Square functions and $\boldsymbol{H}^{\boldsymbol{\infty}}$ calculus on subspaces of $\boldsymbol{L}^{\boldsymbol{p}}$ and on Hardy spaces

Florence Lancien, Christian Le Merdy

Département de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France (e-mail: flancien@math.univ-fcomte.fr, lemerdy@math.univ-fcomte.fr)

Received: 17 May 2004; in final form: 8 October 2004 /
Published online: 14 May 2005 - © Springer-Verlag 2005

Abstract

Let X be a (closed) subspace of L^{p} with $1 \leq p<\infty$, and let A be any sectorial operator on X. We consider associated square functions on X, of the form $\|x\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}\right\|_{L^{p}}$, and we show that if A admits a bounded H^{∞} functional calculus on X, then these square functions are equivalent to the original norm of X. Then we deduce a similar result when $X=H^{1}\left(\mathbb{R}^{N}\right)$ is the usual Hardy space, for an appropriate choice of $\left\|\|_{F}\right.$. For example if $N=1$, the right choice is the sum $\|h\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) h|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}\right\|_{L^{1}}+\left\|\left(\int_{0}^{\infty}|H(F(t A) h)|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}\right\|_{L^{1}}$ for $h \in H^{1}(\mathbb{R})$, where H denotes the Hilbert transform.

1. Introduction

Let X be a Banach space, and let A be a sectorial operator on X. In this paper we investigate relationships between H^{∞} functional calculus and square functions associated with A when X is a subspace of some L^{p}-space, for $1 \leq p<\infty$. This includes the case when $X=H^{1}\left(\mathbb{R}^{N}\right)$ is the usual Hardy space on \mathbb{R}^{N}. Following usual convention, we let Σ_{θ} denote the open sector of all $z \in \mathbb{C} \backslash\{0\}$ such that $|\operatorname{Arg}(z)|<\theta$, for any angle $\theta \in(0, \pi)$. Then we let $H^{\infty}\left(\Sigma_{\theta}\right)$ be the algebra of all bounded holomorphic functions $f: \Sigma_{\theta} \rightarrow \mathbb{C}$, and we let $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ denote the subalgebra of all $f \in H^{\infty}\left(\Sigma_{\theta}\right)$ for which there exists a positive number $s>0$ such that $|f(z)|=O\left(|z|^{-s}\right)$ at ∞, and $|f(z)|=O\left(|z|^{s}\right)$ at 0 .

Let $1 \leq p<\infty$, and assume that $X=L^{p}(\Omega)$ for some measure space Ω. If A is sectorial of type $\omega \in(0, \pi)$ on X, and if F is a non zero function belonging to $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ for some $\theta \in(\omega, \pi)$, the associated square function is defined by

$$
\begin{equation*}
\|x\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \tag{1.1}
\end{equation*}
$$

for any $x \in L^{p}(\Omega)$. These quantities were introduced on Hilbert spaces (i.e. $p=2$) in the early days of H^{∞} functional calculus by McIntosh [15] (see also [16]), and on any L^{p}-space by Cowling, Doust, McIntosh, and Yagi [4]. In a recent paper [11], the second named author showed that if A is actually R-sectorial of type ω, then all these square functions are pairwise equivalent. That is, for any F and G as above, there is a positive constant $K>0$ such that $K^{-1}\|x\|_{G} \leq\|x\|_{F} \leq K\|x\|_{G}$ for any $x \in L^{p}(\Omega)$. Furthermore it follows from [4] and [11] that if A has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus and $F \in H_{0}^{\infty}\left(\Sigma_{\theta^{\prime}}\right) \backslash\{0\}$ for some $\theta^{\prime}>\theta$, then $\left\|\|_{F}\right.$ is equivalent to the original norm on $X=L^{p}(\Omega)$. In Section 2 below, we will extend these equivalence results to the case when X is a (closed) subspace of $L^{p}(\Omega)$. In this context, the square functions will be also defined by (1.1). To study a sectorial operator A on L^{p}, it is often convenient to use the adjoint operator A^{*} and its associated square functions. Indeed in that case, A^{*} is a sectorial operator acting on $L^{p^{\prime}}$ (if $p \neq 1$). The new difficulty appearing in the case when A acts on $X \subset L^{p}$ is that the dual space of X is no longer a subspace of some $L^{p^{\prime}}$. Thus we do not have any convenient square functions for A^{*} at our disposal.

In Section 3, we will turn to Hardy spaces and will consider a sectorial operator A acting on $X=H^{1}\left(\mathbb{R}^{N}\right)$. Using a natural isometric embedding of $H^{1}\left(\mathbb{R}^{N}\right)$ into some L^{1}-space, we will derive equivalence results which also extend those on L^{p}. However the definition of square functions has to be adapted. For example if $N=1$, they will be defined for any $h \in H^{1}(\mathbb{R})$ by
$\|h\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) h|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L^{1}(\mathbb{R})}+\left\|\left(\int_{0}^{\infty}|H(F(t A) h)|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L^{1}(\mathbb{R})}$,
where H denotes the Hilbert transform on $L^{1}(\mathbb{R})$. Thus we will obtain that the above $\left\|\|_{F}\right.$ is an equivalent norm of $H^{1}(\mathbb{R})$ provided that A has a bounded H^{∞} functional calculus on $H^{1}(\mathbb{R})$.

2. \boldsymbol{H}^{∞} calculus on subspaces of $\boldsymbol{L}^{\boldsymbol{p}}$

We shall briefly recall standard definitions and basic results on sectorial operators and their H^{∞} functional calculus. For details and complements, the reader is referred to the classical papers [15, 16,4,9], as well as to [17, Section 8.1] or [12].

Let X be a Banach space, and let $B(X)$ be the space of all bounded linear operators on X. Let A be a closed and densely defined linear operator on X. The domain and the spectrum of A will be denoted by $D(A)$ and $\sigma(A)$ respectively. For any $z \notin \sigma(A)$, we let $R(z, A)=(z-A)^{-1} \in B(X)$ denote the associated resolvent operator. We say that A is a sectorial operator of type $\omega \in(0, \pi)$ if A has dense range, $\sigma(A) \subset \overline{\Sigma_{\theta}}$, and for any $\theta \in(\omega, \pi)$, there is a constant $C_{\theta} \geq 0$ such that

$$
\|z R(z, A)\| \leq C_{\theta}, \quad z \notin \overline{\Sigma_{\theta}} .
$$

Such an operator A is automatically one-one (see e.g. [4, Theorem 3.8]). In some circumstances, the dense range assumption is omitted in the definition of sectoriality, however it is necessary for our purposes.

