DOI: 10.1007/s00209-005-0790-0

Square functions and H^{∞} calculus on subspaces of L^{p} and on Hardy spaces

Florence Lancien, Christian Le Merdy

Département de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France (e-mail: flancien@math.univ-fcomte.fr, lemerdy@math.univ-fcomte.fr)

Received: 17 May 2004; in final form: 8 October 2004 / Published online: 14 May 2005 – © Springer-Verlag 2005

Abstract. Let *X* be a (closed) subspace of L^p with $1 \le p < \infty$, and let *A* be any sectorial operator on *X*. We consider associated square functions on *X*, of the form $||x||_F = \left\| \left(\int_0^\infty |F(tA)x|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \right\|_{L^p}$, and we show that if *A* admits a bounded H^∞ functional calculus on *X*, then these square functions are equivalent to the original norm of *X*. Then we deduce a similar result when $X = H^1(\mathbb{R}^N)$ is the usual Hardy space, for an appropriate choice of $\| \|_F$. For example if N = 1, the right choice is the sum $\|h\|_F = \| \left(\int_0^\infty |F(tA)h|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \|_{L^1} + \| \left(\int_0^\infty |H(F(tA)h)|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \|_{L^1}$ for $h \in H^1(\mathbb{R})$, where *H* denotes the Hilbert transform.

1. Introduction

Let *X* be a Banach space, and let *A* be a sectorial operator on *X*. In this paper we investigate relationships between H^{∞} functional calculus and square functions associated with *A* when *X* is a subspace of some L^p -space, for $1 \le p < \infty$. This includes the case when $X = H^1(\mathbb{R}^N)$ is the usual Hardy space on \mathbb{R}^N . Following usual convention, we let Σ_{θ} denote the open sector of all $z \in \mathbb{C} \setminus \{0\}$ such that $|\operatorname{Arg}(z)| < \theta$, for any angle $\theta \in (0, \pi)$. Then we let $H^{\infty}(\Sigma_{\theta})$ be the algebra of all bounded holomorphic functions $f \colon \Sigma_{\theta} \to \mathbb{C}$, and we let $H_0^{\infty}(\Sigma_{\theta})$ denote the subalgebra of all $f \in H^{\infty}(\Sigma_{\theta})$ for which there exists a positive number s > 0such that $|f(z)| = O(|z|^{-s})$ at ∞ , and $|f(z)| = O(|z|^s)$ at 0.

Let $1 \le p < \infty$, and assume that $X = L^p(\Omega)$ for some measure space Ω . If *A* is sectorial of type $\omega \in (0, \pi)$ on *X*, and if *F* is a non zero function belonging to $H_0^{\infty}(\Sigma_{\theta})$ for some $\theta \in (\omega, \pi)$, the associated square function is defined by

$$\|x\|_{F} = \left\| \left(\int_{0}^{\infty} |F(tA)x|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{L^{p}(\Omega)}$$
(1.1)

for any $x \in L^p(\Omega)$. These quantities were introduced on Hilbert spaces (i.e. p = 2) in the early days of H^{∞} functional calculus by McIntosh [15] (see also [16]), and on any L^p-space by Cowling, Doust, McIntosh, and Yagi [4]. In a recent paper [11], the second named author showed that if A is actually R-sectorial of type ω , then all these square functions are pairwise equivalent. That is, for any F and G as above, there is a positive constant K > 0 such that $K^{-1} ||x||_G \le ||x||_F \le K ||x||_G$ for any $x \in L^p(\Omega)$. Furthermore it follows from [4] and [11] that if A has a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus and $F \in H_0^{\infty}(\Sigma_{\theta'}) \setminus \{0\}$ for some $\theta' > \theta$, then $\| \|_F$ is equivalent to the original norm on $X = L^p(\Omega)$. In Section 2 below, we will extend these equivalence results to the case when X is a (closed) subspace of $L^p(\Omega)$. In this context, the square functions will be also defined by (1.1). To study a sectorial operator A on L^p , it is often convenient to use the adjoint operator A^* and its associated square functions. Indeed in that case, A^* is a sectorial operator acting on $L^{p'}$ (if $p \neq 1$). The new difficulty appearing in the case when A acts on $X \subset L^p$ is that the dual space of X is no longer a subspace of some $L^{p'}$. Thus we do not have any convenient square functions for A^* at our disposal.

In Section 3, we will turn to Hardy spaces and will consider a sectorial operator A acting on $X = H^1(\mathbb{R}^N)$. Using a natural isometric embedding of $H^1(\mathbb{R}^N)$ into some L^1 -space, we will derive equivalence results which also extend those on L^p . However the definition of square functions has to be adapted. For example if N = 1, they will be defined for any $h \in H^1(\mathbb{R})$ by

$$\|h\|_{F} = \left\| \left(\int_{0}^{\infty} \left| F(tA)h \right|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{L^{1}(\mathbb{R})} + \left\| \left(\int_{0}^{\infty} \left| H(F(tA)h) \right|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{L^{1}(\mathbb{R})},$$

where *H* denotes the Hilbert transform on $L^1(\mathbb{R})$. Thus we will obtain that the above $\| \|_F$ is an equivalent norm of $H^1(\mathbb{R})$ provided that *A* has a bounded H^∞ functional calculus on $H^1(\mathbb{R})$.

2. H^{∞} calculus on subspaces of L^{p}

We shall briefly recall standard definitions and basic results on sectorial operators and their H^{∞} functional calculus. For details and complements, the reader is referred to the classical papers [15, 16, 4, 9], as well as to [17, Section 8.1] or [12].

Let *X* be a Banach space, and let B(X) be the space of all bounded linear operators on *X*. Let *A* be a closed and densely defined linear operator on *X*. The domain and the spectrum of *A* will be denoted by D(A) and $\sigma(A)$ respectively. For any $z \notin \sigma(A)$, we let $R(z, A) = (z - A)^{-1} \in B(X)$ denote the associated resolvent operator. We say that *A* is a sectorial operator of type $\omega \in (0, \pi)$ if *A* has dense range, $\sigma(A) \subset \overline{\Sigma_{\theta}}$, and for any $\theta \in (\omega, \pi)$, there is a constant $C_{\theta} \ge 0$ such that

$$||zR(z, A)|| \le C_{\theta}, \qquad z \notin \Sigma_{\theta}.$$

Such an operator A is automatically one-one (see e.g. [4, Theorem 3.8]). In some circumstances, the dense range assumption is omitted in the definition of sectoriality, however it is necessary for our purposes.

