}}\right)\right)} \quad:=\sum_{k=1}^{d} \mathcal{O}_{j_{1} \ldots j_{L} k}^{i_{1} \ldots i_{L} k}
$$

where $\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{L}}\right)_{\left(i_{u}\right)_{u} \in \llbracket 1: k \rrbracket^{\llbracket 1: L \rrbracket}}$ canonical basis of $\bigotimes_{i=1}^{L} \mathbb{C}^{k}$

The $X X X$ Heisenberg spin chains
First commuting conserved charges
Generalizations of the first T-operators
Differentiation with respect to the twist
Recover the spectrum of the theory via the T-operators

Looking for commutation relations

Choose for auxiliary space : $\mathcal{H}_{a_{1}} \otimes \mathcal{H}_{a_{2}}$ with $\forall i, \mathcal{H}_{a_{i}} \simeq \mathbb{C}^{k}$

$$
\begin{aligned}
& \forall u \in \mathbb{C}, \forall(i, j) \in\left(\llbracket 1 ; L \rrbracket \cup\left\{a_{1} ; a_{2}\right\}\right)^{2}, \mathbf{R}_{\mathbf{i}, \mathbf{j}}(\mathbf{u}):=\mathbf{u}+\mathcal{P}_{\mathbf{i}, \mathbf{j}} \\
& \begin{array}{l}
\mathbf{L}^{(\mathbf{k})}(\mathbf{u}):=\mathbf{R}_{\mathbf{L}, \mathbf{a}_{\mathbf{k}}}(\mathbf{u}) \ldots \mathbf{R}_{\mathbf{1 , \mathbf { a } _ { \mathbf { k } }}}(\mathbf{u}) \\
\text { In } \mathcal{L}\left(\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right) \bigotimes \mathcal{H}_{a_{1}} \bigotimes \mathcal{H}_{a_{2}}\right) \\
\text { From } \mathcal{P}_{i, j} \mathcal{P}_{j, k}=\mathcal{P}_{j, i} \mathcal{P}_{, i} \Longleftrightarrow
\end{array}
\end{aligned}
$$

$$
R_{i, j}(u-v) R_{i, k}(u) R_{j, k}(v)=R_{j, k}(v) R_{i, k}(u) R_{i, j}(u-v)
$$

Yang-Baxter identity

Looking for commutation relations

Choose for auxiliary space : $\mathcal{H}_{a_{1}} \otimes \mathcal{H}_{a_{2}}$ with $\forall i, \mathcal{H}_{a_{i}} \simeq \mathbb{C}^{k}$

$$
\begin{aligned}
& \forall u \in \mathbb{C}, \forall(i, j) \in\left(\llbracket 1 ; L \rrbracket \cup\left\{a_{1} ; a_{2}\right\}\right)^{2}, \mathbf{R}_{\mathbf{i}, \mathbf{j}}(\mathbf{u}):=\mathbf{u}+\mathcal{P}_{\mathbf{i}, \mathbf{j}} \\
& \hline \mathbf{L}^{(\mathbf{k})}(\mathbf{u}):=\mathbf{R}_{\mathbf{L}, \mathbf{a}_{\mathbf{k}}}(\mathbf{u}) \ldots \mathbf{R}_{\mathbf{1 , \mathbf { a } _ { \mathbf { k } }}}(\mathbf{u}) \\
& \text { In } \mathcal{L}\left(\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right) \bigotimes \mathcal{H}_{a_{1}} \bigotimes \mathcal{H}_{a_{2}}\right) \\
& \text { From } \mathcal{P}_{i, j} \mathcal{P}_{j, k}=\mathcal{P}_{j, k} \mathcal{P}_{k, i} \Longleftrightarrow
\end{aligned}
$$

$$
R_{i, j}(u-v) R_{i, k}(u) R_{j, k}(v)=R_{j, k}(v) R_{i, k}(u) R_{i, j}(u-v)
$$

Yang-Baxter identity
Then by induction : $\forall i \in[0 ; L]$,
$R_{a_{1}, a_{2}}(u-v) L^{(1)}(u) L^{(2)}(v)=L_{L, i+1}^{(2)}(v) L_{L, i+1}^{(1)}(u) R_{a_{1}, a_{2}}(u-v) L_{i, 1}^{(1)}(u) L_{i, 1}^{(2)}(v)$
where $L_{p, q}^{(k)}(w)=R_{p, a_{k}}(w) \ldots R_{q, a_{k}}(w)$ for $p \geq q$

Looking for commutation relations

Choose for auxiliary space : $\mathcal{H}_{a_{1}} \otimes \mathcal{H}_{a_{2}}$ with $\forall i, \mathcal{H}_{a_{i}} \simeq \mathbb{C}^{k}$

$$
\begin{aligned}
& \forall u \in \mathbb{C}, \forall(i, j) \in\left(\llbracket 1 ; L \rrbracket \cup\left\{a_{1} ; a_{2}\right\}\right)^{2}, \mathbf{R}_{\mathbf{i}, \mathbf{j}}(\mathbf{u}):=\mathbf{u}+\mathcal{P}_{\mathbf{i}, \mathbf{j}} \\
& \hline \mathbf{L}^{(\mathbf{k})}(\mathbf{u}):=\mathbf{R}_{\mathbf{L}, \mathbf{a}_{\mathbf{k}}}(\mathbf{u}) \ldots \mathbf{R}_{\mathbf{1 , \mathbf { a } _ { \mathbf { k } }}}(\mathbf{u}) \\
& \text { In } \mathcal{L}\left(\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right) \bigotimes \mathcal{H}_{a_{1}} \bigotimes \mathcal{H}_{a_{2}}\right) \\
& \text { From } \mathcal{P}_{i, j} \mathcal{P}_{j, k}=\mathcal{P}_{j, k} \mathcal{P}_{k, i} \Longleftrightarrow
\end{aligned}
$$

$$
R_{i, j}(u-v) R_{i, k}(u) R_{j, k}(v)=R_{j, k}(v) R_{i, k}(u) R_{i, j}(u-v)
$$

Yang-Baxter identity
Then by induction : $\forall i \in \llbracket 0 ; L \rrbracket$,
$R_{a_{1}, a_{2}}(u-v) L^{(1)}(u) L^{(2)}(v)=L_{L, i+1}^{(2)}(v) L_{L, i+1}^{(1)}(u) R_{a_{1}, a_{2}}(u-v) L_{i, 1}^{(1)}(u) L_{i, 1}^{(2)}(v)$
where $L_{p, q}^{(k)}(w)=R_{p, a_{k}}(w) \ldots R_{q, a_{k}}(w)$ for $p \geq q$

The XXX Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

The first T-operators (commuting with each others)

Assume $R(u-v)$ reversible. With last relation with $i=0$:

$$
L^{(1)}(u) L^{(2)}(v)=\left(R_{a_{1}, a_{2}}(u-v)\right)^{-1} L^{(2)}(v) L^{(1)}(u) R_{a_{1}, a_{2}}(u-v)
$$

