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Abstract. Let X be a (closed) subspace of Lp with 1 ≤ p < ∞, and let A be any
sectorial operator onX. We consider associated square functions onX, of the form

‖x‖F = ∥
∥
(∫ ∞

0

∣
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2
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, and we show that if A admits a bounded H∞
functional calculus on X, then these square functions are equivalent to the original
norm ofX. Then we deduce a similar result whenX = H 1(RN) is the usual Hardy
space, for an appropriate choice of ‖ ‖F . For example if N = 1, the right choice

is the sum ‖h‖F = ∥
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h ∈ H 1(R), where H denotes the Hilbert transform.

1. Introduction

Let X be a Banach space, and let A be a sectorial operator on X. In this paper
we investigate relationships betweenH∞ functional calculus and square functions
associated with A when X is a subspace of some Lp-space, for 1 ≤ p < ∞. This
includes the case when X = H 1(RN) is the usual Hardy space on R

N . Following
usual convention, we let �θ denote the open sector of all z ∈ C \ {0} such that
|Arg(z)| < θ , for any angle θ ∈ (0, π). Then we let H∞(�θ ) be the algebra of
all bounded holomorphic functions f : �θ → C, and we let H∞

0 (�θ ) denote the
subalgebra of all f ∈ H∞(�θ ) for which there exists a positive number s > 0
such that |f (z)| = O(|z|−s) at ∞, and |f (z)| = O(|z|s) at 0.

Let 1 ≤ p < ∞, and assume that X = Lp(�) for some measure space�. If A
is sectorial of type ω ∈ (0, π) on X, and if F is a non zero function belonging to
H∞

0 (�θ ) for some θ ∈ (ω, π), the associated square function is defined by

‖x‖F =
∥
∥
∥
∥

(∫ ∞
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Lp(�)

(1.1)
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for any x ∈ Lp(�). These quantities were introduced on Hilbert spaces (i.e. p = 2)
in the early days of H∞ functional calculus by McIntosh [15] (see also [16]), and
on anyLp-space by Cowling, Doust, McIntosh, andYagi [4]. In a recent paper [11],
the second named author showed that ifA is actuallyR-sectorial of type ω, then all
these square functions are pairwise equivalent. That is, for any F and G as above,
there is a positive constant K > 0 such that K−1‖x‖G ≤ ‖x‖F ≤ K‖x‖G for
any x ∈ Lp(�). Furthermore it follows from [4] and [11] that if A has a bounded
H∞(�θ ) functional calculus and F ∈ H∞

0 (�θ ′)\{0} for some θ ′ > θ , then ‖ ‖F is
equivalent to the original norm onX = Lp(�). In Section 2 below, we will extend
these equivalence results to the case when X is a (closed) subspace of Lp(�). In
this context, the square functions will be also defined by (1.1). To study a sectorial
operator A on Lp, it is often convenient to use the adjoint operator A∗ and its
associated square functions. Indeed in that case,A∗ is a sectorial operator acting on
Lp

′
(if p �= 1). The new difficulty appearing in the case when A acts onX ⊂ Lp is

that the dual space of X is no longer a subspace of some Lp
′
. Thus we do not have

any convenient square functions for A∗ at our disposal.
In Section 3, we will turn to Hardy spaces and will consider a sectorial operator

A acting on X = H 1(RN). Using a natural isometric embedding of H 1(RN) into
some L1-space, we will derive equivalence results which also extend those on Lp.
However the definition of square functions has to be adapted. For example ifN = 1,
they will be defined for any h ∈ H 1(R) by

‖h‖F =
∥
∥
∥
∥

(∫ ∞

0

∣
∣F(tA)h

∣
∣2 dt

t

)1/2∥∥
∥
∥
L1(R)

+
∥
∥
∥
∥

(∫ ∞

0

∣
∣H

(

F(tA)h
)∣
∣2 dt

t

)1/2∥∥
∥
∥
L1(R)

,

where H denotes the Hilbert transform on L1(R). Thus we will obtain that the
above ‖ ‖F is an equivalent norm of H 1(R) provided that A has a bounded H∞
functional calculus on H 1(R).

2. H∞ calculus on subspaces of Lp

We shall briefly recall standard definitions and basic results on sectorial operators
and their H∞ functional calculus. For details and complements, the reader is re-
ferred to the classical papers [15,16,4,9], as well as to [17, Section 8.1] or [12].