For any $\gamma \in (0, \pi)$, we let Γ_{γ} be the boundary of Σ_{γ} , oriented counterclockwise. Let *A* be a sectorial operator of type ω , and let $\theta \in (\omega, \pi)$. For any $f \in H_0^{\infty}(\Sigma_{\theta})$, we set

$$f(A) = \frac{1}{2\pi i} \int_{\Gamma} f(z) R(z, A) dz, \qquad (2.1)$$

where $\Gamma = \Gamma_{\gamma}$ for some $\gamma \in (\omega, \theta)$. Then f(A) is a well defined bounded operator on *X*, whose definition does not depend on the choice of γ . Moreover the mapping $f \mapsto f(A)$ is a homomorphism from $H_0^{\infty}(\Sigma_{\theta})$ into B(X). Let us equip $H^{\infty}(\Sigma_{\theta})$ with the supremum norm,

$$||f||_{\infty,\theta} = \sup\{|f(z)| : z \in \Sigma_{\theta}\}, \qquad f \in H^{\infty}(\Sigma_{\theta}).$$

We say that *A* admits a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus if there is a constant C > 0 such that $||f(A)|| \le C ||f||_{\infty,\theta}$ for any $f \in H_0^{\infty}(\Sigma_{\theta})$. In that case, there is a unique way to define a bounded operator f(A) for any $f \in H^{\infty}(\Sigma_{\theta})$, such that the resulting mapping $f \mapsto f(A)$ is a bounded homomorphism, and we have

$$\|f(A)\| \le C \|f\|_{\infty,\theta}, \qquad f \in H^{\infty}(\Sigma_{\theta}).$$
(2.2)

Let us recall here the definitions of *R*-boundedness [3] and *R*-sectoriality [20, 9]. Consider a Rademacher sequence $(\varepsilon_k)_{k\geq 1}$ on a probability space (Ω_0, \mathbb{P}) . That is, the ε_k 's are pairwise independent random variables on Ω_0 such that $\mathbb{P}(\varepsilon_k = 1) = \mathbb{P}(\varepsilon_k = -1) = \frac{1}{2}$ for any $k \geq 1$. For any finite family x_1, \ldots, x_n in *X*, we define

$$\left\|\sum_{k=1}^n \varepsilon_k x_k\right\|_{\operatorname{Rad}(X)} = \int_{\Omega_0} \left\|\sum_{k=1}^n \varepsilon_k(w) x_k\right\|_X d\mathbb{P}(w) \, .$$

A set $T \subset B(X)$ is *R*-bounded if there is a constant $C \ge 0$ such that for any finite families T_1, \ldots, T_n in T, and x_1, \ldots, x_n in X, we have

$$\left\|\sum_{k=1}^{n}\varepsilon_{k} T_{k}(x_{k})\right\|_{\operatorname{Rad}(X)} \leq C\left\|\sum_{k=1}^{n}\varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)}.$$

Now if A is a sectorial operator on X, we say that A is R-sectorial of R-type $\omega \in (0, \pi)$ if for any $\theta \in (\omega, \pi)$, the set $\{zR(z, A) : z \notin \overline{\Sigma_{\theta}}\} \subset B(X)$ is R-bounded.

Throughout this section, we let Ω be a measure space, we let $1 \le p < \infty$, and we assume that *X* is a (closed) subspace of $L^p(\Omega)$. It is well-known that there is a constant $C_0 > 0$ (only depending on *p*) such that

$$C_0^{-1} \left\| \sum_{k=1}^n \varepsilon_k \, x_k \right\|_{\operatorname{Rad}(X)} \le \left\| \left(\sum_{k=1}^n |x_k|^2 \right)^{1/2} \right\|_{L^p(\Omega)} \le C_0 \left\| \sum_{k=1}^n \varepsilon_k \, x_k \right\|_{\operatorname{Rad}(X)}$$
(2.3)

for any finite family x_1, \ldots, x_n in X. (See e.g. [13, 1.d.6].)

Given a sectorial operator A of type ω on X, an angle $\theta > \omega$, and $F \in H_0^{\infty}(\Sigma_{\theta}) \setminus \{0\}$, we let $||x||_F$ be defined by (1.1). More precisely for any $x \in X$, we temporarily set $x_F(t) = F(tA)x$ for any t > 0. It is easy to check that x_F is a continuous function from $(0, \infty)$ into $X \subset L^p(\Omega)$. Then we let $||x||_F$ be the norm of x_F in $L^p(\Omega; L^2(\mathbb{R}^*_+; \frac{dt}{t}))$ if x_F belongs to that space, and we let $||x||_F = \infty$ otherwise.

The following equivalence result was established in [11] in the case when $X = L^{p}(\Omega)$. Its proof extends almost verbatim to the case when X is merely a subspace of L^{p} , hence we omit it.

Theorem 2.1. Let X be a subspace of $L^p(\Omega)$, with $1 \le p < \infty$, and let A be an *R*-sectorial operator of *R*-type $\omega \in (0, \pi)$ on X. Let $\theta \in (\omega, \pi)$ and let F, G be two non zero functions belonging to $H_0^{\infty}(\Sigma_{\theta})$. There exists a constant K > 0 such that we have

$$K^{-1} \|x\|_G \le \|x\|_F \le K \|x\|_G, \qquad x \in X.$$

We need two lemmas which will be used in Theorem 2.4 below. Lemma 2.2 is implicit in the proof of [4, Lemma 6.5]. Further details can be found in [8]. In that statement, $\langle \cdot, \cdot \rangle$ denotes the usual inner product on the Hilbert space $L^2(\mathbb{R}^*_+, \frac{dt}{\tau})$.

Lemma 2.2. There exists a sequence $(b_j)_{j\geq 1}$ in $L^2(\mathbb{R}^*_+, \frac{dt}{t})$ satisfying the following two properties.

- (1) For any $a \in L^2(\mathbb{R}^*_+, \frac{dt}{t})$, $||a||^2 = \sum_{j \ge 1} |\langle a, b_j \rangle|^2$.
- (2) For any $0 < \theta < \delta < \pi$ and any $G \in H_0^{\infty}(\Sigma_{\delta})$, let $G_z \in L^2(\mathbb{R}^*_+, \frac{dt}{t})$ be defined by $G_z(t) = G(tz)$ for t > 0. Then

$$\sup_{z\in\Sigma_\theta}\sum_{j\geq 1}|\langle G_z,b_j\rangle|\,<\,\infty.$$

We need some notation which will be used throughout the rest of this section. Let $L^2(\mathbb{R}^*_+, \frac{dt}{t}; X)$ be the usual Banach space of strongly measurable functions $\phi: (0, \infty) \to X$ such that $t \mapsto \|\phi(t)\|_X$ belongs to $L^2(\mathbb{R}^*_+, \frac{dt}{t})$ (see e.g. [5, p.49-50]). We will usually write $L^2(X)$ for that space. Likewise, we will write L^p , L^2 , and $L^p(L^2)$ for $L^p(\Omega)$, $L^2(\mathbb{R}^*_+, \frac{dt}{t})$ and $L^p(\Omega; L^2(\mathbb{R}^*_+, \frac{dt}{t}))$ respectively. The fact that p may be equal to 2 should not cause any confusion! For any $a \in L^2$ and $x \in X$, the elementary tensor $a \otimes x$ may be identified with the function $\phi(t) = a(t)x$. This yields a canonical embedding $L^2 \otimes X \subset L^2(X)$. It is well-known that $L^2 \otimes X$ is actually a dense subspace of $L^2(X)$. Since $L^2 \otimes X \subset L^2 \otimes L^p \simeq L^p \otimes L^2$, we have a similar canonical embedding $L^2 \otimes X \subset L^p(L^2)$.