With a property on the partial trace

With identifications : $L^{(l)}(w) \in \mathcal{L}\left(\left(\otimes_{i=1}^{L} \mathbb{C}^{k}\right) \otimes \mathcal{H}_{a_{l}}\right)$. Then :

$$
T(u) T(v)=T(v) T(u)
$$

Where $T(w):=\operatorname{Tr}_{\mathcal{H}_{a_{l}}}\left(L^{(l)}(w)\right)$ (called T -operator)

The first T-operators (commuting with each others)

Assume $R(u-v)$ reversible. With last relation with $i=0$:

$$
L^{(1)}(u) L^{(2)}(v)=\left(R_{a_{1}, a_{2}}(u-v)\right)^{-1} L^{(2)}(v) L^{(1)}(u) R_{a_{1}, a_{2}}(u-v)
$$

With a property on the partial trace :

$$
\operatorname{Tr}_{\mathcal{H}_{a_{1}} \otimes \mathcal{H}_{a_{2}}}\left(L^{(1)}(u) L^{(2)}(v)\right)=\operatorname{Tr}_{\mathcal{H}_{a_{1}}} \otimes \mathcal{H}_{a_{2}}\left(L^{(2)}(v) L^{(1)}(u)\right)
$$

With identifications : $L^{(l)}(w) \in \mathcal{L}\left(\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right) \otimes \mathcal{H}_{a_{l}}\right)$. Then :

$$
T(u) T(v)=T(v) T(u)
$$

Where $T(w):=\operatorname{Tr}_{\mathcal{H}_{a_{l}}}\left(L^{(l)}(w)\right)$ (called T-operator)

The XXX Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

The first T-operators (commuting with the hamiltonian)

Definition: (right-action of \mathfrak{S}_{L} on $\bigotimes_{u=1}^{L} \mathbb{C}^{k}$)

$$
\begin{gathered}
\forall \sigma \in \mathfrak{S}_{L}, \mathcal{P}_{\sigma} \cdot \otimes_{i=1}^{L} v_{i}:=\otimes_{i=1}^{L} v_{\sigma(i)} \\
T(0)=\left.\mathcal{P}_{(12 \ldots L)} \quad \partial_{u} T(u)\right|_{u=0}=\sum_{i} \mathcal{P}_{(12 \ldots L) \circ(i+1)} \\
\left.\frac{\partial_{u} T(u)}{T(u)}\right|_{u=0}=\sum_{i} \mathcal{P}_{(i i+1)}
\end{gathered}
$$

The first T-operators (commuting with the hamiltonian)

Definition: (right-action of \mathfrak{S}_{L} on $\bigotimes_{u=1}^{L} \mathbb{C}^{k}$)

$$
\begin{gathered}
\forall \sigma \in \mathfrak{S}_{L}, \mathcal{P}_{\sigma} \cdot \otimes_{i=1}^{L} v_{i}:=\otimes_{i=1}^{L} v_{\sigma(i)} \\
T(0)=\left.\mathcal{P}_{(12 \ldots L)} \quad \partial_{u} T(u)\right|_{u=0}=\sum_{i} \mathcal{P}_{(12 \ldots L) \circ(i+1)} \\
\left.\frac{\partial_{u} T(u)}{T(u)}\right|_{u=0}=\sum_{i} \mathcal{P}_{(i i+1)} \\
H=\frac{2 L}{K}-\left.2 \frac{\partial_{u} T(u)}{T(u)}\right|_{u=0}
\end{gathered}
$$

Hence :

The first T-operators (commuting with the hamiltonian)

Definition: (right-action of \mathfrak{S}_{L} on $\bigotimes_{u=1}^{L} \mathbb{C}^{k}$)

$$
\begin{gathered}
\forall \sigma \in \mathfrak{S}_{L}, \mathcal{P}_{\sigma} \cdot \otimes_{i=1}^{L} v_{i}:=\otimes_{i=1}^{L} v_{\sigma(i)} \\
T(0)=\left.\mathcal{P}_{(12 \ldots L)} \quad \partial_{u} T(u)\right|_{u=0}=\sum_{i} \mathcal{P}_{(12 \ldots L) \circ(i i+1)} \\
\left.\frac{\partial_{u} T(u)}{T(u)}\right|_{u=0}=\sum_{i} \mathcal{P}_{(i i+1)} \\
H=\frac{2 L}{K}-\left.2 \frac{\partial_{u} T(u)}{T(u)}\right|_{u=0}
\end{gathered}
$$

Hence :

$$
[H ; T(u)]=0
$$

Twist

Auxiliary space $\not \not \mathbb{C}^{k}$

Twist

Generalization with a twist g, ie. $g \in G L\left(\mathbb{C}^{k}\right)$:

$$
T_{g}(u):=\operatorname{Tr}_{\mathcal{A}}\left(L(u) \circ\left(\mathbb{1}^{\otimes_{L}} \otimes g\right)\right)
$$

As before (ie. $g=\left.i d\right|_{\mathbb{C}^{k}}$), via similar proof : $\left[T_{g}(u) ; T_{g}(v)\right]=0$
But now

$$
\left.\frac{\partial_{u} T_{g}(u)}{T_{g}(u)}\right|_{u=0}=\left(\sum_{i=1}^{L-1} \mathcal{P}_{i, i+1}\right)+\mathcal{P}_{(1 L)} \circ g_{L} \circ g_{1}^{-1}
$$

denoting $g_{i}:=\mathbb{1} \otimes \ldots \otimes \mathbb{1} \otimes$

Twist

Generalization with a twist g, i.e. $g \in G L\left(\mathbb{C}^{k}\right)$:

$$
T_{g}(u):=\operatorname{Tr}_{\mathcal{A}}\left(L(u) \circ\left(\mathbb{1}^{\otimes_{L}} \otimes g\right)\right)
$$

As before (i.e. $g=\left.i d\right|_{\mathbb{C}^{k}}$), via similar proof : $\left[T_{g}(u) ; T_{g}(v)\right]=0$
But now :

$$
\left.\frac{\partial_{u} T_{g}(u)}{T_{g}(u)}\right|_{u=0}=\left(\sum_{i=1}^{L-1} \mathcal{P}_{i, i+1}\right)+\mathcal{P}_{(1 L)} \circ g_{L} \circ g_{1}^{-1}
$$

denoting $g_{i}:=\mathbb{1} \otimes \ldots \otimes \mathbb{1} \otimes \underbrace{g}_{i^{\text {th factor }}} \otimes \mathbb{1} \otimes \mathbb{1}$
Generalization of the hamiltonian depending on the twist g :

Twist

Generalization with a twist g, i.e. $g \in G L\left(\mathbb{C}^{k}\right)$:

$$
T_{g}(u):=\operatorname{Tr}_{\mathcal{A}}\left(L(u) \circ\left(\mathbb{1}^{\otimes L} \otimes g\right)\right)
$$