Let X be a Banach space, and let B(X) be the space of all bounded linear
operators on X. Let A be a closed and densely defined linear operator on X. The
domain and the spectrum ofAwill be denoted byD(A) and σ(A) respectively. For
any z /∈ σ(A), we letR(z,A) = (z−A)−1 ∈ B(X) denote the associated resolvent
operator. We say that A is a sectorial operator of type ω ∈ (0, π) if A has dense
range, σ(A) ⊂ �θ , and for any θ ∈ (ω, π), there is a constant Cθ ≥ 0 such that

‖zR(z,A)‖ ≤ Cθ, z /∈ �θ .
Such an operator A is automatically one-one (see e.g. [4, Theorem 3.8]). In some
circumstances, the dense range assumption is omitted in the definition of sectoriality,
however it is necessary for our purposes.
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For anyγ ∈ (0, π), we let�γ be the boundary of�γ , oriented counterclockwise.
Let A be a sectorial operator of type ω, and let θ ∈ (ω, π). For any f ∈ H∞

0 (�θ ),
we set

f (A) = 1

2πi

∫

�

f (z)R(z,A) dz, (2.1)

where � = �γ for some γ ∈ (ω, θ). Then f (A) is a well defined bounded operator
onX, whose definition does not depend on the choice of γ . Moreover the mapping
f �→ f (A) is a homomorphism from H∞

0 (�θ ) into B(X). Let us equip H∞(�θ )
with the supremum norm,

‖f ‖∞,θ = sup{|f (z)| : z ∈ �θ }, f ∈ H∞(�θ ).

We say that A admits a boundedH∞(�θ ) functional calculus if there is a constant
C > 0 such that ‖f (A)‖ ≤ C‖f ‖∞,θ for any f ∈ H∞

0 (�θ ). In that case, there is
a unique way to define a bounded operator f (A) for any f ∈ H∞(�θ ), such that
the resulting mapping f �→ f (A) is a bounded homomorphism, and we have

‖f (A)‖ ≤ C‖f ‖∞,θ , f ∈ H∞(�θ ). (2.2)

Let us recall here the definitions of R-boundedness [3] and R-sectoriality [20,
9]. Consider a Rademacher sequence (εk)k≥1 on a probability space (�0,P). That
is, the εk’s are pairwise independent random variables on�0 such that P(εk = 1) =
P(εk = −1) = 1

2 for any k ≥ 1. For any finite family x1, . . . , xn in X, we define

∥
∥
∥

n
∑

k=1

εk xk

∥
∥
∥

Rad(X)
=

∫

�0

∥
∥
∥

n
∑

k=1

εk(w)xk

∥
∥
∥
X
dP(w) .

A set T ⊂ B(X) is R-bounded if there is a constant C ≥ 0 such that for any finite
families T1, . . . , Tn in T , and x1, . . . , xn in X, we have

∥
∥
∥

n
∑

k=1

εk Tk(xk)

∥
∥
∥

Rad(X)
≤ C

∥
∥
∥

n
∑

k=1

εk xk

∥
∥
∥

Rad(X)
.

Now if A is a sectorial operator on X, we say that A is R-sectorial of R-type
ω ∈ (0, π) if for any θ ∈ (ω, π), the set {zR(z,A) : z /∈ �θ } ⊂ B(X) is
R-bounded.

Throughout this section, we let � be a measure space, we let 1 ≤ p < ∞, and
we assume that X is a (closed) subspace of Lp(�). It is well-known that there is a
constant C0 > 0 (only depending on p) such that

C−1
0

∥
∥
∥

n
∑

k=1

εk xk

∥
∥
∥

Rad(X)
≤

∥
∥
∥

( n
∑

k=1

|xk|2
)1/2∥∥

∥
Lp(�)

≤ C0

∥
∥
∥

n
∑

k=1

εk xk

∥
∥
∥

Rad(X)
(2.3)

for any finite family x1, . . . , xn in X. (See e.g. [13, 1.d.6].)
Given a sectorial operatorAof typeω onX, an angle θ>ω, andF∈H∞

0 (�θ )\{0},
we let ‖x‖F be defined by (1.1). More precisely for any x ∈ X, we temporarily
set xF (t) = F(tA)x for any t > 0. It is easy to check that xF is a continuous
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function from (0,∞) into X ⊂ Lp(�). Then we let ‖x‖F be the norm of xF in
Lp

(

�;L2(R∗+; dt
t
)
)

if xF belongs to that space, and we let ‖x‖F = ∞ otherwise.
The following equivalence result was established in [11] in the case when

X = Lp(�). Its proof extends almost verbatim to the case when X is merely a
subspace of Lp, hence we omit it.

Theorem 2.1. Let X be a subspace of Lp(�), with 1 ≤ p < ∞, and let A be an
R-sectorial operator of R-type ω ∈ (0, π) on X. Let θ ∈ (ω, π) and let F , G be
two non zero functions belonging toH∞

0 (�θ ). There exists a constantK > 0 such
that we have

K−1‖x‖G ≤ ‖x‖F ≤ K‖x‖G, x ∈ X.
We need two lemmas which will be used in Theorem 2.4 below. Lemma 2.2 is

implicit in the proof of [4, Lemma 6.5]. Further details can be found in [8]. In that
statement, 〈· , · 〉 denotes the usual inner product on the Hilbert space L2(R∗+,

dt
t
).

Lemma 2.2. There exists a sequence (bj )j≥1 in L2(R∗+,
dt
t
) satisfying the follow-

ing two properties.

(1) For any a ∈ L2(R∗+,
dt
t
), ‖a‖2 = ∑

j≥1 |〈a, bj 〉|2.