Lemma 2.3. Let ϕ be in $L^p(\Omega; L^2(\mathbb{R}^*_+, \frac{dt}{t})) \cap L^2(\mathbb{R}^*_+, \frac{dt}{t}; X)$. There exists a net $(\phi_{\alpha})_{\alpha}$ in $L^2 \otimes X$ such that $\phi_{\alpha} \to \phi$ in $L^2(X)$, and $\|\phi_{\alpha}\|_{L^p(L^2)} \leq \|\phi\|_{L^p(L^2)}$ for any α .

Proof. Let I_X denote the identity operator on *X*. According to [5, Lemma III.2.1], there is a net of finite rank contractive mappings $E_{\alpha} : L^2 \to L^2$ such that $E_{\alpha} \otimes I_X : L^2 \otimes X \to L^2 \otimes X$ extends to a contraction $\widehat{E}_{\alpha} : L^2(X) \to L^2(X)$, and $\|\widehat{E}_{\alpha}(\phi) - \phi\|_{L^2(X)} \to 0$ for any $\phi \in L^2(X)$. Assume that ϕ belongs to $L^p(L^2) \cap L^2(X)$, and let $\phi_{\alpha} = \widehat{E}_{\alpha}(\phi)$. Since E_{α} is finite rank, ϕ_{α} belongs to $L^2 \otimes X$. Indeed, \widehat{E}_{α} is valued in the vector space $\text{Ran}(E_{\alpha}) \otimes X$. On the other hand, $I_{L^p} \otimes E_{\alpha} : L^p \otimes X$.

 $L^2 \to L^p \otimes L^2$ extends to a bounded operator $\widetilde{E}_{\alpha} \colon L^p(L^2) \to L^p(L^2)$ with $\|\widetilde{E}_{\alpha}\| = \|E_{\alpha}\|$. Since ϕ_{α} is clearly equal to $\widetilde{E}_{\alpha}(\phi)$, we deduce that

$$\|\phi_{\alpha}\|_{L^{p}(L^{2})} \leq \|E_{\alpha}\| \|\phi\|_{L^{p}(L^{2})} \leq \|\phi\|_{L^{p}(L^{2})}.$$

Theorem 2.4. Let X be a subspace of $L^p(\Omega)$, with $1 \le p < \infty$, and let A be a sectorial operator on X. Assume that A admits a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus for some $\theta \in (0, \pi)$. Then for any non zero function F belonging to $H_0^{\infty}(\Sigma_{\theta'})$, with $\theta' > \theta$, there exists a constant K > 0 such that we have

$$K^{-1} \|x\|_F \le \|x\| \le K \|x\|_F, \qquad x \in X.$$
(2.4)

Proof. The left hand side inequality $||x||_F \le K ||x||$ was proved in [4, Theorem 6.6] in the case when $X = L^p(\Omega)$. The arguments in that proof turn out to extend to the case when X is merely a subspace of $L^p(\Omega)$. We will therefore omit the details. Instead we will outline a variant of this proof in Remark 2.5 below.

We will now concentrate on the right hand side inequality. Before going into the proof, we outline the main idea. For a certain function F in $H_0^{\infty}(\Sigma_{\theta'})$, and for any x in X, we will approximate x by sums of the form $\sum_j g_j(A) f_j(A) x$, where $(f_j)_{j\geq 1}$ and $(g_j)_{j\geq 1}$ are sequences of bounded holomorphic functions, $(g_j)_{j\geq 1}$ satisfies the estimate (2.13) below, and $(f_j)_{j\geq 1}$ satisfies an estimate $\left\|\sum_j \varepsilon_j f_j(A) x\right\|_{\text{Rad}(X)} \leq C'' \|x\|_F$. Then we write

$$x \sim \sum_{j} g_{j}(A) f_{j}(A) x = \int_{\Omega_{0}} \left(\sum_{j} \varepsilon_{j}(w) g_{j}(A) \right) \left(\sum_{j} \varepsilon_{j}(w) f_{j}(A) x \right) d\mathbb{P}(w),$$

where $(\varepsilon_i)_i$ is a Rademacher sequence, and we can conclude that $||x|| \leq CC'C'' ||x||_F$.

We now turn to the proof, including the technical details. According to [9, Theorem 5.3], the fact that *A* admits a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus on *X* implies that *A* is *R*-sectorial of type θ . Indeed subspaces of L^p (with $1 \le p < \infty$) have the property (Δ) discussed in the latter paper. Thus it is enough by Theorem 2.1 to prove the right hand side inequality for a special function *F*. We now explain how to choose it. Let $\theta < \delta < \nu < \pi$. There exist two functions *F* and *G* in $H_0^{\infty}(\Sigma_{\delta})$ and a constant M > 0 such that for all $f \in H_0^{\infty}(\Sigma_{\nu})$, there exists $b \in L^1 \cap L^{\infty}(\mathbb{R}^*_+, \frac{dt}{t})$ satisfying the following two properties:

$$\forall z \in \Sigma_{\delta}, \quad f(z) = \int_0^\infty b(t) F(tz) G(tz) \, \frac{dt}{t} \, ; \tag{2.5}$$

and

$$\|b\|_{\infty} \le M \|f\|_{\infty,\nu}.$$
 (2.6)

The existence of such functions follows from [4], namely by combining part of the proof of Theorem 4.4 and Example 4.7 from that paper. From now on *F* and *G* will be those two functions in $H_0^{\infty}(\Sigma_{\delta})$ and we will prove the right hand side inequality for *F*.