For any $\gamma \in(0, \pi)$, we let Γ_{γ} be the boundary of Σ_{γ}, oriented counterclockwise. Let A be a sectorial operator of type ω, and let $\theta \in(\omega, \pi)$. For any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, we set

$$
\begin{equation*}
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(z) R(z, A) d z \tag{2.1}
\end{equation*}
$$

where $\Gamma=\Gamma_{\gamma}$ for some $\gamma \in(\omega, \theta)$. Then $f(A)$ is a well defined bounded operator on X, whose definition does not depend on the choice of γ. Moreover the mapping $f \mapsto f(A)$ is a homomorphism from $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ into $B(X)$. Let us equip $H^{\infty}\left(\Sigma_{\theta}\right)$ with the supremum norm,

$$
\|f\|_{\infty, \theta}=\sup \left\{|f(z)|: z \in \Sigma_{\theta}\right\}, \quad f \in H^{\infty}\left(\Sigma_{\theta}\right)
$$

We say that A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus if there is a constant $C>0$ such that $\|f(A)\| \leq C\|f\|_{\infty, \theta}$ for any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. In that case, there is a unique way to define a bounded operator $f(A)$ for any $f \in H^{\infty}\left(\Sigma_{\theta}\right)$, such that the resulting mapping $f \mapsto f(A)$ is a bounded homomorphism, and we have

$$
\begin{equation*}
\|f(A)\| \leq C\|f\|_{\infty, \theta}, \quad f \in H^{\infty}\left(\Sigma_{\theta}\right) \tag{2.2}
\end{equation*}
$$

Let us recall here the definitions of R-boundedness [3] and R-sectoriality [20, 9]. Consider a Rademacher sequence $\left(\varepsilon_{k}\right)_{k \geq 1}$ on a probability space $\left(\Omega_{0}, \mathbb{P}\right)$. That is, the ε_{k} 's are pairwise independent random variables on Ω_{0} such that $\mathbb{P}\left(\varepsilon_{k}=1\right)=$ $\mathbb{P}\left(\varepsilon_{k}=-1\right)=\frac{1}{2}$ for any $k \geq 1$. For any finite family x_{1}, \ldots, x_{n} in X, we define

$$
\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)}=\int_{\Omega_{0}}\left\|\sum_{k=1}^{n} \varepsilon_{k}(w) x_{k}\right\|_{X} d \mathbb{P}(w)
$$

A set $\mathcal{T} \subset B(X)$ is R-bounded if there is a constant $C \geq 0$ such that for any finite families T_{1}, \ldots, T_{n} in \mathcal{T}, and x_{1}, \ldots, x_{n} in X, we have

$$
\left\|\sum_{k=1}^{n} \varepsilon_{k} T_{k}\left(x_{k}\right)\right\|_{\operatorname{Rad}(X)} \leq C\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)}
$$

Now if A is a sectorial operator on X, we say that A is R-sectorial of R-type $\omega \in(0, \pi)$ if for any $\theta \in(\omega, \pi)$, the set $\left\{z R(z, A): z \notin \overline{\Sigma_{\theta}}\right\} \subset B(X)$ is R-bounded.

Throughout this section, we let Ω be a measure space, we let $1 \leq p<\infty$, and we assume that X is a (closed) subspace of $L^{p}(\Omega)$. It is well-known that there is a constant $C_{0}>0$ (only depending on p) such that

$$
\begin{equation*}
C_{0}^{-1}\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)} \leq\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \leq C_{0}\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)} \tag{2.3}
\end{equation*}
$$

for any finite family x_{1}, \ldots, x_{n} in X. (See e.g. [13, 1.d.6].)
Given a sectorial operator A of type ω on X, an angle $\theta>\omega$, and $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right) \backslash\{0\}$, we let $\|x\|_{F}$ be defined by (1.1). More precisely for any $x \in X$, we temporarily set $x_{F}(t)=F(t A) x$ for any $t>0$. It is easy to check that x_{F} is a continuous
function from $(0, \infty)$ into $X \subset L^{p}(\Omega)$. Then we let $\|x\|_{F}$ be the norm of x_{F} in $L^{p}\left(\Omega ; L^{2}\left(\mathbb{R}_{+}^{*} ; \frac{d t}{t}\right)\right)$ if x_{F} belongs to that space, and we let $\|x\|_{F}=\infty$ otherwise.

The following equivalence result was established in [11] in the case when $X=L^{p}(\Omega)$. Its proof extends almost verbatim to the case when X is merely a subspace of L^{p}, hence we omit it.

Theorem 2.1. Let X be a subspace of $L^{p}(\Omega)$, with $1 \leq p<\infty$, and let A be an R-sectorial operator of R-type $\omega \in(0, \pi)$ on X. Let $\theta \in(\omega, \pi)$ and let F, G be two non zero functions belonging to $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. There exists a constant $K>0$ such that we have

$$
K^{-1}\|x\|_{G} \leq\|x\|_{F} \leq K\|x\|_{G}, \quad x \in X
$$

We need two lemmas which will be used in Theorem 2.4 below. Lemma 2.2 is implicit in the proof of [4, Lemma 6.5]. Further details can be found in [8]. In that statement, $\langle\cdot, \cdot\rangle$ denotes the usual inner product on the Hilbert space $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$.
Lemma 2.2. There exists a sequence $\left(b_{j}\right)_{j \geq 1}$ in $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ satisfying the following two properties.
(1) For any $a \in L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right),\|a\|^{2}=\sum_{j \geq 1}\left|\left\langle a, b_{j}\right\rangle\right|^{2}$.
(2) For any $0<\theta<\delta<\pi$ and any $G \in H_{0}^{\infty}\left(\Sigma_{\delta}\right)$, let $G_{z} \in L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ be defined by $G_{z}(t)=G(t z)$ for $t>0$. Then

$$
\sup _{z \in \Sigma_{\theta}} \sum_{j \geq 1}\left|\left\langle G_{z}, b_{j}\right\rangle\right|<\infty
$$

We need some notation which will be used throughout the rest of this section. Let $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t} ; X\right)$ be the usual Banach space of strongly measurable functions $\phi:(0, \infty) \rightarrow X$ such that $t \mapsto\|\phi(t)\|_{X}$ belongs to $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ (see e.g. [5, p.4950]). We will usually write $L^{2}(X)$ for that space. Likewise, we will write L^{p}, L^{2}, and $L^{p}\left(L^{2}\right)$ for $L^{p}(\Omega), L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ and $L^{p}\left(\Omega ; L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)\right)$ respectively. The fact that p may be equal to 2 should not cause any confusion! For any $a \in L^{2}$ and $x \in X$, the elementary tensor $a \otimes x$ may be identified with the function $\phi(t)=a(t) x$. This yields a canonical embedding $L^{2} \otimes X \subset L^{2}(X)$. It is well-known that $L^{2} \otimes X$ is actually a dense subspace of $L^{2}(X)$. Since $L^{2} \otimes X \subset L^{2} \otimes L^{p} \simeq L^{p} \otimes L^{2}$, we have a similar canonical embedding $L^{2} \otimes X \subset L^{p}\left(L^{2}\right)$.