(2) For any 0 < θ < δ < π and any G ∈ H∞
0 (�δ), let Gz ∈ L2(R∗+,

dt
t
) be

defined by Gz(t) = G(tz) for t > 0. Then

sup
z∈�θ

∑

j≥1

|〈Gz, bj 〉| < ∞.

We need some notation which will be used throughout the rest of this section.
Let L2(R∗+,

dt
t
;X) be the usual Banach space of strongly measurable functions

φ : (0,∞) → X such that t �→ ‖φ(t)‖X belongs to L2(R∗+,
dt
t
) (see e.g. [5, p.49-

50]). We will usually write L2(X) for that space. Likewise, we will write Lp, L2,
andLp(L2) forLp(�),L2(R∗+,

dt
t
) andLp

(

�;L2(R∗+,
dt
t
)
)

respectively. The fact
thatpmay be equal to 2 should not cause any confusion! For any a ∈ L2 and x ∈ X,
the elementary tensor a⊗x may be identified with the function φ(t) = a(t)x. This
yields a canonical embedding L2 ⊗ X ⊂ L2(X). It is well-known that L2 ⊗ X is
actually a dense subspace of L2(X). Since L2 ⊗ X ⊂ L2 ⊗ Lp � Lp ⊗ L2, we
have a similar canonical embedding L2 ⊗X ⊂ Lp(L2).

Lemma 2.3. Let φ be in Lp
(

�;L2(R∗+,
dt
t
)
) ∩ L2(R∗+,

dt
t
;X). There exists a net

(φα)α in L2 ⊗ X such that φα → φ in L2(X), and ‖φα‖Lp(L2) ≤ ‖φ‖Lp(L2) for
any α.

Proof. Let IX denote the identity operator on X. According to [5, Lemma III.2.1],
there is a net of finite rank contractive mappings Eα : L2 → L2 such that Eα ⊗
IX : L2 ⊗ X → L2 ⊗ X extends to a contraction Êα : L2(X) → L2(X), and
‖Êα(φ)− φ‖L2(X) → 0 for any φ ∈ L2(X). Assume that φ belongs to Lp(L2) ∩
L2(X), and let φα = Êα(φ). SinceEα is finite rank, φα belongs toL2 ⊗X. Indeed,
Êα is valued in the vector space Ran(Eα)⊗X. On the other hand, ILp ⊗Eα : Lp⊗
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L2 → Lp ⊗ L2 extends to a bounded operator Ẽα : Lp(L2) → Lp(L2) with
‖Ẽα‖ = ‖Eα‖. Since φα is clearly equal to Ẽα(φ), we deduce that

‖φα‖Lp(L2) ≤ ‖Eα‖ ‖φ‖Lp(L2) ≤ ‖φ‖Lp(L2).

��
Theorem 2.4. Let X be a subspace of Lp(�), with 1 ≤ p < ∞, and let A be a
sectorial operator onX. Assume thatA admits a boundedH∞(�θ ) functional cal-
culus for some θ ∈ (0, π). Then for any non zero functionF belonging toH∞

0 (�θ ′),
with θ ′ > θ , there exists a constant K > 0 such that we have

K−1‖x‖F ≤ ‖x‖ ≤ K‖x‖F , x ∈ X. (2.4)

Proof. The left hand side inequality ‖x‖F ≤ K‖x‖ was proved in [4, Theorem 6.6]
in the case whenX = Lp(�). The arguments in that proof turn out to extend to the
case when X is merely a subspace of Lp(�). We will therefore omit the details.
Instead we will outline a variant of this proof in Remark 2.5 below.

We will now concentrate on the right hand side inequality. Before going into the
proof, we outline the main idea. For a certain functionF inH∞

0 (�θ ′), and for any x
inX, we will approximate x by sums of the form

∑

j gj (A)fj (A)x , where (fj )j≥1
and (gj )j≥1 are sequences of bounded holomorphic functions, (gj )j≥1 satisfies the
estimate (2.13) below, and (fj )j≥1 satisfies an estimate

∥
∥
∑

j εj fj (A)x
∥
∥

Rad(X) ≤
C′′‖x‖F . Then we write

x ∼
∑

j

gj (A)fj (A)x =
∫

�0

(∑

j

εj (w)gj (A)
) (∑

j

εj (w)fj (A)x
)

dP(w) ,

where (εj )j is a Rademacher sequence, and we can conclude that‖x‖≤CC′C′′‖x‖F .
We now turn to the proof, including the technical details. According to [9,

Theorem 5.3], the fact that A admits a boundedH∞(�θ ) functional calculus onX
implies that A is R-sectorial of type θ . Indeed subspaces of Lp (with 1 ≤ p < ∞)

have the property () discussed in the latter paper. Thus it is enough by Theo-
rem 2.1 to prove the right hand side inequality for a special function F . We now
explain how to choose it. Let θ < δ < ν < π . There exist two functions F and
G in H∞

0 (�δ) and a constant M > 0 such that for all f ∈ H∞
0 (�ν), there exists

b ∈ L1 ∩ L∞(R∗+,
dt
t
) satisfying the following two properties:

∀z ∈ �δ, f (z) =
∫ ∞

0
b(t)F (tz)G(tz)

dt

t
; (2.5)

and

‖b‖∞ ≤ M‖f ‖∞,ν . (2.6)

The existence of such functions follows from [4], namely by combining part of the
proof of Theorem 4.4 and Example 4.7 from that paper. From now on F andGwill
be those two functions inH∞

0 (�δ) and we will prove the right hand side inequality
for F .
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Throughout the rest of the proof x will be an element in X and η an element in
X∗. We take two auxilliary functions f in H∞

0 (�ν) and g in H∞
0 (�δ). In the last

step of the proof f and g will tend to 1. Let b ∈ L1 ∩ L∞(R∗+,
dt
t
) be satisfying

(2.5) and (2.6). By Fubini’s theorem we have

f (A) =
∫ ∞

0
b(t)F (tA)G(tA)

dt

t
.

We define φ : (0,∞) → X and ψ : (0,∞) → X∗ by letting

φ(t) = b(t)F (tA)x and ψ(t) = g(A)∗G(tA)∗η,

for t > 0, so that we have

〈g(A)f (A)x, η〉 =
∫ ∞

0
〈φ(t), ψ(t)〉 dt

t
. (2.7)

It follows from well-known computations (see e.g. [1, Section (E)]) that

sup
t>0

‖F(tA)‖ < ∞ and
∫ ∞

0
‖g(A)G(tA)‖ dt

t
< ∞.

Since b ∈ L1 ∩L∞(R∗+,
dt
t
), we deduce that φ is inL2(X) and thatψ is inL2(X∗).

These properties will be used later on in the proof.
Since A admits a bounded H∞(�θ ) functional calculus on X, the left hand

side inequality in Theorem 2.4 implies that the function t �→ F(tA)x belongs to
Lp(L2). Thus φ is in Lp(L2), with

‖φ‖Lp(L2) =
∥
∥
∥
∥

(∫ ∞

0

∣
∣b(t)F (tA)x

∣
∣
2 dt

t

)1/2∥
∥
∥
∥
Lp

≤ ‖b‖∞
∥
∥
∥
∥

(∫ ∞

0

∣
∣F(tA)x

∣
∣
2 dt

t

)1/2∥
∥
∥
∥
Lp

� ‖b‖∞‖x‖F .
Hence using (2.6) we obtain the estimate

‖φ‖Lp(L2) ≤ M ‖f ‖∞,ν‖x‖F . (2.8)

We now consider the sequence (bj )j given by Lemma 2.2. For a and a′ scalar
functions in L2(R∗+,

dt
t
) we have:

∫ ∞

0
a(t)a′(t)

dt

t
=

∑

j≥1

∫ ∞

0
a(t)bj (t)

dt

t

∫ ∞

0
a′(t)bj (t)

dt

t
.

Thus for ϕ = ∑K
k=1 ak ⊗ xk ∈ L2 ⊗X we have:

∫ ∞

0
〈ϕ(t), ψ(t)〉 dt

t
=

K
∑

k=1

∫ ∞

0
ak(t)〈xk, ψ(t)〉 dt

t

=
K

∑

k=1

∑

j≥1

∫ ∞

0
ak(t)bj (t)

dt

t

∫ ∞

0
〈xk, ψ(t)〉bj (t) dt

t

=
∑

j≥1

〈∫ ∞

0

K
∑

k=1

ak(t)xk bj (t)
dt

t
,

∫ ∞

0
ψ(t) bj (t)

dt

t

〉

.
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So we have for ϕ ∈ L2 ⊗X:
∫ ∞

0
〈ϕ(t), ψ(t)〉 dt

t
=

∑

j≥1

〈∫ ∞

0
ϕ(t)bj (t)

dt

t
,

∫ ∞

0
ψ(t)bj (t)

dt

t

〉

. (2.9)

We noticed that the vector valued function φ both belongs to Lp(L2) and L2(X).
Hence using Lemma 2.3 we obtain a net (φα)α in L2 ⊗ X such that φα → φ in
L2(X), with

‖φα‖Lp(L2) ≤ ‖φ‖Lp(L2). (2.10)

Since ψ ∈ L2(X∗), the above convergence property yields
∫ ∞

0
〈φ(t), ψ(t)〉 dt

t
= lim

α

∫ ∞

0
〈φα(t), ψ(t)〉 dt

t
. (2.11)

For each α, the function φα belongs to L2 ⊗X, hence we obtain by applying (2.9)
with ϕ = φα that

∫ ∞

0
〈φα(t), ψ(t)〉 dt

t
=

∑

j≥1

〈xαj , ηj 〉, (2.12)

where xαj ∈ X and ηj ∈ X∗ are defined by

xαj =
∫ +∞

0
φα(t)bj (t)

dt

t
and ηj =

∫ ∞

0
ψ(t)bj (t)

dt

t
.

We define gj (z) = ∫ ∞
0 G(tz)bj (t)

dt
t

for z ∈ �θ . Since g belongs to H∞
0 (�θ ),

we have by Fubini’s theorem that

g(A)gj (A) =
∫ ∞

0
g(A)G(tA)bj (t)

dt

t
,

so that we have ηj = gj (A)
∗g(A)∗η.

