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Fractional degen convection-diffusion equations

�
ut + f(u)x = (a(u)ux)x + bL[u],
u(x, 0) = u0(x)

f, a : R→ R, a ≥ 0 bounded, Lipschitz continuous

b ≥ 0 is a constant, and L is a nonlocal operator
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L[u(x, t)] = cλ

�

|z|>0

u(x + z, t)− u(x, t)
|z|1+λ

dz.

Pseudodifferential operator P with a symbol a(ω) ≥ 0:

�Pv(ω) = a(ω)�v(ω)

Lévy-Khintchine formula

a(ω) = ib · ω + q(ω) +
�

Rd\{0}

�
1− e−iz·ω − iz · ω 1|z|<1(z)

�
π(dz),
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drift diffusion jump (Lévy) part Lévy measure
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Special cases

Fractional diffusion equation

Solution given by Greens’ function!

u|t=0 = u0.

Solution is smooth ...

ut = −(−∆)γ , γ ∈ (0, 1).
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Conservation laws ut + f(u)x = 0

Discontinuous solutions, shock waves

Weak solutions, entropy conditions
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Conservation laws ut + f(u)x = 0

Discontinuous solutions, shock waves

Weak solutions, entropy conditions

For all convex η with q� = η�f �

∂tη(u) + ∂xq(u) ≤ 0 weakly
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Mixed hyperbolic-parabolic

ut + f(u)x = (a(u)ux)x.

a(u)
a(u)

u
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Mixed hyperbolic-parabolic

ut + f(u)x = (a(u)ux)x.

a(u)
a(u)

u

For all convex η with q� = η�f �, r� = η�a

∂tη(u) + ∂xq(u) ≤ ∂2
xr(u)− η��(u)a(u)(∂xu)2 weakly

Well-posedness theory in L1 ∩ L∞ of existence, uniqueness,

L1 contraction of entropy solutions ... (Carillo ...)
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Mixed hyperbolic-parabolic

ut + f(u)x = (a(u)ux)x.

a(u)
a(u)

u

−sgn (u− k)∂xA(u) ≤ 0 weakly

∂t|u− k| + ∂x (sgn (u− k)(f(u)− f(k))•  

•  

Entropy solution ala Carrillo

u ∈ L∞t (L1
x) ∩ L∞ ∩ Ct(L1

x)

•  ∇A(u) ∈ L2 A =
�

a
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Regularity issues for fractional Burgers equation

∂tu + ∂x(u2/2) = −(−∆)λu,

Subcritical (λ > 1/2), critical (λ = 1/2) cases:

solutions smooth in t > 0

(Droniou-Gallouet-Vovelle, Kiselev-Nazarov-Shterenberg
Chan-Czubak, Dong-Du-Li, ...)

[many parallel results quasi-geostrophic equation,
Kiselev et al., Caffarelli-Vasseur, ...]
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Regularity issues for fractional Burgers equation

∂tu + ∂x(u2/2) = −(−∆)λu,

Supercritical case (λ < 1/2):

singularities indeed occur

(Alibaud-Droniou-Vovelle, Kiselev-Nazarov-Shterenberg, Dong-Du-Li)

Weak (distributional) solutions
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Regularity issues for fractional Burgers equation

∂tu + ∂x(u2/2) = −(−∆)λu,

Supercritical case (λ < 1/2):

singularities indeed occur

(Alibaud-Droniou-Vovelle, Kiselev-Nazarov-Shterenberg, Dong-Du-Li)

Weak (distributional) solutions

Weak solution: u ∈ L∞

+ initial condition u0 ∈ L∞

��
u∂tφ +

u2

2
∂xφ− u(−∆)λ[φ] dxdt = 0, ∀φ ∈ C∞c
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Entropy solutions for fractional PDE

Conservation laws

L[u](t, x) =
�

R\{0}

�
u(t, x + z)− u(t, x)− z∂xu1|z|<1

�
π(dz)

ut + f(u)x = L[u]