Lemma 2.3. Let ϕ be in $L^{p}\left(\Omega ; L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)\right) \cap L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t} ; X\right)$. There exists a net $\left(\phi_{\alpha}\right)_{\alpha}$ in $L^{2} \otimes X$ such that $\phi_{\alpha} \rightarrow \phi$ in $L^{2}(X)$, and $\left\|\phi_{\alpha}\right\|_{L^{p}\left(L^{2}\right)} \leq\|\phi\|_{L^{p}\left(L^{2}\right)}$ for any α.

Proof. Let I_{X} denote the identity operator on X. According to [5, Lemma III.2.1], there is a net of finite rank contractive mappings $E_{\alpha}: L^{2} \rightarrow L^{2}$ such that $E_{\alpha} \otimes$ $I_{X}: L^{2} \otimes X \rightarrow L^{2} \otimes X$ extends to a contraction $\widehat{E_{\alpha}}: L^{2}(X) \rightarrow L^{2}(X)$, and $\left\|\widehat{E_{\alpha}}(\phi)-\phi\right\|_{L^{2}(X)} \rightarrow 0$ for any $\phi \in L^{2}(X)$. Assume that ϕ belongs to $L^{p}\left(L^{2}\right) \cap$ $L^{2}(X)$, and let $\phi_{\alpha}=\widehat{E_{\alpha}}(\phi)$. Since E_{α} is finite rank, ϕ_{α} belongs to $L^{2} \otimes X$. Indeed, $\widehat{E_{\alpha}}$ is valued in the vector space $\operatorname{Ran}\left(E_{\alpha}\right) \otimes X$. On the other hand, $I_{L^{p}} \otimes E_{\alpha}: L^{p} \otimes$
$L^{2} \rightarrow L^{p} \otimes L^{2}$ extends to a bounded operator $\widetilde{E_{\alpha}}: L^{p}\left(L^{2}\right) \rightarrow L^{p}\left(L^{2}\right)$ with $\left\|\widetilde{E_{\alpha}}\right\|=\left\|E_{\alpha}\right\|$. Since ϕ_{α} is clearly equal to $\widetilde{E_{\alpha}}(\phi)$, we deduce that

$$
\left\|\phi_{\alpha}\right\|_{L^{p}\left(L^{2}\right)} \leq\left\|E_{\alpha}\right\|\|\phi\|_{L^{p}\left(L^{2}\right)} \leq\|\phi\|_{L^{p}\left(L^{2}\right)}
$$

Theorem 2.4. Let X be a subspace of $L^{p}(\Omega)$, with $1 \leq p<\infty$, and let A be a sectorial operator on X. Assume that A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus for some $\theta \in(0, \pi)$. Then for any non zero function F belonging to $H_{0}^{\infty}\left(\Sigma_{\theta^{\prime}}\right)$, with $\theta^{\prime}>\theta$, there exists a constant $K>0$ such that we have

$$
\begin{equation*}
K^{-1}\|x\|_{F} \leq\|x\| \leq K\|x\|_{F}, \quad x \in X \tag{2.4}
\end{equation*}
$$

Proof. The left hand side inequality $\|x\|_{F} \leq K\|x\|$ was proved in [4, Theorem 6.6] in the case when $X=L^{p}(\Omega)$. The arguments in that proof turn out to extend to the case when X is merely a subspace of $L^{p}(\Omega)$. We will therefore omit the details. Instead we will outline a variant of this proof in Remark 2.5 below.

We will now concentrate on the right hand side inequality. Before going into the proof, we outline the main idea. For a certain function F in $H_{0}^{\infty}\left(\Sigma_{\theta^{\prime}}\right)$, and for any x in X, we will approximate x by sums of the form $\sum_{j} g_{j}(A) f_{j}(A) x$, where $\left(f_{j}\right)_{j \geq 1}$ and $\left(g_{j}\right)_{j \geq 1}$ are sequences of bounded holomorphic functions, $\left(g_{j}\right)_{j \geq 1}$ satisfies the estimate (2.13) below, and $\left(f_{j}\right)_{j \geq 1}$ satisfies an estimate $\left\|\sum_{j} \varepsilon_{j} f_{j}(A) x\right\|_{\operatorname{Rad}(X)} \leq$ $C^{\prime \prime}\|x\|_{F}$. Then we write

$$
x \sim \sum_{j} g_{j}(A) f_{j}(A) x=\int_{\Omega_{0}}\left(\sum_{j} \varepsilon_{j}(w) g_{j}(A)\right)\left(\sum_{j} \varepsilon_{j}(w) f_{j}(A) x\right) d \mathbb{P}(w)
$$

where $\left(\varepsilon_{j}\right)_{j}$ is a Rademacher sequence, and we can conclude that $\|x\| \leq C C^{\prime} C^{\prime \prime}\|x\|_{F}$.
We now turn to the proof, including the technical details. According to [9, Theorem 5.3], the fact that A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on X implies that A is R-sectorial of type θ. Indeed subspaces of L^{p} (with $1 \leq p<\infty$) have the property (Δ) discussed in the latter paper. Thus it is enough by Theorem 2.1 to prove the right hand side inequality for a special function F. We now explain how to choose it. Let $\theta<\delta<v<\pi$. There exist two functions F and G in $H_{0}^{\infty}\left(\Sigma_{\delta}\right)$ and a constant $M>0$ such that for all $f \in H_{0}^{\infty}\left(\Sigma_{v}\right)$, there exists $b \in L^{1} \cap L^{\infty}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ satisfying the following two properties:

$$
\begin{equation*}
\forall z \in \Sigma_{\delta}, \quad f(z)=\int_{0}^{\infty} b(t) F(t z) G(t z) \frac{d t}{t} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|b\|_{\infty} \leq M\|f\|_{\infty, v} \tag{2.6}
\end{equation*}
$$

The existence of such functions follows from [4], namely by combining part of the proof of Theorem 4.4 and Example 4.7 from that paper. From now on F and G will be those two functions in $H_{0}^{\infty}\left(\Sigma_{\delta}\right)$ and we will prove the right hand side inequality for F.

Throughout the rest of the proof x will be an element in X and η an element in X^{*}. We take two auxilliary functions f in $H_{0}^{\infty}\left(\Sigma_{v}\right)$ and g in $H_{0}^{\infty}\left(\Sigma_{\delta}\right)$. In the last step of the proof f and g will tend to 1 . Let $b \in L^{1} \cap L^{\infty}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ be satisfying (2.5) and (2.6). By Fubini's theorem we have

$$
f(A)=\int_{0}^{\infty} b(t) F(t A) G(t A) \frac{d t}{t}
$$

We define $\phi:(0, \infty) \rightarrow X$ and $\psi:(0, \infty) \rightarrow X^{*}$ by letting

$$
\phi(t)=b(t) F(t A) x \quad \text { and } \quad \psi(t)=g(A)^{*} G(t A)^{*} \eta,
$$

for $t>0$, so that we have

$$
\begin{equation*}
\langle g(A) f(A) x, \eta\rangle=\int_{0}^{\infty}\langle\phi(t), \psi(t)\rangle \frac{d t}{t} . \tag{2.7}
\end{equation*}
$$

It follows from well-known computations (see e.g. [1, Section (E)]) that

$$
\sup _{t>0}\|F(t A)\|<\infty \quad \text { and } \quad \int_{0}^{\infty}\|g(A) G(t A)\| \frac{d t}{t}<\infty
$$

Since $b \in L^{1} \cap L^{\infty}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$, we deduce that ϕ is in $L^{2}(X)$ and that ψ is in $L^{2}\left(X^{*}\right)$. These properties will be used later on in the proof.