Let (εj )j be any sequence taking values in {−1, 1}. Since A admits a bounded
H∞(�θ ) functional calculus on X, we have an estimate

∥
∥
∥

N
∑

j=1

εj gj (A)

∥
∥
∥ ≤ C sup

z∈�θ

∣
∣
∣

N
∑

j=1

εj gj (z)

∣
∣
∣,

by (2.2). Hence

∥
∥
∥

N
∑

j=1

εj gj (A)

∥
∥
∥ ≤ C sup

z∈�θ

N
∑

j=1

|gj (z)|.

Since gj (z) = 〈Gz, bj 〉, it follows from Lemma 2.2 that the right hand side in the
last inequality is bounded by a constant C′ independent ofN and εj . Therefore we
obtain that

∀N ≥ 1, ∀εj = ±1,
∥
∥
∥

N
∑

j=1

εj gj (A)

∥
∥
∥ ≤ C C′. (2.13)
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For any α and N ≥ 1, we have

N
∑

j=1

〈xαj , ηj 〉 =
N

∑

j=1

〈

g(A)gj (A)x
α
j , η

〉

.

Moreover if (εj )j is now a Rademacher sequence, we have

N
∑

j=1

g(A)gj (A)x
α
j =

∫

�0

( N
∑

j=1

εj (w)gj (A)g(A)
) ( N

∑

j=1

εj (w)x
α
j

)

dP(w) .

Thus

N
∑

j=1

〈xαj , ηj 〉 =
〈∫

�0

( N
∑

j=1

εj (w)gj (A)
)

g(A)
( N
∑

j=1

εj (w)x
α
j

)

dP(w) , η
〉

.

Applying the estimate (2.13), we obtain that

∣
∣
∣

N
∑

j=1

〈xαj , ηj 〉
∣
∣
∣ ≤ C C′ ‖g(A)‖

[∫

�0

∥
∥
∥

N
∑

j=1

εj (w)x
α
j

∥
∥
∥ dP(w)

]

‖η‖

≤ C2 C′‖g‖∞,θ

∥
∥
∥

N
∑

j=1

εj x
α
j

∥
∥
∥

Rad(X)
‖η‖.

Then we consider the operator VN from L2(R∗+,
dt
t
) to �N2 defined by VN(a) =

(〈a, bj 〉)Nj=1. By Lemma 2.2, this operator has norm at most 1. Hence its tensor

extension ILp ⊗ VN from Lp(L2) to Lp(�N2 ) is a contraction. Since (xαj )
N
j=1 =

(IdLp ⊗ VN)(φα), this implies that

∥
∥
∥

( N
∑

j=1

|xαj |2
)1/2∥∥

∥
Lp

≤ ‖φα‖Lp(L2).

Since X is a subspace of Lp, this yields

∥
∥
∥

N
∑

j=1

εj x
α
j

∥
∥
∥

Rad(X)
≤ C0‖φα‖Lp(L2)

by (2.3), and hence

∣
∣
∣

N
∑

j=1

〈xαj , ηj 〉
∣
∣
∣ ≤ C2 C′ C0 ‖g‖∞,θ ‖φα‖Lp(L2) ‖η‖.

Using (2.10) and (2.8), we obtain that

∣
∣
∣

N
∑

j=1

〈xαj , ηj 〉
∣
∣
∣ ≤ C2 C′ C0M ‖g‖∞,θ ‖f ‖∞,ν ‖x‖F ‖η‖.
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On the other hand, combining (2.7), (2.11) and (2.12) we have

〈g(A)f (A)x, η〉 = lim
α

∑

j≥1

〈xαj , ηj 〉.

Hence we finally obtain that

|〈g(A)f (A)x, η〉| ≤ C2 C′ C0M ‖g‖∞,θ ‖f ‖∞,ν ‖x‖F ‖η‖.

To conclude the proof, we apply this last inequality with fn and gn in place
of f and g, where (fn)n≥1 and (gn)n≥1 are bounded sequences respectively in
H∞

0 (�ν) and H∞
0 (�θ ), such that fn(A) and gn(A) converge pointwise to IX.

That such functions exist is well-known, using the fact that A has a dense range
(take e.g. fn(z) = gn(z) = n2z(n + z)−1(1 + nz)−1). This yields an inequality
|〈x, η〉| ≤ K‖x‖F ‖η‖. Taking the supremum over η in the unit ball of X∗, we
obtain the desired inequality ‖x‖ ≤ K‖x‖F . ��
Remark 2.5. Using some of the arguments in the above proof, we can now give
a functional analytic proof of the left hand side of Theorem 2.4. Since this is a
simple adaptation of a similar result proved in [8] for sectorial operators on non
commutative Lp-spaces, we will only give a sketch and refer to the latter paper
for missing technical details. Assume that A has a bounded H∞(�θ ) functional
calculus onX ⊂ Lp(�), and letG ∈ H∞