Throughout the rest of the proof *x* will be an element in *X* and η an element in *X*^{*}. We take two auxilliary functions *f* in $H_0^{\infty}(\Sigma_{\nu})$ and *g* in $H_0^{\infty}(\Sigma_{\delta})$. In the last step of the proof *f* and *g* will tend to 1. Let $b \in L^1 \cap L^{\infty}(\mathbb{R}^*_+, \frac{dt}{t})$ be satisfying (2.5) and (2.6). By Fubini's theorem we have

$$f(A) = \int_0^\infty b(t) F(tA) G(tA) \frac{dt}{t} \,.$$

We define $\phi \colon (0,\infty) \to X$ and $\psi \colon (0,\infty) \to X^*$ by letting

$$\phi(t) = b(t)F(tA)x$$
 and $\psi(t) = g(A)^*G(tA)^*\eta$,

for t > 0, so that we have

$$\langle g(A)f(A)x,\eta\rangle = \int_0^\infty \langle \phi(t),\psi(t)\rangle \,\frac{dt}{t}\,.$$
(2.7)

It follows from well-known computations (see e.g. [1, Section (E)]) that

$$\sup_{t>0} \|F(tA)\| < \infty \quad \text{and} \quad \int_0^\infty \|g(A)G(tA)\| \frac{dt}{t} < \infty.$$

Since $b \in L^1 \cap L^{\infty}(\mathbb{R}^*_+, \frac{dt}{t})$, we deduce that ϕ is in $L^2(X)$ and that ψ is in $L^2(X^*)$. These properties will be used later on in the proof.

Since A admits a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus on X, the left hand side inequality in Theorem 2.4 implies that the function $t \mapsto F(tA)x$ belongs to $L^{p}(L^{2})$. Thus ϕ is in $L^{p}(L^{2})$, with

$$\begin{aligned} \|\phi\|_{L^{p}(L^{2})} &= \left\| \left(\int_{0}^{\infty} |b(t)F(tA)x|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{L^{p}} \leq \|b\|_{\infty} \left\| \left(\int_{0}^{\infty} |F(tA)x|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{L^{p}} \\ &\leq \|b\|_{\infty} \|x\|_{F}. \end{aligned}$$

Hence using (2.6) we obtain the estimate

$$\|\phi\|_{L^{p}(L^{2})} \leq M \|f\|_{\infty,\nu} \|x\|_{F}.$$
(2.8)

We now consider the sequence $(b_j)_j$ given by Lemma 2.2. For *a* and *a'* scalar functions in $L^2(\mathbb{R}^*_+, \frac{dt}{t})$ we have:

$$\int_0^\infty a(t)a'(t)\frac{dt}{t} = \sum_{j\ge 1} \int_0^\infty a(t)\overline{b_j(t)}\frac{dt}{t} \int_0^\infty a'(t)b_j(t)\frac{dt}{t}$$

Thus for $\varphi = \sum_{k=1}^{K} a_k \otimes x_k \in L^2 \otimes X$ we have:

$$\int_0^\infty \langle \varphi(t), \psi(t) \rangle \, \frac{dt}{t} = \sum_{k=1}^K \int_0^\infty a_k(t) \langle x_k, \psi(t) \rangle \, \frac{dt}{t}$$
$$= \sum_{k=1}^K \sum_{j \ge 1} \int_0^\infty a_k(t) \overline{b_j(t)} \, \frac{dt}{t} \, \int_0^\infty \langle x_k, \psi(t) \rangle b_j(t) \, \frac{dt}{t}$$
$$= \sum_{j \ge 1} \left\langle \int_0^\infty \sum_{k=1}^K a_k(t) x_k \, \overline{b_j(t)} \, \frac{dt}{t} \, , \int_0^\infty \psi(t) \, b_j(t) \, \frac{dt}{t} \right\rangle$$

So we have for $\varphi \in L^2 \otimes X$:

$$\int_0^\infty \langle \varphi(t), \psi(t) \rangle \, \frac{dt}{t} \, = \, \sum_{j \ge 1} \left\langle \int_0^\infty \varphi(t) \overline{b_j(t)} \, \frac{dt}{t} \, , \, \int_0^\infty \psi(t) b_j(t) \, \frac{dt}{t} \, \right\rangle. \tag{2.9}$$

We noticed that the vector valued function ϕ both belongs to $L^p(L^2)$ and $L^2(X)$. Hence using Lemma 2.3 we obtain a net $(\phi_{\alpha})_{\alpha}$ in $L^2 \otimes X$ such that $\phi_{\alpha} \to \phi$ in $L^2(X)$, with

$$\|\phi_{\alpha}\|_{L^{p}(L^{2})} \leq \|\phi\|_{L^{p}(L^{2})}.$$
(2.10)

Since $\psi \in L^2(X^*)$, the above convergence property yields

$$\int_0^\infty \langle \phi(t), \psi(t) \rangle \, \frac{dt}{t} \, = \, \lim_\alpha \int_0^\infty \langle \phi_\alpha(t), \psi(t) \rangle \, \frac{dt}{t} \, . \tag{2.11}$$

For each α , the function ϕ_{α} belongs to $L^2 \otimes X$, hence we obtain by applying (2.9) with $\varphi = \phi_{\alpha}$ that

$$\int_0^\infty \langle \phi_\alpha(t), \psi(t) \rangle \, \frac{dt}{t} \, = \, \sum_{j \ge 1} \langle x_j^\alpha, \eta_j \rangle, \tag{2.12}$$

where $x_i^{\alpha} \in X$ and $\eta_j \in X^*$ are defined by

$$x_j^{\alpha} = \int_0^{+\infty} \phi_{\alpha}(t) \overline{b_j(t)} \, \frac{dt}{t} \quad \text{and} \quad \eta_j = \int_0^{\infty} \psi(t) b_j(t) \, \frac{dt}{t} \, .$$

We define $g_j(z) = \int_0^\infty G(tz)\overline{b_j(t)} \frac{dt}{t}$ for $z \in \Sigma_\theta$. Since g belongs to $H_0^\infty(\Sigma_\theta)$, we have by Fubini's theorem that

$$g(A)g_j(A) = \int_0^\infty g(A)G(tA)\overline{b_j(t)}\,\frac{dt}{t}\,,$$

so that we have $\eta_j = g_j(A)^* g(A)^* \eta$.

Let $(\varepsilon_j)_j$ be any sequence taking values in $\{-1, 1\}$. Since A admits a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus on X, we have an estimate

$$\left\|\sum_{j=1}^{N} \varepsilon_{j} g_{j}(A)\right\| \leq C \sup_{z \in \Sigma_{\theta}} \left|\sum_{j=1}^{N} \varepsilon_{j} g_{j}(z)\right|,$$

by (2.2). Hence

$$\left\|\sum_{j=1}^N \varepsilon_j g_j(A)\right\| \leq C \sup_{z \in \Sigma_{\theta}} \sum_{j=1}^N |g_j(z)|.$$

Since $g_j(z) = \langle G_z, b_j \rangle$, it follows from Lemma 2.2 that the right hand side in the last inequality is bounded by a constant *C'* independent of *N* and ε_j . Therefore we obtain that

$$\forall N \ge 1, \ \forall \varepsilon_j = \pm 1, \quad \left\| \sum_{j=1}^N \varepsilon_j \, g_j(A) \right\| \le C \, C'.$$
 (2.13)