Since A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on X, the left hand side inequality in Theorem 2.4 implies that the function $t \mapsto F(t A) x$ belongs to $L^{p}\left(L^{2}\right)$. Thus ϕ is in $L^{p}\left(L^{2}\right)$, with

$$
\begin{aligned}
\|\phi\|_{L^{p}\left(L^{2}\right)} & =\left\|\left(\int_{0}^{\infty}|b(t) F(t A) x|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L^{p}} \leq\|b\|_{\infty}\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L^{p}} \\
& \leqslant\|b\|_{\infty}\|x\|_{F} .
\end{aligned}
$$

Hence using (2.6) we obtain the estimate

$$
\begin{equation*}
\|\phi\|_{L^{p}\left(L^{2}\right)} \leq M\|f\|_{\infty, v}\|x\|_{F} . \tag{2.8}
\end{equation*}
$$

We now consider the sequence $\left(b_{j}\right)_{j}$ given by Lemma 2.2. For a and a^{\prime} scalar functions in $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ we have:

$$
\int_{0}^{\infty} a(t) a^{\prime}(t) \frac{d t}{t}=\sum_{j \geq 1} \int_{0}^{\infty} a(t) \overline{b_{j}(t)} \frac{d t}{t} \int_{0}^{\infty} a^{\prime}(t) b_{j}(t) \frac{d t}{t}
$$

Thus for $\varphi=\sum_{k=1}^{K} a_{k} \otimes x_{k} \in L^{2} \otimes X$ we have:

$$
\begin{aligned}
\int_{0}^{\infty}\langle\varphi(t), \psi(t)\rangle \frac{d t}{t} & =\sum_{k=1}^{K} \int_{0}^{\infty} a_{k}(t)\left\langle x_{k}, \psi(t)\right\rangle \frac{d t}{t} \\
& =\sum_{k=1}^{K} \sum_{j \geq 1} \int_{0}^{\infty} a_{k}(t) \overline{b_{j}(t)} \frac{d t}{t} \int_{0}^{\infty}\left\langle x_{k}, \psi(t)\right\rangle b_{j}(t) \frac{d t}{t} \\
& =\sum_{j \geq 1}\left\langle\int_{0}^{\infty} \sum_{k=1}^{K} a_{k}(t) x_{k} \overline{b_{j}(t)} \frac{d t}{t}, \int_{0}^{\infty} \psi(t) b_{j}(t) \frac{d t}{t}\right\rangle
\end{aligned}
$$

So we have for $\varphi \in L^{2} \otimes X$:

$$
\begin{equation*}
\int_{0}^{\infty}\langle\varphi(t), \psi(t)\rangle \frac{d t}{t}=\sum_{j \geq 1}\left\langle\int_{0}^{\infty} \varphi(t) \overline{b_{j}(t)} \frac{d t}{t}, \int_{0}^{\infty} \psi(t) b_{j}(t) \frac{d t}{t}\right\rangle \tag{2.9}
\end{equation*}
$$

We noticed that the vector valued function ϕ both belongs to $L^{p}\left(L^{2}\right)$ and $L^{2}(X)$. Hence using Lemma 2.3 we obtain a net $\left(\phi_{\alpha}\right)_{\alpha}$ in $L^{2} \otimes X$ such that $\phi_{\alpha} \rightarrow \phi$ in $L^{2}(X)$, with

$$
\begin{equation*}
\left\|\phi_{\alpha}\right\|_{L^{p}\left(L^{2}\right)} \leq\|\phi\|_{L^{p}\left(L^{2}\right)} \tag{2.10}
\end{equation*}
$$

Since $\psi \in L^{2}\left(X^{*}\right)$, the above convergence property yields

$$
\begin{equation*}
\int_{0}^{\infty}\langle\phi(t), \psi(t)\rangle \frac{d t}{t}=\lim _{\alpha} \int_{0}^{\infty}\left\langle\phi_{\alpha}(t), \psi(t)\right\rangle \frac{d t}{t} \tag{2.11}
\end{equation*}
$$

For each α, the function ϕ_{α} belongs to $L^{2} \otimes X$, hence we obtain by applying (2.9) with $\varphi=\phi_{\alpha}$ that

$$
\begin{equation*}
\int_{0}^{\infty}\left\langle\phi_{\alpha}(t), \psi(t)\right\rangle \frac{d t}{t}=\sum_{j \geq 1}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle \tag{2.12}
\end{equation*}
$$

where $x_{j}^{\alpha} \in X$ and $\eta_{j} \in X^{*}$ are defined by

$$
x_{j}^{\alpha}=\int_{0}^{+\infty} \phi_{\alpha}(t) \overline{b_{j}(t)} \frac{d t}{t} \quad \text { and } \quad \eta_{j}=\int_{0}^{\infty} \psi(t) b_{j}(t) \frac{d t}{t}
$$

We define $g_{j}(z)=\int_{0}^{\infty} G(t z) \overline{b_{j}(t)} \frac{d t}{t}$ for $z \in \Sigma_{\theta}$. Since g belongs to $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, we have by Fubini's theorem that

$$
g(A) g_{j}(A)=\int_{0}^{\infty} g(A) G(t A) \overline{b_{j}(t)} \frac{d t}{t}
$$

so that we have $\eta_{j}=g_{j}(A)^{*} g(A)^{*} \eta$.
Let $\left(\varepsilon_{j}\right)_{j}$ be any sequence taking values in $\{-1,1\}$. Since A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on X, we have an estimate

$$
\left\|\sum_{j=1}^{N} \varepsilon_{j} g_{j}(A)\right\| \leq C \sup _{z \in \Sigma_{\theta}}\left|\sum_{j=1}^{N} \varepsilon_{j} g_{j}(z)\right|
$$

by (2.2). Hence

$$
\left\|\sum_{j=1}^{N} \varepsilon_{j} g_{j}(A)\right\| \leq C \sup _{z \in \Sigma_{\theta}} \sum_{j=1}^{N}\left|g_{j}(z)\right| .
$$

Since $g_{j}(z)=\left\langle G_{z}, b_{j}\right\rangle$, it follows from Lemma 2.2 that the right hand side in the last inequality is bounded by a constant C^{\prime} independent of N and ε_{j}. Therefore we obtain that

$$
\begin{equation*}
\forall N \geq 1, \forall \varepsilon_{j}= \pm 1, \quad\left\|\sum_{j=1}^{N} \varepsilon_{j} g_{j}(A)\right\| \leq C C^{\prime} \tag{2.13}
\end{equation*}
$$