0 (�δ), for some δ > θ . We will show that
‖x‖G ≤ K‖x‖ for some constant K > 0 not depending on x ∈ X. We let (bj )j
be given by Lemma 2.2, and we define gj as in the proof of Theorem 2.4. Using
(2.13) and (2.3), we find that

∀N ≥ 1,
∥
∥
∥

( N
∑

j=1

∣
∣gj (A)x

∣
∣2

)1/2∥∥
∥
Lp

≤ K ‖x‖, x ∈ X, (2.14)

for some K > 0 not depending either on N or on x. Let g ∈ H∞
0 (�δ) be an

arbitrary function. According to Lemma 2.2 (1), we let V : L2(R∗+,
dt
t
) → �2 be

the isometry defined by V (a) = (〈a, bj 〉)j≥1. Then one can show (see [8]) that
for any x ∈ X and any η ∈ X∗, the function t �→ 〈G(tA)g(A)x, η〉 belongs to
L2(R∗+,

dt
t
), and that

V
(〈G(·A)g(A)x, η〉) = (〈gj (A)g(A)x, η〉

)

j≥1.

Using a tensor extension of V ∗, it is not hard to deduce that

‖g(A)x‖G=∥
∥G(·A)g(A)x∥∥

Lp(L2)
≤ sup

N≥1

∥
∥
∥

( N
∑

j=1

∣
∣gj (A)g(A)x

∣
∣2

)1/2∥∥
∥
Lp
. (2.15)

Combining (2.14) and (2.15), we deduce that ‖g(A)x‖G ≤ K‖g(A)x‖. Then it
suffices to apply that estimate with g replaced by a bounded sequence (gn)n such
that gn(A)x → x to get the desired inequality.
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Remark 2.6. Let X be a subspace of Lp(�), with 1 ≤ p < ∞, and let A be a
sectorial operator of type ω ∈ (0, π) on X. Let θ ∈ (ω, π), and let F be a non
zero function in H∞

0 (�θ ). If A is R-sectorial of R-type ω, then there is a constant
K > 0 such that

‖f (A)x‖F ≤ K‖x‖F for any f ∈ H∞
0 (�θ ) and any x ∈ X.

Indeed this is proved in [11] when X = Lp(�) and the proof works as well if X is
a subspace. This yields the following converse to Theorem 2.4: if A is R-sectorial
of R-type ω, and if (2.4) holds true for a non zero F ∈ H∞

0 (�θ ), with θ > ω, then
A has a bounded H∞

0 (�θ ) functional calculus. We do not know if (2.4) implies a
bounded functional calculus for A without any R-sectoriality assumption.

Remark 2.7. Let� be a Banach lattice with finite cotype (see e.g. [13]). LetX ⊂ �

be a subspace and assume that A is a sectorial operator of type ω ∈ (0, π) on X.
For any θ > ω and any F ∈ H∞

0 (�θ ), one may define a square function by letting

‖x‖F =
∥
∥
∥
∥

(∫ ∞

0

∣
∣F(tA)x

∣
∣2 dt

t

)1/2∥∥
∥
∥
�

, x ∈ X.

Then it is not hard to see that Theorems 2.1 and 2.4 hold true in that setting.

3. Square functions on Hardy spaces

Let N ≥ 1 be an integer. In this section we will be interested in H∞ functional
calculus and square functions for sectorial operators on the Hardy space H 1(RN).
We refer the reader to e.g. [18], [7], or [14] for general information and background
on Hardy spaces. We let R1, . . . , RN denote the Riesz transforms, so that

H 1(RN) = {

h ∈ L1(RN) : Rj (h) ∈ L1(RN) for any j = 1, . . . , N
}

.

This space admits several equivalent norms for which it is a Banach space. Here
we choose to work with

‖h‖H 1 = ‖h‖1 +
N

∑

j=1

‖Rj (h)‖1, h ∈ H 1(RN), (3.1)

where ‖· ‖1 denotes the usual norm on L1(RN).
We observe that H 1(RN) equipped with ‖· ‖H 1 is isometrically isomorphic to

a subspace of L1. Indeed let J : H 1(RN) → �1
N+1

(

L1(RN)
)

be defined by letting

J (h) = (

h,R1(h), . . . , RN(h)
)

for any h ∈ H 1(RN), and let X = Ran(J ). Then J is a linear isometry. Moreover
we may clearly identify �1

N+1

(

L1(RN)
)

with L1(�N), where �N is equal to the
disjoint union of (N + 1) copies of R

N . ThusH 1(RN) is isometrically isomorphic
to X ⊂ L1(�N).
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Our next goal is to explain how Theorems 2.1 and 2.4 for X ‘transfer’ to
H 1(RN). We record for further use that under the above identification, we have

L1(�N ; H) � �1
N+1

(

L1(RN ; H)
)

(3.2)

for any Hilbert space H. Now we let

H = L2(R∗
+; dt

t
).