For any α and $N \ge 1$, we have

$$\sum_{j=1}^{N} \langle x_j^{\alpha}, \eta_j \rangle = \sum_{j=1}^{N} \langle g(A)g_j(A)x_j^{\alpha}, \eta \rangle.$$

Moreover if $(\varepsilon_j)_j$ is now a Rademacher sequence, we have

$$\sum_{j=1}^{N} g(A)g_j(A)x_j^{\alpha} = \int_{\Omega_0} \left(\sum_{j=1}^{N} \varepsilon_j(w)g_j(A)g(A) \right) \left(\sum_{j=1}^{N} \varepsilon_j(w)x_j^{\alpha} \right) d\mathbb{P}(w) \, .$$

Thus

$$\sum_{j=1}^{N} \langle x_j^{\alpha}, \eta_j \rangle = \left\langle \int_{\Omega_0} \left(\sum_{j=1}^{N} \varepsilon_j(w) g_j(A) \right) g(A) \left(\sum_{j=1}^{N} \varepsilon_j(w) x_j^{\alpha} \right) d\mathbb{P}(w), \eta \right\rangle.$$

Applying the estimate (2.13), we obtain that

$$\begin{split} \left| \sum_{j=1}^{N} \langle x_{j}^{\alpha}, \eta_{j} \rangle \right| &\leq C \, C' \, \|g(A)\| \left[\int_{\Omega_{0}} \left\| \sum_{j=1}^{N} \varepsilon_{j}(w) x_{j}^{\alpha} \right\| d\mathbb{P}(w) \right] \|\eta\| \\ &\leq C^{2} \, C' \|g\|_{\infty, \theta} \, \left\| \sum_{j=1}^{N} \varepsilon_{j} \, x_{j}^{\alpha} \right\|_{\operatorname{Rad}(X)} \, \|\eta\|. \end{split}$$

Then we consider the operator V_N from $L^2(\mathbb{R}^*_+, \frac{dt}{t})$ to ℓ_2^N defined by $V_N(a) = (\langle a, b_j \rangle)_{j=1}^N$. By Lemma 2.2, this operator has norm at most 1. Hence its tensor extension $I_{L^p} \otimes V_N$ from $L^p(L^2)$ to $L^p(\ell_2^N)$ is a contraction. Since $(x_j^{\alpha})_{j=1}^N = (Id_{L^p} \otimes V_N)(\phi_{\alpha})$, this implies that

$$\left\| \left(\sum_{j=1}^{N} |x_{j}^{\alpha}|^{2} \right)^{1/2} \right\|_{L^{p}} \leq \|\phi_{\alpha}\|_{L^{p}(L^{2})}$$

Since X is a subspace of L^p , this yields

$$\left\|\sum_{j=1}^{N} \varepsilon_{j} x_{j}^{\alpha}\right\|_{\operatorname{Rad}(X)} \leq C_{0} \|\phi_{\alpha}\|_{L^{p}(L^{2})}$$

by (2.3), and hence

$$\left|\sum_{j=1}^{N} \langle x_{j}^{\alpha}, \eta_{j} \rangle \right| \leq C^{2} C' C_{0} \|g\|_{\infty, \theta} \|\phi_{\alpha}\|_{L^{p}(L^{2})} \|\eta\|.$$

Using (2.10) and (2.8), we obtain that

$$\left|\sum_{j=1}^{N} \langle x_{j}^{\alpha}, \eta_{j} \rangle \right| \leq C^{2} C' C_{0} M \|g\|_{\infty, \theta} \|f\|_{\infty, \nu} \|x\|_{F} \|\eta\|.$$

On the other hand, combining (2.7), (2.11) and (2.12) we have

$$\langle g(A) f(A)x, \eta \rangle = \lim_{\alpha} \sum_{j \ge 1} \langle x_j^{\alpha}, \eta_j \rangle.$$

Hence we finally obtain that

$$|\langle g(A) f(A) x, \eta \rangle| \le C^2 C' C_0 M ||g||_{\infty,\theta} ||f||_{\infty,\nu} ||x||_F ||\eta||.$$

To conclude the proof, we apply this last inequality with f_n and g_n in place of f and g, where $(f_n)_{n\geq 1}$ and $(g_n)_{n\geq 1}$ are bounded sequences respectively in $H_0^{\infty}(\Sigma_{\nu})$ and $H_0^{\infty}(\Sigma_{\theta})$, such that $f_n(A)$ and $g_n(A)$ converge pointwise to I_X . That such functions exist is well-known, using the fact that A has a dense range (take e.g. $f_n(z) = g_n(z) = n^2 z(n + z)^{-1}(1 + nz)^{-1}$). This yields an inequality $|\langle x, \eta \rangle| \leq K ||x||_F ||\eta||$. Taking the supremum over η in the unit ball of X^* , we obtain the desired inequality $||x|| \leq K ||x||_F$.

Remark 2.5. Using some of the arguments in the above proof, we can now give a functional analytic proof of the left hand side of Theorem 2.4. Since this is a simple adaptation of a similar result proved in [8] for sectorial operators on non commutative L^p -spaces, we will only give a sketch and refer to the latter paper for missing technical details. Assume that A has a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus on $X \subset L^p(\Omega)$, and let $G \in H_0^{\infty}(\Sigma_{\delta})$, for some $\delta > \theta$. We will show that $\|x\|_G \leq K \|x\|$ for some constant K > 0 not depending on $x \in X$. We let $(b_j)_j$ be given by Lemma 2.2, and we define g_j as in the proof of Theorem 2.4. Using (2.13) and (2.3), we find that

$$\forall N \ge 1, \quad \left\| \left(\sum_{j=1}^{N} \left| g_j(A) x \right|^2 \right)^{1/2} \right\|_{L^p} \le K \|x\|, \quad x \in X, \quad (2.14)$$

for some K > 0 not depending either on N or on x. Let $g \in H_0^{\infty}(\Sigma_{\delta})$ be an arbitrary function. According to Lemma 2.2 (1), we let $V: L^2(\mathbb{R}^*_+, \frac{dt}{t}) \to \ell^2$ be the isometry defined by $V(a) = (\langle a, b_j \rangle)_{j \ge 1}$. Then one can show (see [8]) that for any $x \in X$ and any $\eta \in X^*$, the function $t \mapsto \langle G(tA)g(A)x, \eta \rangle$ belongs to $L^2(\mathbb{R}^*_+, \frac{dt}{t})$, and that

$$V(\langle G(\cdot A)g(A)x,\eta\rangle) = (\langle g_j(A)g(A)x,\eta\rangle)_{j\geq 1}.$$

Using a tensor extension of V^* , it is not hard to deduce that

$$\|g(A)x\|_{G} = \|G(\cdot A)g(A)x\|_{L^{p}(L^{2})} \le \sup_{N \ge 1} \left\| \left(\sum_{j=1}^{N} |g_{j}(A)g(A)x|^{2} \right)^{1/2} \right\|_{L^{p}}.$$
 (2.15)

Combining (2.14) and (2.15), we deduce that $||g(A)x||_G \leq K ||g(A)x||$. Then it suffices to apply that estimate with g replaced by a bounded sequence $(g_n)_n$ such that $g_n(A)x \to x$ to get the desired inequality.