For any α and $N \geq 1$, we have

$$
\sum_{j=1}^{N}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle=\sum_{j=1}^{N}\left\langle g(A) g_{j}(A) x_{j}^{\alpha}, \eta\right\rangle .
$$

Moreover if $\left(\varepsilon_{j}\right)_{j}$ is now a Rademacher sequence, we have

$$
\sum_{j=1}^{N} g(A) g_{j}(A) x_{j}^{\alpha}=\int_{\Omega_{0}}\left(\sum_{j=1}^{N} \varepsilon_{j}(w) g_{j}(A) g(A)\right)\left(\sum_{j=1}^{N} \varepsilon_{j}(w) x_{j}^{\alpha}\right) d \mathbb{P}(w) .
$$

Thus

$$
\sum_{j=1}^{N}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle=\left\langle\int_{\Omega_{0}}\left(\sum_{j=1}^{N} \varepsilon_{j}(w) g_{j}(A)\right) g(A)\left(\sum_{j=1}^{N} \varepsilon_{j}(w) x_{j}^{\alpha}\right) d \mathbb{P}(w), \eta\right\rangle
$$

Applying the estimate (2.13), we obtain that

$$
\begin{aligned}
& \left|\sum_{j=1}^{N}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle\right| \leq C C^{\prime}\|g(A)\|\left[\int_{\Omega_{0}}\left\|\sum_{j=1}^{N} \varepsilon_{j}(w) x_{j}^{\alpha}\right\| d \mathbb{P}(w)\right]\|\eta\| \\
& \quad \leq C^{2} C^{\prime}\|g\|_{\infty, \theta}\left\|\sum_{j=1}^{N} \varepsilon_{j} x_{j}^{\alpha}\right\|_{\operatorname{Rad}(X)}\|\eta\| .
\end{aligned}
$$

Then we consider the operator V_{N} from $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$ to ℓ_{2}^{N} defined by $V_{N}(a)=$ $\left(\left\langle a, b_{j}\right\rangle\right)_{j=1}^{N}$. By Lemma 2.2, this operator has norm at most 1. Hence its tensor extension $I_{L^{p}} \otimes V_{N}$ from $L^{p}\left(L^{2}\right)$ to $L^{p}\left(\ell_{2}^{N}\right)$ is a contraction. Since $\left(x_{j}^{\alpha}\right)_{j=1}^{N}=$ $\left(I d_{L^{p}} \otimes V_{N}\right)\left(\phi_{\alpha}\right)$, this implies that

$$
\left\|\left(\sum_{j=1}^{N}\left|x_{j}^{\alpha}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq\left\|\phi_{\alpha}\right\|_{L^{p}\left(L^{2}\right)} .
$$

Since X is a subspace of L^{p}, this yields

$$
\left\|\sum_{j=1}^{N} \varepsilon_{j} x_{j}^{\alpha}\right\|_{\operatorname{Rad}(X)} \leq C_{0}\left\|\phi_{\alpha}\right\|_{L^{p}\left(L^{2}\right)}
$$

by (2.3), and hence

$$
\left|\sum_{j=1}^{N}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle\right| \leq C^{2} C^{\prime} C_{0}\|g\|_{\infty, \theta}\left\|\phi_{\alpha}\right\|_{L^{p}\left(L^{2}\right)}\|\eta\| .
$$

Using (2.10) and (2.8), we obtain that

$$
\left|\sum_{j=1}^{N}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle\right| \leq C^{2} C^{\prime} C_{0} M\|g\|_{\infty, \theta}\|f\|_{\infty, v}\|x\|_{F}\|\eta\|
$$

On the other hand, combining (2.7), (2.11) and (2.12) we have

$$
\langle g(A) f(A) x, \eta\rangle=\lim _{\alpha} \sum_{j \geq 1}\left\langle x_{j}^{\alpha}, \eta_{j}\right\rangle
$$

Hence we finally obtain that

$$
|\langle g(A) f(A) x, \eta\rangle| \leq C^{2} C^{\prime} C_{0} M\|g\|_{\infty, \theta}\|f\|_{\infty, v}\|x\|_{F}\|\eta\|
$$

To conclude the proof, we apply this last inequality with f_{n} and g_{n} in place of f and g, where $\left(f_{n}\right)_{n \geq 1}$ and $\left(g_{n}\right)_{n \geq 1}$ are bounded sequences respectively in $H_{0}^{\infty}\left(\Sigma_{v}\right)$ and $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, such that $f_{n}(A)$ and $g_{n}(A)$ converge pointwise to I_{X}. That such functions exist is well-known, using the fact that A has a dense range (take e.g. $f_{n}(z)=g_{n}(z)=n^{2} z(n+z)^{-1}(1+n z)^{-1}$). This yields an inequality $|\langle x, \eta\rangle| \leq K\|x\|_{F}\|\eta\|$. Taking the supremum over η in the unit ball of X^{*}, we obtain the desired inequality $\|x\| \leq K\|x\|_{F}$.

Remark 2.5. Using some of the arguments in the above proof, we can now give a functional analytic proof of the left hand side of Theorem 2.4. Since this is a simple adaptation of a similar result proved in [8] for sectorial operators on non commutative L^{p}-spaces, we will only give a sketch and refer to the latter paper for missing technical details. Assume that A has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on $X \subset L^{p}(\Omega)$, and let $G \in H_{0}^{\infty}\left(\Sigma_{\delta}\right)$, for some $\delta>\theta$. We will show that $\|x\|_{G} \leq K\|x\|$ for some constant $K>0$ not depending on $x \in X$. We let $\left(b_{j}\right)_{j}$ be given by Lemma 2.2, and we define g_{j} as in the proof of Theorem 2.4. Using (2.13) and (2.3), we find that

$$
\begin{equation*}
\forall N \geq 1, \quad\left\|\left(\sum_{j=1}^{N}\left|g_{j}(A) x\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq K\|x\|, \quad x \in X, \tag{2.14}
\end{equation*}
$$

for some $K>0$ not depending either on N or on x. Let $g \in H_{0}^{\infty}\left(\Sigma_{\delta}\right)$ be an arbitrary function. According to Lemma 2.2 (1), we let $V: L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right) \rightarrow \ell^{2}$ be the isometry defined by $V(a)=\left(\left\langle a, b_{j}\right\rangle\right)_{j \geq 1}$. Then one can show (see [8]) that for any $x \in X$ and any $\eta \in X^{*}$, the function $t \mapsto\langle G(t A) g(A) x, \eta\rangle$ belongs to $L^{2}\left(\mathbb{R}_{+}^{*}, \frac{d t}{t}\right)$, and that

$$
V(\langle G(\cdot A) g(A) x, \eta\rangle)=\left(\left\langle g_{j}(A) g(A) x, \eta\right\rangle\right)_{j \geq 1}
$$

Using a tensor extension of V^{*}, it is not hard to deduce that

$$
\begin{equation*}
\|g(A) x\|_{G}=\|G(\cdot A) g(A) x\|_{L^{p}\left(L^{2}\right)} \leq \sup _{N \geq 1}\left\|\left(\sum_{j=1}^{N}\left|g_{j}(A) g(A) x\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \tag{2.15}
\end{equation*}
$$

Combining (2.14) and (2.15), we deduce that $\|g(A) x\|_{G} \leq K\|g(A) x\|$. Then it suffices to apply that estimate with g replaced by a bounded sequence $\left(g_{n}\right)_{n}$ such that $g_{n}(A) x \rightarrow x$ to get the desired inequality.