Let A be a sectorial operator of type ω ∈ (0, π) on the Banach spaceH 1(RN).
Let θ ∈ (ω, π) and let F ∈ H∞

0 (�θ ). For any h ∈ H 1(RN), we let [h]F be
the norm of the function t �→ F(tA)h in L1(RN ; H) (with the usual conven-
tion that [h]F = ∞ if that function does not belong to L1(RN ; H)). Then if
T : H 1(RN) → L1(RN) is any bounded operator, we let [h]T F be the norm of
t �→ T

(

F(tA)h
)

in L1(RN ; H), that is

[h]T F =
∥
∥
∥
∥

(∫ ∞

0

∣
∣T

(

F(tA)h
)∣
∣2 dt

t

)1/2∥∥
∥
∥

1
, h ∈ H 1(RN).

Note that [h]F = [h]T F if T is equal to the canonical inclusion map H 1(RN) →
L1(RN).

We now define square functions associated with A by letting

‖h‖F = [h]F +
N

∑

j=1

[h]RjF , h ∈ H 1(RN), (3.3)

for anyF ∈ H∞
0 (�θ )\{0} such that θ ∈ (ω, π). Let Ã = JAJ−1 be the realization

ofA onX ⊂ L1(�N), let h ∈ H 1(RN) and consider h̃ = J (h) ∈ X. Then we have

F(tÃ)̃h = J
(

F(tA)h
)

.

Hence applying (3.2) and (3.3), we have

∥
∥t �→ F(tÃ)̃h

∥
∥
L1(�N ;H)

= ∥
∥t �→ J

(

F(tA)h
)∥
∥
L1(�N ;H)

= ∥
∥t �→ F(tA)h

∥
∥
L1(R

N ;H)

+
N

∑

j=1

∥
∥t �→ Rj

(

F(tA)h
)∥
∥
L1(R

N ;H)

= ‖h‖F .

This shows that the square function associated with A on H 1(RN) and the
corresponding square function associated with Ã on X ⊂ L1(�N) coincide.
Therefore applying Theorem 2.1 and 2.4, we obtain the following results.
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Corollary 3.1. Let A be a sectorial operator on H 1(RN).

(1) IfA isR-sectorial orR-typeω ∈ (0, π), and ifF,G are two non zero functions
in H∞

0 (�θ ) for some θ ∈ (ω, π), then we have

[h]F +
N

∑

j=1

[h]RjF ≈ [h]G +
N

∑

j=1

[h]RjG, h ∈ H 1(RN).

(2) IfA has a boundedH∞(�θ ) functional calculus, then for any θ ′ > θ and any
non zero function F in H∞

0 (�θ ′), we have

‖h‖H 1 ≈ [h]F +
N

∑

j=1

[h]RjF , h ∈ H 1(RN).

Of course in this statement, an equivalence A(h) ≈ B(h) means that there is a
constant K > 0 not depending on h, such that K−1A(h) ≤ B(h) ≤ KA(h).

Remark 3.2. IfN = 1, then the Riesz transformR1 is the Hilbert transform that we
denote by H . Thus in that case square functions are given by

‖h‖F =
∥
∥
∥
∥

(∫ ∞

0

∣
∣F(tA)h

∣
∣2 dt

t

)1/2∥∥
∥
∥

1
+

∥
∥
∥
∥

(∫ ∞

0

∣
∣H

(

F(tA)h
)∣
∣2 dt

t

)1/2∥∥
∥
∥

1
(3.4)

for any h ∈ H 1(R).

Example 3.3. There are lots of examples of differential operatorsA onL2(RN)with
the following properties: A has an Lp(RN)-realization Ap for any 1 ≤ p < ∞,
the operator Ap has a bounded H∞ functional calculus on Lp(RN) if p �= 1, but
A1 does not have a bounded H∞ functional calculus on L1(RN). It turns out that
sometimes, such an operator also has anH 1(RN)-realization, which has a bounded
H∞ functional calculus on H 1(RN). The simplest such example (with N = 1) is
the derivation operator d

dt
, with domain equal to the Sobolev space W 1,p(R) on

Lp(R). For any 1 ≤ p < ∞, this is a sectorial operator of type π
2 . Furthermore

for any θ ∈ (π2 , π), the operator d
dt

has a bounded H∞(�θ ) functional calculus
on Lp(R) if and only if 1 < p < ∞. It is easy to see that A = d

dt
acts as a sec-

torial operator on H 1(R), and that it has a bounded H∞(�θ ) functional calculus
on that space. Indeed, for any f ∈ H∞

0 (�θ ), the operator f ( d
dt
) is the Fourier

mulitiplier operator associated to the function t �→ f (it), and hence an estimate
‖f (A)‖H 1 ≤ K‖f ‖∞,θ‖h‖H 1 follows by applying Mikhlin’s Theorem on H 1(R)

(see e.g. [14, p. 99]).