As before (i.e. $g=\left.i d\right|_{\mathbb{C}^{k}}$), via similar proof : $\left[T_{g}(u) ; T_{g}(v)\right]=0$ But now :

$$
\left.\frac{\partial_{u} T_{g}(u)}{T_{g}(u)}\right|_{u=0}=\left(\sum_{i=1}^{L-1} \mathcal{P}_{i, i+1}\right)+\mathcal{P}_{(1 L)} \circ g_{L} \circ g_{1}^{-1}
$$

denoting $g_{i}:=\mathbb{1} \otimes \ldots \otimes \mathbb{1} \otimes \underbrace{g}_{i^{\text {th factor }}} \otimes \mathbb{1} \otimes \mathbb{1}$
Generalization of the hamiltonian depending on the twist g :

$$
H_{g}:=\frac{2 L}{K}-2\left(\sum_{i=1}^{L-1} \mathcal{P}_{i, i+1}\right)-2 \mathcal{P}_{1, L} \circ g_{L}^{-1} \circ g_{1} \text { then }\left[T_{g}(u) ; H_{g}\right]=0
$$

Auxiliary space non isomorphic to \mathbb{C}^{k}

With $\mathcal{A} \not 千 \mathbb{C}^{k}$, we need to generalize the action of $\mathfrak{S}_{\llbracket 1, L \rrbracket \cup\{a\}}$:

$$
\forall i \in \llbracket 1, L \rrbracket, \quad \mathcal{P}_{i, a}:=\sum_{(\alpha, \beta) \in \llbracket 1, k \rrbracket^{2}}\left(e_{\alpha, \beta}\right)_{i} \circ\left(\bar{\pi}\left(e_{\beta, \alpha}\right)\right)_{a}
$$

with $G L\left(\mathbb{C}^{k}\right) \xrightarrow[\text { Lie group }]{\pi} G L(\mathcal{A})$ commuting.

Unfortunately: $\mathcal{P}_{i a} \mathcal{P}_{a j} \neq \mathcal{P}_{j i} \mathcal{P}_{i a} \forall(i, j) \in(\llbracket 1, L \rrbracket \cup\{a\})^{2} \mid i \neq j$

Auxiliary space non isomorphic to \mathbb{C}^{k}

With $\mathcal{A} \not \not \mathbb{C}^{k}$, we need to generalize the action of $\mathfrak{S}_{\llbracket 1, L \rrbracket \cup\{a\}}$:

$$
\forall i \in \llbracket 1, L \rrbracket, \quad \mathcal{P}_{i, a}:=\sum_{(\alpha, \beta) \in \llbracket 1, k \rrbracket^{2}}\left(e_{\alpha, \beta}\right)_{i} \circ\left(\bar{\pi}\left(e_{\beta, \alpha}\right)\right)_{a}
$$

with $G L\left(\mathbb{C}^{k}\right) \xrightarrow[\text { Lie group }]{\pi} G L(\mathcal{A})$ commuting.

Unfortunately: $\mathcal{P}_{i a} \mathcal{P}_{a j} \neq \mathcal{P}_{j i} \mathcal{P}_{i a} \forall(i, j) \in(\llbracket 1, L \rrbracket \cup\{a\})^{2} \mid i \neq j$
But: $\left[\bar{\pi}\left(e_{i, j}\right) ; \bar{\pi}_{\lambda}\left(e_{k, l}\right)\right]=\bar{\pi}\left(\left[e_{i, j} ; e_{k, l}\right]\right)=\delta_{j k} \bar{\pi}\left(e_{i l}\right)-\delta_{l i} \bar{\pi}\left(e_{j k}\right)$

Auxiliary space non isomorphic to \mathbb{C}^{k}

With $\mathcal{A} \not \not \mathbb{C}^{k}$, we need to generalize the action of $\mathfrak{S}_{\llbracket 1, L \rrbracket \cup\{a\}}$:

$$
\forall i \in \llbracket 1, L \rrbracket, \quad \mathcal{P}_{i, a}:=\sum_{(\alpha, \beta) \in \llbracket 1, k \rrbracket^{2}}\left(e_{\alpha, \beta}\right)_{i} \circ\left(\bar{\pi}\left(e_{\beta, \alpha}\right)\right)_{a}
$$

with $G L\left(\mathbb{C}^{k}\right) \xrightarrow[\text { Lie group }]{\pi} G L(\mathcal{A})$ commuting.

Unfortunately: $\mathcal{P}_{i a} \mathcal{P}_{a j} \neq \mathcal{P}_{j i} \mathcal{P}_{i a} \forall(i, j) \in(\llbracket 1, L \rrbracket \cup\{a\})^{2} \mid i \neq j$
But: $\left[\bar{\pi}\left(e_{i, j}\right) ; \bar{\pi}_{\lambda}\left(e_{k, l}\right)\right]=\bar{\pi}\left(\left[e_{i, j} ; e_{k, l}\right]\right)=\delta_{j k} \bar{\pi}\left(e_{i l}\right)-\delta_{l i} \bar{\pi}\left(e_{j k}\right)$

Auxiliary space non isomorphic to \mathbb{C}^{k}

Consider $\left(\otimes_{i=1}^{L} \mathbb{C}^{k}\right) \otimes \underbrace{\mathcal{A}_{1}} \otimes \underbrace{\mathcal{A}_{2}}$ "labeling" via $\llbracket 1, L \rrbracket \cup\left\{a_{1}, a_{2}\right\}$
$\bar{\pi}_{\lambda}$ preserve the Lie bracket $\Longrightarrow\left[\mathcal{P}_{i j}+\mathcal{P}_{i a_{2}} ; \mathcal{P}_{j a_{2}}\right]=0$
Yang-Baxter identity is then preserved:

$$
R_{i a_{2}}(u-v) R_{j a_{2}}(u) R_{i j}(v)=R_{i j}(v) R_{j a_{2}}(u) R_{i a_{2}}(u-v)
$$

Definition: (T-operator)

$$
T_{g}^{\pi}(u)=\operatorname{Tr}_{\mathcal{A}_{2}}\left(R_{L a_{2}}(u) \ldots R_{1 a_{2}}(u) \pi_{\lambda}(g)_{a_{2}}\right)
$$

Auxiliary space non isomorphic to \mathbb{C}^{k}

$\bar{\pi}_{\lambda}$ preserve the Lie bracket $\Longrightarrow\left[\mathcal{P}_{i j}+\mathcal{P}_{i a_{2}} ; \mathcal{P}_{j a_{2}}\right]=0$
Yang-Baxter identity is then preserved :

$$
R_{i a_{2}}(u-v) R_{j a_{2}}(u) R_{i j}(v)=R_{i j}(v) R_{j a_{2}}(u) R_{i a_{2}}(u-v)
$$

Definition: (T-operator)

$$
T_{g}^{\pi}(u)=\operatorname{Tr}_{\mathcal{A}_{2}}\left(R_{L a_{2}}(u) \ldots R_{1 a_{2}}(u) \pi_{\lambda}(g)_{a_{2}}\right)
$$