Remark 2.6. Let X be a subspace of $L^{p}(\Omega)$, with $1 \leq p<\infty$, and let A be a sectorial operator of type $\omega \in(0, \pi)$ on X. Let $\theta \in(\omega, \pi)$, and let F be a non zero function in $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. If A is R-sectorial of R-type ω, then there is a constant $K>0$ such that

$$
\|f(A) x\|_{F} \leq K\|x\|_{F} \quad \text { for any } f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right) \text { and any } x \in X
$$

Indeed this is proved in [11] when $X=L^{p}(\Omega)$ and the proof works as well if X is a subspace. This yields the following converse to Theorem 2.4: if A is R-sectorial of R-type ω, and if (2.4) holds true for a non zero $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, with $\theta>\omega$, then A has a bounded $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus. We do not know if (2.4) implies a bounded functional calculus for A without any R-sectoriality assumption.

Remark 2.7. Let Λ be a Banach lattice with finite cotype (see e.g. [13]). Let $X \subset \Lambda$ be a subspace and assume that A is a sectorial operator of type $\omega \in(0, \pi)$ on X. For any $\theta>\omega$ and any $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, one may define a square function by letting

$$
\|x\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{\Lambda}, \quad x \in X
$$

Then it is not hard to see that Theorems 2.1 and 2.4 hold true in that setting.

3. Square functions on Hardy spaces

Let $N \geq 1$ be an integer. In this section we will be interested in H^{∞} functional calculus and square functions for sectorial operators on the Hardy space $H^{1}\left(\mathbb{R}^{N}\right)$. We refer the reader to e.g. [18], [7], or [14] for general information and background on Hardy spaces. We let R_{1}, \ldots, R_{N} denote the Riesz transforms, so that

$$
H^{1}\left(\mathbb{R}^{N}\right)=\left\{h \in L^{1}\left(\mathbb{R}^{N}\right): R_{j}(h) \in L^{1}\left(\mathbb{R}^{N}\right) \text { for any } j=1, \ldots, N\right\}
$$

This space admits several equivalent norms for which it is a Banach space. Here we choose to work with

$$
\begin{equation*}
\|h\|_{H^{1}}=\|h\|_{1}+\sum_{j=1}^{N}\left\|R_{j}(h)\right\|_{1}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right) \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|_{1}$ denotes the usual norm on $L^{1}\left(\mathbb{R}^{N}\right)$.
We observe that $H^{1}\left(\mathbb{R}^{N}\right)$ equipped with $\|\cdot\|_{H^{1}}$ is isometrically isomorphic to a subspace of L^{1}. Indeed let $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \ell_{N+1}^{1}\left(L^{1}\left(\mathbb{R}^{N}\right)\right)$ be defined by letting

$$
J(h)=\left(h, R_{1}(h), \ldots, R_{N}(h)\right)
$$

for any $h \in H^{1}\left(\mathbb{R}^{N}\right)$, and let $X=\operatorname{Ran}(J)$. Then J is a linear isometry. Moreover we may clearly identify $\ell_{N+1}^{1}\left(L^{1}\left(\mathbb{R}^{N}\right)\right)$ with $L^{1}\left(\Omega_{N}\right)$, where Ω_{N} is equal to the disjoint union of $(N+1)$ copies of \mathbb{R}^{N}. Thus $H^{1}\left(\mathbb{R}^{N}\right)$ is isometrically isomorphic to $X \subset L^{1}\left(\Omega_{N}\right)$.

Our next goal is to explain how Theorems 2.1 and 2.4 for X 'transfer' to $H^{1}\left(\mathbb{R}^{N}\right)$. We record for further use that under the above identification, we have

$$
\begin{equation*}
L^{1}\left(\Omega_{N} ; \mathcal{H}\right) \simeq \ell_{N+1}^{1}\left(L^{1}\left(\mathbb{R}^{N} ; \mathcal{H}\right)\right) \tag{3.2}
\end{equation*}
$$

for any Hilbert space \mathcal{H}. Now we let

$$
\mathcal{H}=L^{2}\left(\mathbb{R}_{+}^{*} ; \frac{d t}{t}\right)
$$

Let A be a sectorial operator of type $\omega \in(0, \pi)$ on the Banach space $H^{1}\left(\mathbb{R}^{N}\right)$. Let $\theta \in(\omega, \pi)$ and let $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. For any $h \in H^{1}\left(\mathbb{R}^{N}\right)$, we let $[h]_{F}$ be the norm of the function $t \mapsto F(t A) h$ in $L^{1}\left(\mathbb{R}^{N} ; \mathcal{H}\right)$ (with the usual convention that $[h]_{F}=\infty$ if that function does not belong to $L^{1}\left(\mathbb{R}^{N} ; \mathcal{H}\right)$). Then if $T: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow L^{1}\left(\mathbb{R}^{N}\right)$ is any bounded operator, we let $[h]_{T F}$ be the norm of $t \mapsto T(F(t A) h)$ in $L^{1}\left(\mathbb{R}^{N} ; \mathcal{H}\right)$, that is

$$
[h]_{T F}=\left\|\left(\int_{0}^{\infty}|T(F(t A) h)|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{1}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Note that $[h]_{F}=[h]_{T F}$ if T is equal to the canonical inclusion map $H^{1}\left(\mathbb{R}^{N}\right) \rightarrow$ $L^{1}\left(\mathbb{R}^{N}\right)$.