In the rest of this section, we describe a general framework where the ideas
outlined in Example 3.3 apply. We fix an integer N ≥ 1 and for simplicity, we
write Lp and H 1 for Lp(RN) and H 1(RN) respectively. We suppose that for any
1 ≤ p ≤ 2, Ap is a sectorial operator on Lp, with type ω not depending on p,
and we assume that the family {Ap}p is consistent in the following sense: for any
1 ≤ p, q ≤ 2, and for any λ /∈ �ω, the bounded operators R(λ,Ap) and R(λ,Aq)
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coincide on Lp ∩Lq . Clearly these assumptions imply that for any θ > ω, and any
f ∈ H∞

0 (�θ ), f (Ap) and f (Aq) also coincide on Lp ∩ Lq .
We let A = A2, and we assume further that A is a Fourier multiplier. By this

we mean that there exists a measurable function m : R
N → C such that

Âh = m ĥ, h ∈ D(A), (3.5)

the domain ofA being equal to the space of all h ∈ L2 such thatm ĥ belongs toL2.
In that case,m is essentially valued in�ω. If (3.5) holds, we say thatA is associated
to m. Then for any λ /∈ �ω, the resolvent operator R(λ,A) is equal to the Fou-
rier multiplier associated to the bounded function (λ−m(· ))−1. Likewise, for any
θ ∈ (ω, π) and f ∈ H∞

0 (�θ ), the bounded operator f (A) : L2 → L2 is the Fou-
rier multiplier associated to f ◦m. This readily implies that ‖f (A)‖ = ‖f ◦m‖∞.
Consequently, we have ‖f (A)‖ ≤ ‖f ‖∞,θ , and hence A has a bounded H∞(�θ )
functional calculus on L2. All these facts are well-known.

We now define a realization of A on H 1, denoted by AH . Since A is a Fourier
multiplier, then for any λ /∈ �ω, the operator R(λ,A1) commutes with the Riesz
transforms. Thus R(λ,A1) maps H 1 into itself, and for any j = 1, . . . , N , we
have

RjR(λ,A1) = R(λ,A1)Rj on H 1. (3.6)

Then we define AH by letting AH(h) = A1(h) on the domain

D(AH) = {

h ∈ H 1 ∩D(A1) : A1(h) ∈ H 1},

Using (3.6), the following lemma is routine.

Lemma 3.4. The operator AH is sectorial of type ω on H 1. Moreover for any
θ > ω and any f ∈ H∞

0 (�θ ), f (A1) maps H 1 into itself, and the corresponding
restriction f (A1)|H 1→H 1 coincides with f (AH ).

For any θ > ω and any f ∈ H∞
0 (�θ ), f (A) = Kf ∗• is a convolution operator

with respect to the tempered distribution Kf ∈ S ′(RN) defined by K̂f = f ◦ m.
We now make the strong assumption that any such operator f (A) is a singular
integral operator in the sense of [7, Section II.5]. That is,Kf coincides on R

N \ {0}
with a locally integrable function, and there is a constant Cf such that for any
v ∈ R

N \ {0},
∫

|u|>2|v|

∣
∣Kf (u− v)−Kf (u)

∣
∣ du ≤ Cf . (3.7)

Corollary 3.5. Assume that for some θ > ω, there exists a constant C > 0 such
that (3.7) holds true with Cf ≤ C‖f ‖∞,θ for any f ∈ H∞

0 (�θ ). Then AH has a
bounded H∞(�θ ) functional calculus on H 1.

Proof. By Lemma 3.4, f (AH ) and f (A) coincide on L2 ∩H 1. Hence acccording
to either [18, p. 114], or [7, p. 322], (3.7) ensures that ‖f (AH )‖ ≤ B0 Cf , where
B0 is an absolute constant. Thus we obtain that ‖f (AH )‖ ≤ B0 C ‖f ‖∞,θ , and
hence AH has a bounded H∞(�θ ) functional calculus. ��



114 F. Lancien, C. L. Merdy

Remark 3.6. We observe that for any θ > ω, any F ∈ H∞
0 (�θ ), and any t > 0,

we have RjF(tAH ) = F(tAH )Rj on H 1(RN). Hence [h]RjF = [Rjh]F for any

h ∈ H 1(RN). Thus the square functions associated with AH can be expressed as

‖h‖F = [h]F +
N

∑

j=1

[Rjh]F , h ∈ H 1(RN).

Remark 3.7. The above discussion applies to A = −, where  is the Laplacian
operator on R

N . Indeed A satisfies (3.5) with m(u) = |u|2, and it is well-known
that the assumptions of Corollary 3.5 are verified for any θ > 0. Thus A has
an H 1-realization which admits a bounded H∞(�θ ) functional calculus for any
θ > 0. Let k ≥ 1 be any positive integer, and consider the function F defined by
F(z) = zke−z. Clearly F belongs toH∞

0 (�θ ) for any θ ∈ (0, π2 ). According to [2,
Section 2.A] (see also [6,19]), a function h ∈ L1 belongs toH 1 if and only if [h]F
is finite. Moreover we have an equivalence

‖h‖H 1 ≈ [h]F , h ∈ H 1(RN). (3.8)

Comparing with Corollary 3.1 (2) and Remark 3.6 (2), this is equivalent to saying
that for any j = 1, . . . , N , we have equivalences [h]F ≈ [Rj (h)]F on H 1. It
would be interesting to have a ‘H∞ calculus proof’ of these facts. It seems to be
an open question whether (3.8) holds for any F ∈ H∞

0 (�θ ).
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