As before (i.e. with $\pi=i d_{G L}\left(\mathbb{C}^{k}\right)$), we show:

$$
\left[T_{g}(u) ; T_{g}^{\pi}(v)\right]=0
$$

Auxiliary space non isomorphic to \mathbb{C}^{k}

Consider $\left(\otimes_{i=1}^{L} \mathbb{C}^{k}\right) \otimes \underbrace{\mathcal{A}_{1}}_{\simeq \mathbb{C}^{k}} \otimes \underbrace{\mathcal{A}_{2}}_{\nsim \mathbb{C}^{k}}$ "labeling" via $\llbracket 1, L \rrbracket \cup\left\{a_{1}, a_{2}\right\}$
$\bar{\pi}_{\lambda}$ preserve the Lie bracket $\Longrightarrow\left[\mathcal{P}_{i j}+\mathcal{P}_{i a_{2}} ; \mathcal{P}_{j a_{2}}\right]=0$
Yang-Baxter identity is then preserved :

$$
R_{i a_{2}}(u-v) R_{j a_{2}}(u) R_{i j}(v)=R_{i j}(v) R_{j a_{2}}(u) R_{i a_{2}}(u-v)
$$

Definition: (T-operator)

$$
T_{g}^{\pi}(u)=\operatorname{Tr}_{\mathcal{A}_{2}}\left(R_{L a_{2}}(u) \ldots R_{1 a_{2}}(u) \pi_{\lambda}(g)_{a_{2}}\right)
$$

As before (i.e. with $\pi=i d_{G L\left(\mathbb{C}^{k}\right)}$), we show :

$$
\left[T_{g}(u) ; T_{g}^{\pi}(v)\right]=0
$$

Differentiation with respect to the twist

Definition: (Coderivative)

$$
\forall V \mathbb{C} \text {-vector space, } \forall f \in \mathcal{C}^{\infty}\left(G L\left(\mathbb{C}^{k}\right), \mathcal{L}(V)\right) \text {, }
$$

$$
\widehat{D} \otimes f(g):=\sum_{\alpha, \beta} e_{\alpha \beta} \otimes \partial_{t}\left[f\left(e^{\phi+t e_{\beta \alpha}} g\right)\right]_{\left\lvert\, \begin{array}{l}
t=0 \\
\phi=0
\end{array}\right.} \in \mathcal{L}\left(\mathbb{C}^{k} \otimes V\right)
$$

Remark : It allows to build operator of the spin chain.
$\forall f \in \mathcal{C}^{\infty}\left(G L\left(\mathbb{C}^{k}\right), \mathcal{L}(\mathbb{C})\right),\left(\bigotimes_{i=1}^{L} \widehat{D}\right) \otimes f(g) \in \mathcal{L}\left(\bigotimes_{i=1}^{L} \mathbb{C}^{k}\right)$

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

T-operators in terms of co-derivative

Considering $(u, g) \in \mathbb{C} \times G L\left(\mathbb{C}^{k}\right)$ fixed,
$T_{g}^{\pi}(u)$ can be built only from the character χ_{π} of π :

$$
T_{g}^{\pi}(u)=\left[\bigotimes_{i=1}^{L}(u+\widehat{D})\right] \otimes \chi_{\pi}(g)
$$

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Definition: (Tensor representations of $G L\left(\mathbb{C}^{k}\right)$)

$$
\begin{array}{ccc}
\pi_{M}: G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right) \\
A & \mapsto & \left(\bigotimes_{i=1}^{M} v_{i} \mapsto \bigotimes_{i=1}^{M}\left(A \cdot v_{i}\right)\right)
\end{array}
$$

Definition: A Young diagram is a 0 -stationary non-increasing sequence of
integers $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{|\lambda|} \neq 0, \lambda_{|\lambda|+1}=0,0,0, \ldots\right)$
Seen as diagram

```
(5,2,2,1,0,\ldots) ~#
```

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Definition: (Tensor representations of $G L\left(\mathbb{C}^{k}\right)$)

$$
\begin{array}{ccc}
\pi_{M}: G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right) \\
A & \mapsto & \left(\bigotimes_{i=1}^{M} v_{i} \mapsto \bigotimes_{i=1}^{M}\left(A \cdot v_{i}\right)\right)
\end{array}
$$

Definition: A Young diagram is a 0 -stationary non-increasing sequence of integers $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{|\lambda|} \neq 0, \lambda_{|\lambda|+1}=0,0,0, \ldots\right)$ Seen as diagram : $(5,2,2,1,0, \ldots) \simeq 母_{\infty}$
Young symmetrisors : (example)

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Definition: (Tensor representations of $G L\left(\mathbb{C}^{k}\right)$)

$$
\begin{array}{ccc}
\pi_{M}: G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right) \\
A & \mapsto & \left(\bigotimes_{i=1}^{M} v_{i} \mapsto \bigotimes_{i=1}^{M}\left(A \cdot v_{i}\right)\right)
\end{array}
$$

Definition: A Young diagram is a 0 -stationary non-increasing sequence of integers $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{|\lambda|} \neq 0, \lambda_{|\lambda|+1}=0,0,0, \ldots\right)$
Seen as diagram : $(5,2,2,1,0, \ldots) \simeq \mathbb{B}_{0}$
Young symmetrisors : (example)

$$
s_{\substack{10 \\
\frac{10}{\frac{9}{7}} \\
\begin{array}{c}
76 \\
5 / 4|3| 2 \mid 1
\end{array}}}:=\left(\sum_{\sigma \in \mathfrak{G}_{\{5,7,9,10\}}} \epsilon(\sigma) \mathcal{P}_{\sigma}\right)\left(\sum_{\sigma \in \mathfrak{G}_{\{4,6,8\}}} \epsilon(\sigma) \mathcal{P}_{\sigma}\right)\left(1+\mathcal{P}_{(8,9)}\right)\left(1+\mathcal{P}_{(6,7)}\right)\left(\sum_{\sigma \in \mathfrak{G}_{\llbracket 1 ; 5 \rrbracket}} \mathcal{P}_{\sigma}\right)
$$

Theorem : Each irreducible representation of $G L\left(\mathbb{C}^{k}\right)$ is isomorphic to an unique restriction of a tensor representation to an image of a Young

The XXX Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Definition: (Tensor representations of $G L\left(\mathbb{C}^{k}\right)$)

$$
\begin{array}{ccc}
\pi_{M}: G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right) \\
A & \mapsto & \left(\bigotimes_{i=1}^{M} v_{i} \mapsto \bigotimes_{i=1}^{M}\left(A \cdot v_{i}\right)\right)
\end{array}
$$

Definition: A Young diagram is a 0 -stationary non-increasing sequence of integers $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{|\lambda|} \neq 0, \lambda_{|\lambda|+1}=0,0,0, \ldots\right)$
Seen as diagram : $(5,2,2,1,0, \ldots) \simeq \mathbb{B m}_{\text {m }}$
Young symmetrisors: (example)

$s_{\substack{\left[\frac{0}{7} \\ \frac{9}{76}\right.}}:=\left(\sum_{\sigma \in \mathcal{G}_{\{5,7,9,10\}}} \epsilon(\sigma) \mathcal{P}_{\sigma}\right)\left(\sum_{\sigma \in \mathcal{G}_{\{4,6,8\}}} \epsilon(\sigma) \mathcal{P}_{\sigma}\right)\left(1+\mathcal{P}_{(8,9)}\right)\left(1+\mathcal{P}_{(6,7)}\right)\left(\sum_{\sigma \in \mathfrak{G}_{\llbracket 1 ; 5]}} \mathcal{P}_{\sigma}\right)$ | 7 | 6 | | |
| :--- | :--- | :--- | :--- |
| 5 | 4 | 3 | 2 |

Theorem : Each irreducible representation of $G L\left(\mathbb{C}^{k}\right)$ is isomorphic to an unique restriction of a tensor representation to an image of a Young symmetrisor.