Remark 2.6. Let X be a subspace of $L^p(\Omega)$, with $1 \le p < \infty$, and let A be a sectorial operator of type $\omega \in (0, \pi)$ on X. Let $\theta \in (\omega, \pi)$, and let F be a non zero function in $H_0^{\infty}(\Sigma_{\theta})$. If A is *R*-sectorial of *R*-type ω , then there is a constant K > 0 such that

$$||f(A)x||_F \le K ||x||_F$$
 for any $f \in H_0^\infty(\Sigma_\theta)$ and any $x \in X$.

Indeed this is proved in [11] when $X = L^p(\Omega)$ and the proof works as well if X is a subspace. This yields the following converse to Theorem 2.4: if A is R-sectorial of R-type ω , and if (2.4) holds true for a non zero $F \in H_0^{\infty}(\Sigma_{\theta})$, with $\theta > \omega$, then A has a bounded $H_0^{\infty}(\Sigma_{\theta})$ functional calculus. We do not know if (2.4) implies a bounded functional calculus for A without any R-sectoriality assumption.

Remark 2.7. Let Λ be a Banach lattice with finite cotype (see e.g. [13]). Let $X \subset \Lambda$ be a subspace and assume that A is a sectorial operator of type $\omega \in (0, \pi)$ on X. For any $\theta > \omega$ and any $F \in H_0^{\infty}(\Sigma_{\theta})$, one may define a square function by letting

$$\|x\|_F = \left\| \left(\int_0^\infty \left| F(tA) x \right|^2 \frac{dt}{t} \right)^{1/2} \right\|_{\Lambda}, \qquad x \in X.$$

Then it is not hard to see that Theorems 2.1 and 2.4 hold true in that setting.

3. Square functions on Hardy spaces

Let $N \ge 1$ be an integer. In this section we will be interested in H^{∞} functional calculus and square functions for sectorial operators on the Hardy space $H^1(\mathbb{R}^N)$. We refer the reader to e.g. [18], [7], or [14] for general information and background on Hardy spaces. We let R_1, \ldots, R_N denote the Riesz transforms, so that

$$H^{1}(\mathbb{R}^{N}) = \{ h \in L^{1}(\mathbb{R}^{N}) : R_{j}(h) \in L^{1}(\mathbb{R}^{N}) \text{ for any } j = 1, \dots, N \}.$$

This space admits several equivalent norms for which it is a Banach space. Here we choose to work with

$$\|h\|_{H^1} = \|h\|_1 + \sum_{j=1}^N \|R_j(h)\|_1, \qquad h \in H^1(\mathbb{R}^N), \tag{3.1}$$

where $\|\cdot\|_1$ denotes the usual norm on $L^1(\mathbb{R}^N)$.

We observe that $H^1(\mathbb{R}^N)$ equipped with $\|\cdot\|_{H^1}$ is isometrically isomorphic to a subspace of L^1 . Indeed let $J: H^1(\mathbb{R}^N) \to \ell^1_{N+1}(L^1(\mathbb{R}^N))$ be defined by letting

$$J(h) = (h, R_1(h), \ldots, R_N(h))$$

for any $h \in H^1(\mathbb{R}^N)$, and let $X = \operatorname{Ran}(J)$. Then J is a linear isometry. Moreover we may clearly identify $\ell_{N+1}^1(L^1(\mathbb{R}^N))$ with $L^1(\Omega_N)$, where Ω_N is equal to the disjoint union of (N+1) copies of \mathbb{R}^N . Thus $H^1(\mathbb{R}^N)$ is isometrically isomorphic to $X \subset L^1(\Omega_N)$. Our next goal is to explain how Theorems 2.1 and 2.4 for X 'transfer' to $H^1(\mathbb{R}^N)$. We record for further use that under the above identification, we have

$$L^{1}(\Omega_{N};\mathcal{H}) \simeq \ell^{1}_{N+1}(L^{1}(\mathbb{R}^{N};\mathcal{H}))$$
(3.2)

for any Hilbert space \mathcal{H} . Now we let

$$\mathcal{H} = L^2(\mathbb{R}^*_+; \frac{dt}{t}).$$

Let *A* be a sectorial operator of type $\omega \in (0, \pi)$ on the Banach space $H^1(\mathbb{R}^N)$. Let $\theta \in (\omega, \pi)$ and let $F \in H_0^{\infty}(\Sigma_{\theta})$. For any $h \in H^1(\mathbb{R}^N)$, we let $[h]_F$ be the norm of the function $t \mapsto F(tA)h$ in $L^1(\mathbb{R}^N; \mathcal{H})$ (with the usual convention that $[h]_F = \infty$ if that function does not belong to $L^1(\mathbb{R}^N; \mathcal{H})$). Then if $T: H^1(\mathbb{R}^N) \to L^1(\mathbb{R}^N)$ is any bounded operator, we let $[h]_{TF}$ be the norm of $t \mapsto T(F(tA)h)$ in $L^1(\mathbb{R}^N; \mathcal{H})$, that is

$$[h]_{TF} = \left\| \left(\int_0^\infty \left| T\left(F(tA)h\right) \right|^2 \frac{dt}{t} \right)^{1/2} \right\|_1, \qquad h \in H^1(\mathbb{R}^N).$$

Note that $[h]_F = [h]_{TF}$ if *T* is equal to the canonical inclusion map $H^1(\mathbb{R}^N) \to L^1(\mathbb{R}^N)$.