We now define square functions associated with A by letting

$$
\begin{equation*}
\|h\|_{F}=[h]_{F}+\sum_{j=1}^{N}[h]_{R_{j} F}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right) \tag{3.3}
\end{equation*}
$$

for any $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right) \backslash\{0\}$ such that $\theta \in(\omega, \pi)$. Let $\widetilde{A}=J A J^{-1}$ be the realization of A on $X \subset L^{1}\left(\Omega_{N}\right)$, let $h \in H^{1}\left(\mathbb{R}^{N}\right)$ and consider $\widetilde{h}=J(h) \in X$. Then we have

$$
F(t \widetilde{A}) \tilde{h}=J(F(t A) h)
$$

Hence applying (3.2) and (3.3), we have

$$
\begin{aligned}
\|t \mapsto F(t \widetilde{A}) \widetilde{h}\|_{L^{1}\left(\Omega_{N} ; \mathcal{H}\right)}= & \|t \mapsto J(F(t A) h)\|_{L^{1}\left(\Omega_{N} ; \mathcal{H}\right)} \\
= & \|t \mapsto F(t A) h\|_{L^{1}\left(\mathbb{R}^{N} ; \mathcal{H}\right)} \\
& +\sum_{j=1}^{N}\left\|t \mapsto R_{j}(F(t A) h)\right\|_{L^{1}\left(\mathbb{R}^{N} ; \mathcal{H}\right)} \\
= & \|h\|_{F} .
\end{aligned}
$$

This shows that the square function associated with A on $H^{1}\left(\mathbb{R}^{N}\right)$ and the corresponding square function associated with \widetilde{A} on $X \subset L^{1}\left(\Omega_{N}\right)$ coincide. Therefore applying Theorem 2.1 and 2.4, we obtain the following results.

Corollary 3.1. Let A be a sectorial operator on $H^{1}\left(\mathbb{R}^{N}\right)$.
(1) If A is R-sectorial or R-type $\omega \in(0, \pi)$, and if F, G are two non zero functions in $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ for some $\theta \in(\omega, \pi)$, then we have

$$
[h]_{F}+\sum_{j=1}^{N}[h]_{R_{j} F} \approx[h]_{G}+\sum_{j=1}^{N}[h]_{R_{j} G}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right) .
$$

(2) If A has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus, then for any $\theta^{\prime}>\theta$ and any non zero function F in $H_{0}^{\infty}\left(\Sigma_{\theta^{\prime}}\right)$, we have

$$
\|h\|_{H^{1}} \approx[h]_{F}+\sum_{j=1}^{N}[h]_{R_{j} F}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Of course in this statement, an equivalence $\mathcal{A}(h) \approx \mathcal{B}(h)$ means that there is a constant $K>0$ not depending on h, such that $K^{-1} \mathcal{A}(h) \leq \mathcal{B}(h) \leq K \mathcal{A}(h)$.

Remark 3.2. If $N=1$, then the Riesz transform R_{1} is the Hilbert transform that we denote by H. Thus in that case square functions are given by

$$
\begin{equation*}
\|h\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) h|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{1}+\left\|\left(\int_{0}^{\infty}|H(F(t A) h)|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{1} \tag{3.4}
\end{equation*}
$$

for any $h \in H^{1}(\mathbb{R})$.
Example 3.3. There are lots of examples of differential operators A on $L^{2}\left(\mathbb{R}^{N}\right)$ with the following properties: A has an $L^{p}\left(\mathbb{R}^{N}\right)$-realization A_{p} for any $1 \leq p<\infty$, the operator A_{p} has a bounded H^{∞} functional calculus on $L^{p}\left(\mathbb{R}^{N}\right)$ if $p \neq 1$, but A_{1} does not have a bounded H^{∞} functional calculus on $L^{1}\left(\mathbb{R}^{N}\right)$. It turns out that sometimes, such an operator also has an $H^{1}\left(\mathbb{R}^{N}\right)$-realization, which has a bounded H^{∞} functional calculus on $H^{1}\left(\mathbb{R}^{N}\right)$. The simplest such example (with $N=1$) is the derivation operator $\frac{d}{d t}$, with domain equal to the Sobolev space $W^{1, p}(\mathbb{R})$ on $L^{p}(\mathbb{R})$. For any $1 \leq p<\infty$, this is a sectorial operator of type $\frac{\pi}{2}$. Furthermore for any $\theta \in\left(\frac{\pi}{2}, \pi\right)$, the operator $\frac{d}{d t}$ has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on $L^{p}(\mathbb{R})$ if and only if $1<p<\infty$. It is easy to see that $A=\frac{d}{d t}$ acts as a sectorial operator on $H^{1}(\mathbb{R})$, and that it has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on that space. Indeed, for any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, the operator $f\left(\frac{d}{d t}\right)$ is the Fourier mulitiplier operator associated to the function $t \mapsto f(i t)$, and hence an estimate $\|f(A)\|_{H^{1}} \leq K\|f\|_{\infty, \theta}\|h\|_{H^{1}}$ follows by applying Mikhlin's Theorem on $H^{1}(\mathbb{R})$ (see e.g. [14, p. 99]).

In the rest of this section, we describe a general framework where the ideas outlined in Example 3.3 apply. We fix an integer $N \geq 1$ and for simplicity, we write L^{p} and H^{1} for $L^{p}\left(\mathbb{R}^{N}\right)$ and $H^{1}\left(\mathbb{R}^{N}\right)$ respectively. We suppose that for any $1 \leq p \leq 2, A_{p}$ is a sectorial operator on L^{p}, with type ω not depending on p, and we assume that the family $\left\{A_{p}\right\}_{p}$ is consistent in the following sense: for any $1 \leq p, q \leq 2$, and for any $\lambda \notin \overline{\Sigma_{\omega}}$, the bounded operators $R\left(\lambda, A_{p}\right)$ and $R\left(\lambda, A_{q}\right)$
coincide on $L^{p} \cap L^{q}$. Clearly these assumptions imply that for any $\theta>\omega$, and any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right), f\left(A_{p}\right)$ and $f\left(A_{q}\right)$ also coincide on $L^{p} \cap L^{q}$.

We let $A=A_{2}$, and we assume further that A is a Fourier multiplier. By this we mean that there exists a measurable function $m: \mathbb{R}^{N} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\widehat{A h}=m \widehat{h}, \quad h \in D(A) \tag{3.5}
\end{equation*}
$$

the domain of A being equal to the space of all $h \in L^{2}$ such that $m \widehat{h}$ belongs to L^{2}. In that case, m is essentially valued in $\overline{\Sigma_{\omega}}$. If (3.5) holds, we say that A is associated to m. Then for any $\lambda \notin \overline{\Sigma_{\omega}}$, the resolvent operator $R(\lambda, A)$ is equal to the Fourier multiplier associated to the bounded function $(\lambda-m(\cdot))^{-1}$. Likewise, for any $\theta \in(\omega, \pi)$ and $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, the bounded operator $f(A): L^{2} \rightarrow L^{2}$ is the Fourier multiplier associated to $f \circ m$. This readily implies that $\|f(A)\|=\|f \circ m\|_{\infty}$. Consequently, we have $\|f(A)\| \leq\|f\|_{\infty, \theta}$, and hence A has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on L^{2}. All these facts are well-known.