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Notations : $\pi_{\lambda} \equiv \begin{array}{clc}G L\left(\mathbb{C}^{k}\right) & \rightarrow G L\left(s_{\lambda}\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right)\right) & \begin{array}{c}\text { where } M \\ \text { number }\end{array} \\ g & \mapsto & \left(x \mapsto \pi_{M}(x)\right)\end{array} \begin{gathered}\text { of boxes }\end{gathered}$

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Notations : $\pi_{\lambda} \equiv \begin{array}{clc}G L\left(\mathbb{C}^{k}\right) & \rightarrow \quad G L\left(s_{\lambda}\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right)\right) & \begin{array}{c}\text { where } M \\ \text { number }\end{array} \\ g & \mapsto & \left(x \mapsto \pi_{M}(x)\right)\end{array} \quad \begin{gathered}\text { of boxes }\end{gathered}$

About the symmetric representations: (i.e: $(1, s)=\underbrace{\square \square \square})$
 s boxes

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

Notations: $\pi_{\lambda} \equiv \begin{array}{ccc}G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(s_{\lambda}\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right)\right) \\ g & \mapsto & \left(x \mapsto \pi_{M}(x)\right)\end{array} \begin{gathered}\text { where } M \\ \text { number } \\ \text { of boxes }\end{gathered}$

About the symmetric representations: (i.e: $(1, s)=\underbrace{\text { @qu }}_{s \text { boxes }})$

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

$\begin{array}{cccc}\text { Notations: } \pi_{\lambda} \equiv \begin{array}{ccc}G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(s_{\lambda}\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right)\right)\end{array} & \begin{array}{c}\text { where } M \\ \text { number }\end{array} \\ g & \mapsto & \left(x \mapsto \pi_{M}(x)\right) & \text { of boxes }\end{array}$

About the symmetric representations: (i.e: $(1, s)=\underbrace{\infty \quad \mathrm{m}}_{s \text { boxes }})$

- $\left[T_{g}^{1, s^{\prime}}(u) ; T_{g}^{1, s}(v)\right]=0$
- Studing $\sum_{s} T^{1, s} z^{s}=\left[\otimes_{i=1}^{L}(u+\widehat{D})\right] \otimes \sum_{s \in \mathbb{N}} \chi^{1 s}(g) z^{s}$ leads to a combinatorics and allows to show...

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Irreducible representations of $G L\left(\mathbb{C}^{k}\right)$

$\begin{array}{cccc}\text { Notations: } \pi_{\lambda} \equiv \begin{array}{ccc}G L\left(\mathbb{C}^{k}\right) & \rightarrow & G L\left(s_{\lambda}\left(\bigotimes_{i=1}^{M} \mathbb{C}^{k}\right)\right)\end{array} & \begin{array}{c}\text { where } M \\ \text { number }\end{array} \\ g & \mapsto & \left(x \mapsto \pi_{M}(x)\right) & \text { of boxes }\end{array}$

About the symmetric representations : (i.e: $(1, s)=\underbrace{\infty \quad \text { ? }}_{s \text { boxes }})$

- $\left[T_{g}^{1, s^{\prime}}(u) ; T_{g}^{1, s}(v)\right]=0$
- Studing $\sum_{s} T^{1, s} z^{s}=\left[\otimes_{i=1}^{L}(u+\widehat{D})\right] \otimes \sum_{s \in \mathbb{N}} \chi^{1 s}(g) z^{s}$ leads to a combinatorics and allows to show...

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Definition

T-operators via co-derivative
Representations of $G L\left(\mathbb{C}^{k}\right)$
Other formulas obtained via the coderivative

Other formulas obtained via the coderivative

$$
T_{g}^{\lambda}(u)=\frac{\left|T_{g}^{1, \lambda_{j}+i-j}(u+1-i)\right|_{1 \leq i, j \leq|\lambda|}}{\prod_{k=1}^{|\lambda|-1} T_{g}^{0,0}(u-k)}
$$

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)

Corollary

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Other formulas obtained via the coderivative

$$
T_{g}^{\lambda}(u)=\frac{\left|T_{g}^{1, \lambda_{j}+i-j}(u+1-i)\right|_{1 \leq i, j \leq|\lambda|}}{\prod_{k=1}^{|\lambda|-1} T_{g}^{0,0}(u-k)}
$$

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)
Corollary :

$$
\left[T_{g}^{\lambda}(u) ; H_{g}\right]=0 \quad\left[T_{g}^{\lambda}(u) ; T_{g}^{\mu}(v)\right]=0
$$

Corollary :

Hirota equation (HE)

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Other formulas obtained via the coderivative

$$
T_{g}^{\lambda}(u)=\frac{\left|T_{g}^{1, \lambda_{j}+i-j}(u+1-i)\right|_{1 \leq i, j \leq|\lambda|}}{\prod_{k=1}^{|\lambda|-1} T_{g}^{0,0}(u-k)}
$$

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)
Corollary:

$$
\left[T_{g}^{\lambda}(u) ; H_{g}\right]=0
$$

$$
\left[T_{g}^{\lambda}(u) ; T_{g}^{\mu}(v)\right]=0
$$

Corollary :

$T^{a, s}(u+1) T^{a, s}(u)=T^{a+1, s}(u+1) T^{a-1, s}(u)+T^{a, s-1}(u+1) T^{a, s+1}(u)$
Hirota equation (HE)

Remark:

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist Recover the spectrum of the theory via the T-operators

Other formulas obtained via the coderivative

$$
T_{g}^{\lambda}(u)=\frac{\left|T_{g}^{1, \lambda_{j}+i-j}(u+1-i)\right|_{1 \leq i, j \leq|\lambda|}}{\prod_{k=1}^{|\lambda|-1} T_{g}^{0,0}(u-k)}
$$

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)
Corollary:

$$
\left[T_{g}^{\lambda}(u) ; H_{g}\right]=0
$$

$$
\left[T_{g}^{\lambda}(u) ; T_{g}^{\mu}(v)\right]=0
$$

Corollary :

$T^{a, s}(u+1) T^{a, s}(u)=T^{a+1, s}(u+1) T^{a-1, s}(u)+T^{a, s-1}(u+1) T^{a, s+1}(u)$
Hirota equation (HE)
Remark:

$H E \Longleftrightarrow C B R$

for rectangular representations
up to initial conditions

Idea

"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations for $X X_{1}$ Heisenberg spin chain

Idea

Motivation :

Remarks: called T-function still denoted $T_{g}^{a, s}$

- $\left.T_{g}^{a s}(u)\right|_{V} \simeq \overbrace{\left(\text { an eigensvalue of } T_{g}^{a s}(u)\right)}$ where V eigenspace

Idea

"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations for $X X^{\frac{1}{2}}$ Heisenberg spin chain