We now define square functions associated with A by letting

$$\|h\|_{F} = [h]_{F} + \sum_{j=1}^{N} [h]_{R_{j}F}, \qquad h \in H^{1}(\mathbb{R}^{N}),$$
(3.3)

for any $F \in H_0^{\infty}(\Sigma_{\theta}) \setminus \{0\}$ such that $\theta \in (\omega, \pi)$. Let $\widetilde{A} = JAJ^{-1}$ be the realization of A on $X \subset L^1(\Omega_N)$, let $h \in H^1(\mathbb{R}^N)$ and consider $\widetilde{h} = J(h) \in X$. Then we have

$$F(t\widetilde{A})\widetilde{h} = J(F(tA)h).$$

Hence applying (3.2) and (3.3), we have

$$\begin{split} \|t \mapsto F(t\widetilde{A})\widetilde{h}\|_{L^{1}(\Omega_{N};\mathcal{H})} &= \|t \mapsto J(F(tA)h)\|_{L^{1}(\Omega_{N};\mathcal{H})} \\ &= \|t \mapsto F(tA)h\|_{L^{1}(\mathbb{R}^{N};\mathcal{H})} \\ &+ \sum_{j=1}^{N} \|t \mapsto R_{j}(F(tA)h)\|_{L^{1}(\mathbb{R}^{N};\mathcal{H})} \\ &= \|h\|_{F}. \end{split}$$

This shows that the square function associated with A on $H^1(\mathbb{R}^N)$ and the corresponding square function associated with \widetilde{A} on $X \subset L^1(\Omega_N)$ coincide. Therefore applying Theorem 2.1 and 2.4, we obtain the following results. **Corollary 3.1.** Let A be a sectorial operator on $H^1(\mathbb{R}^N)$.

(1) If A is R-sectorial or R-type $\omega \in (0, \pi)$, and if F, G are two non zero functions in $H_0^{\infty}(\Sigma_{\theta})$ for some $\theta \in (\omega, \pi)$, then we have

$$[h]_F + \sum_{j=1}^N [h]_{R_j F} \approx [h]_G + \sum_{j=1}^N [h]_{R_j G}, \qquad h \in H^1(\mathbb{R}^N)$$

(2) If A has a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus, then for any $\theta' > \theta$ and any non zero function F in $H_0^{\infty}(\Sigma_{\theta'})$, we have

$$\|h\|_{H^1} \approx [h]_F + \sum_{j=1}^N [h]_{R_j F}, \quad h \in H^1(\mathbb{R}^N)$$

Of course in this statement, an equivalence $\mathcal{A}(h) \approx \mathcal{B}(h)$ means that there is a constant K > 0 not depending on h, such that $K^{-1}\mathcal{A}(h) \leq \mathcal{B}(h) \leq K\mathcal{A}(h)$.

Remark 3.2. If N = 1, then the Riesz transform R_1 is the Hilbert transform that we denote by *H*. Thus in that case square functions are given by

$$\|h\|_{F} = \left\| \left(\int_{0}^{\infty} |F(tA)h|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{1} + \left\| \left(\int_{0}^{\infty} |H(F(tA)h)|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{1}$$
(3.4)

for any $h \in H^1(\mathbb{R})$.

Example 3.3. There are lots of examples of differential operators A on $L^2(\mathbb{R}^N)$ with the following properties: A has an $L^p(\mathbb{R}^N)$ -realization A_p for any $1 \le p < \infty$, the operator A_p has a bounded H^∞ functional calculus on $L^p(\mathbb{R}^N)$ if $p \ne 1$, but A_1 does not have a bounded H^∞ functional calculus on $L^1(\mathbb{R}^N)$. It turns out that sometimes, such an operator also has an $H^1(\mathbb{R}^N)$ -realization, which has a bounded H^∞ functional calculus on $H^1(\mathbb{R}^N)$. The simplest such example (with N = 1) is the derivation operator $\frac{d}{dt}$, with domain equal to the Sobolev space $W^{1,p}(\mathbb{R})$ on $L^p(\mathbb{R})$. For any $1 \le p < \infty$, this is a sectorial operator of type $\frac{\pi}{2}$. Furthermore for any $\theta \in (\frac{\pi}{2}, \pi)$, the operator $\frac{d}{dt}$ has a bounded $H^\infty(\Sigma_\theta)$ functional calculus on $L^p(\mathbb{R})$ if and only if $1 . It is easy to see that <math>A = \frac{d}{dt}$ acts as a sectorial operator on $H^1(\mathbb{R})$, and that it has a bounded $H^\infty(\Sigma_\theta)$ functional calculus on that space. Indeed, for any $f \in H_0^\infty(\Sigma_\theta)$, the operator $f(\frac{d}{dt})$ is the Fourier multiplier operator associated to the function $t \mapsto f(it)$, and hence an estimate $\|f(A)\|_{H^1} \le K \|f\|_{\infty,\theta} \|h\|_{H^1}$ follows by applying Mikhlin's Theorem on $H^1(\mathbb{R})$ (see e.g. [14, p. 99]).

In the rest of this section, we describe a general framework where the ideas outlined in Example 3.3 apply. We fix an integer $N \ge 1$ and for simplicity, we write L^p and H^1 for $L^p(\mathbb{R}^N)$ and $H^1(\mathbb{R}^N)$ respectively. We suppose that for any $1 \le p \le 2$, A_p is a sectorial operator on L^p , with type ω not depending on p, and we assume that the family $\{A_p\}_p$ is consistent in the following sense: for any $1 \le p, q \le 2$, and for any $\lambda \notin \overline{\Sigma}_{\omega}$, the bounded operators $R(\lambda, A_p)$ and $R(\lambda, A_q)$

coincide on $L^p \cap L^q$. Clearly these assumptions imply that for any $\theta > \omega$, and any $f \in H_0^{\infty}(\Sigma_{\theta})$, $f(A_p)$ and $f(A_q)$ also coincide on $L^p \cap L^q$.

We let $A = A_2$, and we assume further that A is a Fourier multiplier. By this we mean that there exists a measurable function $m : \mathbb{R}^N \to \mathbb{C}$ such that

$$\widehat{Ah} = m\,\widehat{h}, \qquad h \in D(A), \tag{3.5}$$

the domain of *A* being equal to the space of all $h \in L^2$ such that $m \hat{h}$ belongs to L^2 . In that case, *m* is essentially valued in $\overline{\Sigma_{\omega}}$. If (3.5) holds, we say that *A* is associated to *m*. Then for any $\lambda \notin \overline{\Sigma_{\omega}}$, the resolvent operator $R(\lambda, A)$ is equal to the Fourier multiplier associated to the bounded function $(\lambda - m(\cdot))^{-1}$. Likewise, for any $\theta \in (\omega, \pi)$ and $f \in H_0^{\infty}(\Sigma_{\theta})$, the bounded operator $f(A) \colon L^2 \to L^2$ is the Fourier multiplier associated to $f \circ m$. This readily implies that $||f(A)|| = ||f \circ m||_{\infty}$. Consequently, we have $||f(A)|| \leq ||f||_{\infty,\theta}$, and hence *A* has a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus on L^2 . All these facts are well-known.

We now define a realization of A on H^1 , denoted by A_H . Since A is a Fourier multiplier, then for any $\lambda \notin \overline{\Sigma_{\omega}}$, the operator $R(\lambda, A_1)$ commutes with the Riesz transforms. Thus $R(\lambda, A_1)$ maps H^1 into itself, and for any $j = 1, \ldots, N$, we have

$$R_i R(\lambda, A_1) = R(\lambda, A_1) R_i \quad \text{on } H^1.$$
(3.6)

Then we define A_H by letting $A_H(h) = A_1(h)$ on the domain

$$D(A_H) = \{h \in H^1 \cap D(A_1) : A_1(h) \in H^1\},\$$

Using (3.6), the following lemma is routine.