We now define a realization of A on H^{1}, denoted by A_{H}. Since A is a Fourier multiplier, then for any $\lambda \notin \overline{\Sigma_{\omega}}$, the operator $R\left(\lambda, A_{1}\right)$ commutes with the Riesz transforms. Thus $R\left(\lambda, A_{1}\right)$ maps H^{1} into itself, and for any $j=1, \ldots, N$, we have

$$
\begin{equation*}
R_{j} R\left(\lambda, A_{1}\right)=R\left(\lambda, A_{1}\right) R_{j} \quad \text { on } H^{1} \tag{3.6}
\end{equation*}
$$

Then we define A_{H} by letting $A_{H}(h)=A_{1}(h)$ on the domain

$$
D\left(A_{H}\right)=\left\{h \in H^{1} \cap D\left(A_{1}\right): A_{1}(h) \in H^{1}\right\}
$$

Using (3.6), the following lemma is routine.
Lemma 3.4. The operator A_{H} is sectorial of type ω on H^{1}. Moreover for any $\theta>\omega$ and any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right), f\left(A_{1}\right)$ maps H^{1} into itself, and the corresponding restriction $f\left(A_{1}\right)_{\mid H^{1} \rightarrow H^{1}}$ coincides with $f\left(A_{H}\right)$.

For any $\theta>\omega$ and any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right), f(A)=K_{f} * \bullet$ is a convolution operator with respect to the tempered distribution $K_{f} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ defined by $\widehat{K_{f}}=f \circ m$. We now make the strong assumption that any such operator $f(A)$ is a singular integral operator in the sense of [7, Section II.5]. That is, K_{f} coincides on $\mathbb{R}^{N} \backslash\{0\}$ with a locally integrable function, and there is a constant C_{f} such that for any $v \in \mathbb{R}^{N} \backslash\{0\}$,

$$
\begin{equation*}
\int_{|u|>2|v|}\left|K_{f}(u-v)-K_{f}(u)\right| d u \leq C_{f} . \tag{3.7}
\end{equation*}
$$

Corollary 3.5. Assume that for some $\theta>\omega$, there exists a constant $C>0$ such that (3.7) holds true with $C_{f} \leq C\|f\|_{\infty, \theta}$ for any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. Then A_{H} has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on H^{1}.

Proof. By Lemma 3.4, $f\left(A_{H}\right)$ and $f(A)$ coincide on $L^{2} \cap H^{1}$. Hence acccording to either [18, p. 114], or [7, p. 322], (3.7) ensures that $\left\|f\left(A_{H}\right)\right\| \leq B_{0} C_{f}$, where B_{0} is an absolute constant. Thus we obtain that $\left\|f\left(A_{H}\right)\right\| \leq B_{0} C\|f\|_{\infty, \theta}$, and hence A_{H} has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus.

Remark 3.6. We observe that for any $\theta>\omega$, any $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, and any $t>0$, we have $R_{j} F\left(t A_{H}\right)=F\left(t A_{H}\right) R_{j}$ on $H^{1}\left(\mathbb{R}^{N}\right)$. Hence $[h]_{R_{j} F}=\left[R_{j} h\right]_{F}$ for any $h \in H^{1}\left(\mathbb{R}^{N}\right)$. Thus the square functions associated with A_{H} can be expressed as

$$
\|h\|_{F}=[h]_{F}+\sum_{j=1}^{N}\left[R_{j} h\right]_{F}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Remark 3.7. The above discussion applies to $A=-\Delta$, where Δ is the Laplacian operator on \mathbb{R}^{N}. Indeed A satisfies (3.5) with $m(u)=|u|^{2}$, and it is well-known that the assumptions of Corollary 3.5 are verified for any $\theta>0$. Thus A has an H^{1}-realization which admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus for any $\theta>0$. Let $k \geq 1$ be any positive integer, and consider the function F defined by $F(z)=z^{k} e^{-z}$. Clearly F belongs to $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ for any $\theta \in\left(0, \frac{\pi}{2}\right)$. According to [2, Section 2.A] (see also [6,19]), a function $h \in L^{1}$ belongs to H^{1} if and only if $[h]_{F}$ is finite. Moreover we have an equivalence

$$
\begin{equation*}
\|h\|_{H^{1}} \approx[h]_{F}, \quad h \in H^{1}\left(\mathbb{R}^{N}\right) . \tag{3.8}
\end{equation*}
$$

Comparing with Corollary 3.1 (2) and Remark 3.6 (2), this is equivalent to saying that for any $j=1, \ldots, N$, we have equivalences $[h]_{F} \approx\left[R_{j}(h)\right]_{F}$ on H^{1}. It would be interesting to have a ' H^{∞} calculus proof' of these facts. It seems to be an open question whether (3.8) holds for any $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$.

References

1. Albrecht, D., Duong, X.T., McIntosh, A.: Operator theory and harmonic analysis. Proc. CMA, Canberra 34, 77-136 (1996)
2. Bui, H.Q.: Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J. Funct. Anal. 55, 39-62 (1984)
3. Clément, P., De Pagter, B., Sukochev, F., Witvliet, H.: Schauder decompositions and multiplier theorems. Studia Math. 138, 135-163 (2000)
4. Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded H^{∞} functional calculus. J. Austr. Math. Soc. (Series A) 60, 51-89 (1996)
5. Diestel, J., Uhl, J.J.: Vector measures. Math. Surveys and Monographs 15, Am. Math. Soc., Providence, R. I., 1977
6. Fefferman, C., Stein, E.M.: H^{p} spaces in several variables. Acta Math. 129, 137-193 (1972)
7. Garcia-Cuerva, J., Rudio de Francia, J. L.: Weighted norm inequalities and related topics. North Holland Mathematical Studies 116, 1985
8. Junge, M., Le Merdy, C., Xu, Q.: H^{∞} functional calculus and square functions on noncommutative L^{p}-spaces. To appear
9. Kalton, N., Weis, L.: The H^{∞} calculus and sums of closed operators. Math. Annalen 321, 319-345 (2001)
10. Lancien, F., Lancien, G., Le Merdy, C.: A joint functional calculus for sectorial operators with commuting resolvents. Proc. London Math. Soc. 77, 387-414 (1998)
11. Le Merdy, C.: On square functions associated to sectorial operators. Bull. Soc. Math. France 132, 137-156 (2004)
12. Le Merdy, C.: H^{∞}-functional calculus and applications to maximal regularity. Publications Math. Besançon 16, 41-77 (1999)
13. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer Verlag, Berlin, 1979
14. Lu, S.: Four lectures on real H^{p} spaces, World Scientific, 1995
15. McIntosh, A.: Operators which have an H^{∞} functional calculus. In: Miniconference on operator theory and partial differential equations. Proc. CMA, Canberra 14, 210-231 (1986)
16. McIntosh, A., Yagi, A.: Operators of type ω without a bounded H^{∞} functional calculus. In: Miniconference on operators in analysis. Proc. CMA, Canberra 24, 159-172 (1989)
17. Prüss, J.: Evolutionary integral equations and applications. Monographs Math. 87, Birkhaüser Verlag, 1993
18. Stein, E.M.: Harmonic analysis. Princeton University Press, 1993
19. Triebel, H.: Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures, and related means. J. Approx. Theory 35, 275-297 (1982)
20. Weis, L.: Operator valued Fourier multiplier theorems and maximal regularity. Math. Ann. 319, 735-758 (2001)