Idea

Motivation :

Remarks: called T-function still denoted $T_{g}^{a, s}$

- $\left.T_{g}^{a s}(u)\right|_{V} \simeq \overbrace{\left(\text { an eigensvalue of } T_{g}^{a s}(u)\right)}$ where V eigenspace - $\left[T_{g}^{\lambda}(u) ; T_{g}^{\mu}(v)\right]=0 \Longrightarrow$ T-functions satisfy CBR and HE

Idea

Motivation :

Remarks: called T-function still denoted $T_{g}^{a, s}$

- $\left.T_{g}^{a s}(u)\right|_{V} \simeq \overbrace{\left(\text { an eigensvalue of } T_{g}^{a s}(u)\right)}$ where V eigenspace
- $\left[T_{g}^{\lambda}(u) ; T_{g}^{\mu}(v)\right]=0 \Longrightarrow$ T-functions satisfy CBR and HE

From now on: V fixed eigenspace, $g=\operatorname{diag}\left(x_{1}, \ldots, x_{k}\right),\left(x_{i}\right)_{i}$ injective
Idea: Extend $\left(T^{a, s}\right)_{a, s}$ to a family $\left(T_{I}^{a, s}\right)_{a, s, I \in \mathcal{P}(\llbracket 1 ; k \rrbracket)}$ such that $T^{a s}=T_{\llbracket 1 ; k \rrbracket}^{a s}$ and $\left(T_{I}^{a, s}\right)_{a, s, I \in \mathcal{P}(\llbracket 1 ; k \rrbracket)}$ satisfy "some relations".

Idea

Motivation :

Remarks: called T-function still denoted $T_{g}^{a, s}$

- $\left.T_{g}^{a s}(u)\right|_{V} \simeq \overbrace{\left(\text { an eigensvalue of } T_{g}^{a s}(u)\right)}$ where V eigenspace
- $\left[T_{g}^{\lambda}(u) ; T_{g}^{\mu}(v)\right]=0 \Longrightarrow$ T-functions satisfy CBR and HE

From now on: V fixed eigenspace, $g=\operatorname{diag}\left(x_{1}, \ldots, x_{k}\right),\left(x_{i}\right)_{i}$ injective Idea: Extend $\left(T^{a, s}\right)_{a, s}$ to a family $\left(T_{I}^{a, s}\right)_{a, s, I \in \mathcal{P}(\llbracket 1 ; k \rrbracket)}$ such that $T^{a s}=T_{\llbracket 1 ; k \rrbracket}^{a s}$ and $\left(T_{I}^{a, s}\right)_{a, s, I \in \mathcal{P}(\llbracket 1 ; k \rrbracket)}$ satisfy "some relations".

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist
Recover the spectrum of the theory via the T-operators

Idea
"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations for $X X X_{\frac{1}{n}}$ Heisenberg spin chain

"Undressing procedure" for a spin chain with no length

For $L=0: T_{g}^{a s}(u)=\chi_{a s}(g)$
Consider:

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist
Recover the spectrum of the theory via the T-operators

Idea
"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations for $X X X_{\frac{1}{n}}$ Heisenberg spin chain

"Undressing procedure" for a spin chain with no length

For $L=0: T_{g}^{a s}(u)=\chi_{a s}(g)$
Consider:
$\forall \underbrace{\sigma}$

$$
\in \mathfrak{S}_{k},\left\{\begin{array}{l}
\forall n \in \llbracket 1 ; k \rrbracket, g_{n}^{\sigma}:=\operatorname{diag}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \\
g_{0}^{\sigma}=i d_{\mathbb{C}}
\end{array}\right.
$$ nesting path

"Undressing procedure" for a spin chain with no length

For $L=0: \quad T_{g}^{a s}(u)=\chi_{a s}(g)$
Consider:
$\forall \underbrace{\sigma} \in \mathfrak{S}_{k}$,
nesting path

$$
\in \mathfrak{S}_{k},\left\{\begin{array}{l}
\forall n \in \llbracket 1 ; k \rrbracket, g_{n}^{\sigma}:=\operatorname{diag}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \\
g_{0}^{\sigma}=i d_{\mathbb{C}}
\end{array}\right.
$$

Idea
"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length

"Undressing procedure" for a spin chain with no length

For $L=0: T_{g}^{a s}(u)=\chi_{a s}(g)$

Consider:

$\forall \underbrace{\sigma} \in \mathfrak{S}_{k}$,

$$
\left\{\begin{array}{l}
\forall n \in \llbracket 1 ; k \rrbracket, g_{n}^{\sigma}:=\operatorname{diag}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \\
g_{0}^{\sigma}=i d_{\mathbb{C}}
\end{array}\right.
$$

nesting path

Via Plücker identities :
$\left(\chi^{a, s}\left(g_{n}^{\sigma}\right)\right)_{\sigma, a, s, n}$ satisfy (what we call) the Bäcklund flow system :

$$
\left\{\begin{array}{l}
\chi^{a+1, s}\left(g_{n+1}^{\sigma}\right) \chi^{a, s}\left(g_{n}^{\sigma}\right)=\chi^{a, s}\left(g_{n+1}^{\sigma}\right) \chi^{a+1, s}\left(g_{n}^{\sigma}\right)+x_{j_{n+1}} \chi^{a+1, s-1}\left(g_{n+1}^{\sigma}\right) \chi^{a, s+1}\left(g_{n}^{\sigma}\right) \\
\chi^{a, s+1}\left(g_{n+1}^{\sigma}\right) \chi^{a, s}\left(g_{n}^{\sigma}\right)=\chi^{a, s}\left(g_{n+1}^{\sigma}\right) \chi^{a, s+1}\left(g_{n}^{\sigma}\right)+x_{j_{n+1}} \chi^{a+1, s}\left(g_{n+1}^{\sigma}\right) \chi^{a-1, s+1}\left(g_{n}^{\sigma}\right)
\end{array}\right.
$$

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist
Recover the spectrum of the theory via the T-operators

Generalization to spin chains with non zero length

For $L>0$, we generalize the Bäcklund flow system by :

$$
\begin{aligned}
& \left\{\begin{array}{l}
T_{I \cup\{j\}}^{a+1, s}(u) T_{I}^{a, s}(u)=T_{I \cup\{j\}}^{a, s}(u) T_{I}^{a+1, s}(u)+x_{j} T_{I \cup\{j\}}^{a+1, s-1}(u+1) T_{I}^{a, s+1}(u-1) \\
T_{I \cup\{j\}}^{a, s+1}(u) T_{I}^{a, s}(u)=T_{I \cup\{ }^{a, s}(u) T_{I}^{a, s+1}(u)+x_{j} T_{I \cup\{j\}}^{a+1, s}(u+1) T_{I}^{a-1, s+1}(u-1)
\end{array}\right. \\
& \forall I \in \mathcal{P}(\llbracket 1, k \rrbracket), \forall j \in \llbracket 1, k \rrbracket \backslash I, \forall(a, s) \in \mathbb{N}^{2}, \forall u \in \mathbb{C} \\
& \quad \text { with } T^{a s}=T_{\llbracket 1 ; k \rrbracket}^{a s}
\end{aligned}
$$