Lemma 3.4. The operator A_H is sectorial of type ω on H^1 . Moreover for any $\theta > \omega$ and any $f \in H_0^{\infty}(\Sigma_{\theta})$, $f(A_1)$ maps H^1 into itself, and the corresponding restriction $f(A_1)_{|H^1 \to H^1}$ coincides with $f(A_H)$.

For any $\theta > \omega$ and any $f \in H_0^{\infty}(\Sigma_{\theta})$, $f(A) = K_f * \bullet$ is a convolution operator with respect to the tempered distribution $K_f \in S'(\mathbb{R}^N)$ defined by $\widehat{K_f} = f \circ m$. We now make the *strong assumption* that any such operator f(A) is a singular integral operator in the sense of [7, Section II.5]. That is, K_f coincides on $\mathbb{R}^N \setminus \{0\}$ with a locally integrable function, and there is a constant C_f such that for any $v \in \mathbb{R}^N \setminus \{0\}$,

$$\int_{|u|>2|v|} \left| K_f(u-v) - K_f(u) \right| du \le C_f.$$
(3.7)

Corollary 3.5. Assume that for some $\theta > \omega$, there exists a constant C > 0 such that (3.7) holds true with $C_f \leq C ||f||_{\infty,\theta}$ for any $f \in H_0^{\infty}(\Sigma_{\theta})$. Then A_H has a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus on H^1 .

Proof. By Lemma 3.4, $f(A_H)$ and f(A) coincide on $L^2 \cap H^1$. Hence according to either [18, p. 114], or [7, p. 322], (3.7) ensures that $||f(A_H)|| \le B_0 C_f$, where B_0 is an absolute constant. Thus we obtain that $||f(A_H)|| \le B_0 C ||f||_{\infty,\theta}$, and hence A_H has a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus.

Remark 3.6. We observe that for any $\theta > \omega$, any $F \in H_0^{\infty}(\Sigma_{\theta})$, and any t > 0, we have $R_j F(tA_H) = F(tA_H)R_j$ on $H^1(\mathbb{R}^N)$. Hence $[h]_{R_jF} = [R_jh]_F$ for any $h \in H^1(\mathbb{R}^N)$. Thus the square functions associated with A_H can be expressed as

$$||h||_F = [h]_F + \sum_{j=1}^N [R_j h]_F, \qquad h \in H^1(\mathbb{R}^N).$$

Remark 3.7. The above discussion applies to $A = -\Delta$, where Δ is the Laplacian operator on \mathbb{R}^N . Indeed *A* satisfies (3.5) with $m(u) = |u|^2$, and it is well-known that the assumptions of Corollary 3.5 are verified for any $\theta > 0$. Thus *A* has an H^1 -realization which admits a bounded $H^{\infty}(\Sigma_{\theta})$ functional calculus for any $\theta > 0$. Let $k \ge 1$ be any positive integer, and consider the function *F* defined by $F(z) = z^k e^{-z}$. Clearly *F* belongs to $H_0^{\infty}(\Sigma_{\theta})$ for any $\theta \in (0, \frac{\pi}{2})$. According to [2, Section 2.A] (see also [6, 19]), a function $h \in L^1$ belongs to H^1 if and only if $[h]_F$ is finite. Moreover we have an equivalence

$$\|h\|_{H^1} \approx [h]_F, \qquad h \in H^1(\mathbb{R}^N).$$
 (3.8)

Comparing with Corollary 3.1 (2) and Remark 3.6 (2), this is equivalent to saying that for any j = 1, ..., N, we have equivalences $[h]_F \approx [R_j(h)]_F$ on H^1 . It would be interesting to have a ' H^{∞} calculus proof' of these facts. It seems to be an open question whether (3.8) holds for any $F \in H_0^{\infty}(\Sigma_{\theta})$.

References

- Albrecht, D., Duong, X.T., McIntosh, A.: Operator theory and harmonic analysis. Proc. CMA, Canberra 34, 77–136 (1996)
- Bui, H.Q.: Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J. Funct. Anal. 55, 39–62 (1984)
- Clément, P., De Pagter, B., Sukochev, F., Witvliet, H.: Schauder decompositions and multiplier theorems. Studia Math. 138, 135–163 (2000)
- Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded H[∞] functional calculus. J. Austr. Math. Soc. (Series A) 60, 51–89 (1996)
- Diestel, J., Uhl, J.J.: Vector measures. Math. Surveys and Monographs 15, Am. Math. Soc., Providence, R. I., 1977
- Fefferman, C., Stein, E.M.: H^p spaces in several variables. Acta Math. 129, 137–193 (1972)
- Garcia-Cuerva, J., Rudio de Francia, J. L.: Weighted norm inequalities and related topics. North Holland Mathematical Studies 116, 1985
- 8. Junge, M., Le Merdy, C., Xu, Q.: H^{∞} functional calculus and square functions on noncommutative L^{p} -spaces. To appear
- 9. Kalton, N., Weis, L.: The H^{∞} calculus and sums of closed operators. Math. Annalen **321**, 319–345 (2001)
- Lancien, F., Lancien, G., Le Merdy, C.: A joint functional calculus for sectorial operators with commuting resolvents. Proc. London Math. Soc. 77, 387–414 (1998)
- Le Merdy, C.: On square functions associated to sectorial operators. Bull. Soc. Math. France 132, 137–156 (2004)

- 12. Le Merdy, C.: H^{∞} -functional calculus and applications to maximal regularity. Publications Math. Besançon **16**, 41–77 (1999)
- 13. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer Verlag, Berlin, 1979
- 14. Lu, S.: Four lectures on real H^p spaces, World Scientific, 1995
- 15. McIntosh, A.: Operators which have an H^{∞} functional calculus. In: Miniconference on operator theory and partial differential equations. Proc. CMA, Canberra **14**, 210–231 (1986)
- 16. McIntosh, A., Yagi, A.: Operators of type ω without a bounded H^{∞} functional calculus. In: Miniconference on operators in analysis. Proc. CMA, Canberra **24**, 159–172 (1989)
- 17. Prüss, J.: Evolutionary integral equations and applications. Monographs Math. 87, Birkhaüser Verlag, 1993
- 18. Stein, E.M.: Harmonic analysis. Princeton University Press, 1993
- 19. Triebel, H.: Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures, and related means. J. Approx. Theory **35**, 275–297 (1982)
- 20. Weis, L.: Operator valued Fourier multiplier theorems and maximal regularity. Math. Ann. **319**, 735–758 (2001)