- There exists a polynomial solution $\left(T_{I}^{a, s}\right)_{a, s}$ to that system, called the Bäcklund flow, such that:

$$
\forall I \in \mathcal{P}(\llbracket 1, k \rrbracket), \forall s>0, \forall a>\operatorname{card}(I), T_{I}^{a, s}=0
$$

- $\left(T_{I}^{a, s}\right)_{a, s}$ is called a Bäcklund transform (BT) of $\left(T_{I \cup\{j\}}^{a, s}\right)_{a, s}$

Generalization to spin chains with non zero length

For $L>0$, we generalize the Bäcklund flow system by :

$$
\begin{aligned}
& \left\{\begin{array}{l}
T_{I \cup\{j\}}^{a+1, s}(u) T_{I}^{a, s}(u)=T_{I \cup\{j\}}^{a, s}(u) T_{I}^{a+1, s}(u)+x_{j} T_{I \cup\{j\}}^{a+1, s-1}(u+1) T_{I}^{a, s+1}(u-1) \\
T_{I \cup\{j\}}^{a, s+1}(u) T_{I}^{a, s}(u)=T_{I \cup\{j\}}^{a, s}(u) T_{I}^{a, s+1}(u)+x_{j} T_{I \cup\{j\}}^{a+1, s}(u+1) T_{I}^{a-1, s+1}(u-1)
\end{array}\right. \\
& \forall I \in \mathcal{P}(\llbracket 1, k \rrbracket), \forall j \in \llbracket 1, k \rrbracket \backslash I, \forall(a, s) \in \mathbb{N}^{2}, \forall u \in \mathbb{C} \\
& \text { with } T^{a s}=T_{\llbracket 1 ; k \rrbracket}^{a s}
\end{aligned}
$$

Theorem/Definition/Notation :

- There exists a polynomial solution $\left(T_{I}^{a, s}\right)_{a, s}$ to that system, called the Bäcklund flow, such that :

$$
\forall I \in \mathcal{P}(\llbracket 1, k \rrbracket), \forall s>0, \forall a>\operatorname{card}(I), T_{I}^{a, s}=0
$$

- $\left(T_{I}^{a, s}\right)_{a, s}$ is called a Bäcklund transform (BT) of $\left(T_{I \cup\{j\}}^{a, s}\right)_{a, s}$

Bethe equations as conditions satisfied by the initial datas

Definition/Notation: We define the family of the Q-functions:

$$
\left(Q_{I}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(T_{I}^{00}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(\alpha_{I} \prod_{n=1}^{d_{I}}\left(u-u_{I}^{(n)}\right)\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)}
$$

Properties :

- $T_{g}^{0, s}=T_{g}^{s, 0}=T_{g}^{0,0}=T_{g}^{\emptyset \mathrm{BT}} \stackrel{\text { preserve }}{\Longrightarrow} \forall I, T_{I}^{0, s}=T_{I}^{s, 0}=T_{I}^{0,0}$
- $T_{g}^{a, 1}(u)=\operatorname{det}(g) T_{g}^{0,0}(u+1) \stackrel{\mathrm{BT}}{\left.\stackrel{\text { preserve }}{\Longrightarrow} \forall I, T_{I}^{|I|, 1}(u)=T_{I}^{0,0}(u+1) \operatorname{det}\left(\operatorname{diag}\left(x_{i}, i \in I\right)\right)\right) ~(u)}$

Corollary: $Q_{\emptyset} \equiv 1$

The $X X X$ Heisenberg spin chains
First commuting conserved charges Generalizations of the first T-operators Differentiation with respect to the twist
Recover the spectrum of the theory via the T-operators

Idea
"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas Recover the Bethe equations for $X X_{1}$ Heisenberg spin chain

Bethe equations as conditions satisfied by the initial datas

Definition/Notation: We define the family of the Q-functions :

$$
\left(Q_{I}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(T_{I}^{00}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(\alpha_{I} \prod_{n=1}^{d_{I}}\left(u-u_{I}^{(n)}\right)\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)}
$$

Properties:

- $T_{g}^{0, s}=T_{g}^{s, 0}=T_{g}^{0,0}=T_{g}^{\emptyset \mathrm{BT}} \stackrel{\text { preserve }}{\Longrightarrow} \forall I, T_{I}^{0, s}=T_{I}^{s, 0}=T_{I}^{0,0}$
- $T_{g}^{a, 1}(u)=\operatorname{det}(g) T_{g}^{0,0}(u+1) \stackrel{\text { BT }}{\Longrightarrow}{ }^{\text {preserve }} \forall I, T_{I}^{|I|, 1}(u)=T_{I}^{0,0}(u+1) \operatorname{det}\left(\operatorname{diag}\left(x_{i}, i \in I\right)\right)$

Corollary : $Q_{\emptyset} \equiv 1$

deas

- T-functions can be expressed in term of Q-functions (TQ relation) by studing generating series.
- These expressions are independant of the nesting path \Longrightarrow Q-function must satisfy a consistency condition called QQ-relation.

Idea
"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas Recover the Bethe equations for $X X_{\frac{1}{7}}$ Heisenberg spin chain

Bethe equations as conditions satisfied by the initial datas

Definition/Notation: We define the family of the Q-functions :

$$
\left(Q_{I}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(T_{I}^{00}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(\alpha_{I} \prod_{n=1}^{d_{I}}\left(u-u_{I}^{(n)}\right)\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)}
$$

Properties:

- $T_{g}^{0, s}=T_{g}^{s, 0}=T_{g}^{0,0}=T_{g}^{\emptyset \text { BT }} \stackrel{\text { preserve }}{\Longrightarrow} \forall I, T_{I}^{0, s}=T_{I}^{s, 0}=T_{I}^{0,0}$
- $T_{g}^{a, 1}(u)=\operatorname{det}(g) T_{g}^{0,0}(u+1) \stackrel{\text { BT preserve }}{\Longrightarrow} \forall I, T_{I}^{|I|, 1}(u)=T_{I}^{0,0}(u+1) \operatorname{det}\left(\operatorname{diag}\left(x_{i}, i \in I\right)\right)$

Corollary : $Q_{\emptyset} \equiv 1$
Ideas:

- T-functions can be expressed in term of Q-functions (TQ relation) by studing generating series.
- These expressions are independant of the nesting path \Longrightarrow Q-function must satisfy a consistency condition called QQ-relation.
Corollary: Bethe equations
For $\sigma \in \mathfrak{S}_{k}$ "nesting path", denoting $I_{m}=\{\sigma(1), \ldots, \sigma(m)\} \forall m \in \llbracket 0, k \rrbracket$

Idea
"Undressing procedure" for a spin chain with no length Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas Recover the Bethe equations for $X X_{1}$ Heisenberg spin chain

Bethe equations as conditions satisfied by the initial datas

Definition/Notation: We define the family of the Q-functions :

$$
\left(Q_{I}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(T_{I}^{00}\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)} \equiv\left(\alpha_{I} \prod_{n=1}^{d_{I}}\left(u-u_{I}^{(n)}\right)\right)_{I \in \mathcal{P}(\llbracket 1, k \rrbracket)}
$$

Properties:

- $T_{g}^{0, s}=T_{g}^{s, 0}=T_{g}^{0,0}=T_{g}^{\emptyset \text { BT }} \stackrel{\text { preserve }}{\Longrightarrow} \forall I, T_{I}^{0, s}=T_{I}^{s, 0}=T_{I}^{0,0}$
- $T_{g}^{a, 1}(u)=\operatorname{det}(g) T_{g}^{0,0}(u+1) \stackrel{\text { BT }}{\Longrightarrow}{ }^{\text {preserve }} \forall I, T_{I}^{|I|, 1}(u)=T_{I}^{0,0}(u+1) \operatorname{det}\left(\operatorname{diag}\left(x_{i}, i \in I\right)\right)$

Corollary: $Q_{\emptyset} \equiv 1$
Ideas:

- T-functions can be expressed in term of Q-functions (TQ relation) by studing generating series.
- These expressions are independant of the nesting path \Longrightarrow Q-function must satisfy a consistency condition called QQ-relation.
Corollary: Bethe equations
For $\sigma \in \mathfrak{S}_{k}$ "nesting path", denoting $I_{m}=\{\sigma(1), \ldots, \sigma(m)\} \forall m \in \llbracket 0, k \rrbracket$:

$$
\frac{Q_{I_{m}}\left(u_{I_{m}}^{(n)}+1\right) Q_{I_{m+1}}\left(u_{I_{m}}^{(n)}\right) Q_{I_{m-1}}\left(u_{I_{m}}^{(n)}-1\right)}{Q_{I_{m}}\left(u_{I_{m}}^{(n)}-1\right) Q_{I_{m+1}}\left(u_{I_{m}}^{(n)}+1\right) Q_{I_{m-1}}\left(u_{I_{m}}^{(n)}\right)}=-\frac{x_{\sigma(m+1)}}{x_{\sigma(m)}}
$$

Recover the Bethe equations for $X X X_{\frac{1}{2}}$ Heisenberg spin

 chain$$
\begin{aligned}
& \text { For } k=2, g=\operatorname{diag}\left(x_{1}, x_{2}\right): \\
& \qquad Q_{\{1 ; 2\}}=u^{L}, \quad Q_{\{1\}}=\alpha_{1} \prod_{n}\left(u-u^{(n)}\right), \quad Q_{\emptyset}=1 \\
& \text { Bethe equations } \Longleftrightarrow \frac{Q_{\{1\}}\left(u^{(n)}+1\right)}{Q_{\{1\}}\left(u^{(n)}-1\right)}\left(\frac{u^{(n)}}{u^{(n)}+1}\right)^{L}=-\frac{x_{2}}{x_{1}} \\
& \Longleftrightarrow\left(\frac{u^{(n)}}{u^{(n)}+1}\right)^{L}=\frac{x_{2}}{x 1} \prod_{m \neq n} \frac{u^{(n)}-u^{(m)}-1}{u^{(n)}-u^{(m)}+1} \\
& u^{(n)} \equiv \frac{e^{\mathrm{i} p_{n}}}{1-e^{\mathrm{i} p_{n}}}, g \rightarrow i d_{\mathbb{C}^{2}} \Longrightarrow \quad \begin{array}{r}
\text { Bethe equation Hans Bethe } \\
\text { discovered in 1931 }
\end{array}
\end{aligned}
$$

Recover the Bethe equations for $X X X_{\frac{1}{2}}$ Heisenberg spin

 chain$$
\begin{aligned}
& \text { For } k=2, g=\operatorname{diag}\left(x_{1}, x_{2}\right): \\
& \qquad Q_{\{1 ; 2\}}=u^{L}, \quad Q_{\{1\}}=\alpha_{1} \prod_{n}\left(u-u^{(n)}\right), \quad Q_{\emptyset}=1 \\
& \text { Bethe equations }
\end{aligned} \begin{aligned}
\Longleftrightarrow & \frac{Q_{\{1\}}\left(u^{(n)}+1\right)}{Q_{\{1\}}\left(u^{(n)}-1\right)}\left(\frac{u^{(n)}}{u^{(n)}+1}\right)^{L}=-\frac{x_{2}}{x_{1}} \\
& \Longleftrightarrow\left(\frac{u^{(n)}}{u^{(n)}+1}\right)^{L}=\frac{x_{2}}{x 1} \prod_{m \neq n} \frac{u^{(n)}-u^{(m)}-1}{u^{(n)}-u^{(m)}+1}
\end{aligned}
$$

$$
u^{(n)} \equiv \frac{e^{\mathbf{i} p_{n}}}{11-e^{i} p_{n}}, g \rightarrow i d_{\mathbb{C}^{2}} \Longrightarrow \quad \text { Bethe equation Hans Bethe }
$$ discovered in 1931

Integration of the Heisenberg $X X X_{\frac{1}{2}}$ spin chain in 1931

In 1931, Hans Bethe found the eigenstates in the form :

$$
\left|p_{1}, p_{2}, \ldots, p_{M} ;\left(\mathcal{A}_{\sigma}\right)_{\sigma \in \mathfrak{S}_{M}}\right\rangle \equiv \sum_{1 \leq j_{1}<\ldots<j_{M} \leq M} \Psi\left(j_{1}, \ldots, j_{M}\right)\left|\left\{j_{1}, \ldots, j_{M}\right\}\right\rangle
$$

Where

$$
\begin{aligned}
& \Psi\left(j_{1}, \ldots, j_{M}\right) \equiv \sum_{\sigma \in \mathfrak{S}_{M}} \mathcal{A}_{\sigma} \exp \left(\dot{\mathrm{i}} \sum_{k=1}^{M} p_{\sigma(k)} j_{k}\right) \\
& \mathcal{A}_{\sigma} \equiv \epsilon(\sigma) \prod_{j<k}\left(1+e^{\mathrm{i}\left(p_{\sigma(j)}+p_{\sigma(k)}\right)}-2 e^{\mathrm{i} p_{\sigma(k)}}\right)
\end{aligned}
$$

and denoting $(\uparrow ; \downarrow)$ the canonical basis of \mathbb{C}^{2},

$$
\left|\left\{j_{1}, \ldots, j_{M}\right\}\right\rangle \equiv \downarrow \otimes \ldots \otimes \downarrow \otimes \underbrace{\uparrow}_{j_{1}^{\text {th }} \text { factor }} \otimes \downarrow \otimes \ldots \otimes \downarrow \otimes \underbrace{\uparrow}_{j_{2}^{\text {th }} \text { factor }} \otimes \downarrow \otimes \ldots
$$

The momenta p_{j} must satisfy the Bethe equations of 1931 :

$$
\forall j \in \llbracket 1 ; M \rrbracket, e^{\mathrm{i} L p_{j}}=\prod_{k \neq j} \frac{1+e^{\mathrm{i}\left(p_{j}+p_{k}\right)}-2 e^{\mathrm{i} p_{j}}}{1+e^{\mathrm{i}\left(p_{j}+p_{k}\right)}-2 e^{\mathrm{i} p_{k}}}
$$