Viscosity regularized version

∂tuρ + ∂xf(uρ) = L[uρ(t, ·)] + ρ∆uρ, � > 0.
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Fix convex entropy η, entropy-flux q by q� = η�f �. Then

where νρ = ν1
ρ + ν2

ρ + ν3
ρ consists of three parts:

∂tη(uρ) + ∂xq(uρ) = L[η(uρ)] + ρ∆η(uρ)− νρ,
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Fix convex entropy η, entropy-flux q by q� = η�f �. Then

where νρ = ν1
ρ + ν2

ρ + ν3
ρ consists of three parts:

ν1
ρ := ρ∆η(uρ)− ρη�(uρ)∆uρ = ρη��(uρ) |∇uρ|2 ;

Entropy dissipation term

∂tη(uρ) + ∂xq(uρ) = L[η(uρ)] + ρ∆η(uρ)− νρ,
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Fix convex entropy η, entropy-flux q by q� = η�f �. Then

where νρ = ν1
ρ + ν2

ρ + ν3
ρ consists of three parts:

∂tη(uρ) + ∂xq(uρ) = L[η(uρ)] + ρ∆η(uρ)− νρ,

ν3
ρ =

�

Rd\{0}
η��(uρ; z) (uρ(t, x + z)− uρ(t, x))2 π(dz),

η��(uρ; z) =
� 1

0
(1− τ)η��((1− τ)uρ(t, x) + τuρ(t, x + z)) dτ

Fractional parabolic dissipation term
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ρ + ν3
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ν3
ρ =

�

Rd\{0}
η��(uρ; z) (uρ(t, x + z)− uρ(t, x))2 π(dz),

η��(uρ; z) =
� 1

0
(1− τ)η��((1− τ)uρ(t, x) + τuρ(t, x + z)) dτ

Fractional parabolic dissipation term

L[η(uρ)]− η�(uρ)L[uρ]The commutator equals ν3
ρ , since

η(b)− η(a) = η�(a) (b− a)

+
�� 1

0
(1− τ)η��((1− τ)a + τb) dτ

�
(b− a)2 .
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Entropy solution

∀ convex entropies η, entropy-fluxes q, q� = η�f

u ∈ L∞ is an entropy solution if

∂tη(u) + ∂xq(u) ≤ L[η(u)]−mu,η weakly

mu,η =
�

R\{0}
η��(u; z) (u(t, x + z)− u(t, x))2 π(dz),
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Entropy solution

∀ convex entropies η, entropy-fluxes q, q� = η�f

u ∈ L∞ is an entropy solution if

∂tη(u) + ∂xq(u) ≤ L[η(u)]−mu,η weakly

mu,η =
�

R\{0}
η��(u; z) (u(t, x + z)− u(t, x))2 π(dz),

��

QT

�
η(u)L[ϕ]−mu,η

�
dx dtCan replace the term by

φ = φ(t, x) ∈ C∞c

��

QT

�

|z|<r
η(u)[ϕ(t, x + z)− ϕ(t, x)−∇ϕ · z]π(dz) dx dt,

+
��

QT

�

|z|≥r
η�(u)[u(t, x + z)− u(t, x)]π(dz) dx dt, ∀r ∈ (0, 1),

Entropy formulation due to Alibaud (existemce, uniqueness, etc.)
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Entropy solution

∀ convex entropies η, entropy-fluxes q, q� = η�f

u ∈ L∞ is an entropy solution if

∂tη(u) + ∂xq(u) ≤ L[η(u)]−mu,η weakly

mu,η =
�

R\{0}
η��(u; z) (u(t, x + z)− u(t, x))2 π(dz),

��

QT

�
η(u)L[ϕ]−mu,η

�
dx dtCan replace the term by

φ = φ(t, x) ∈ C∞c

��

QT

�

|z|<r
η(u)[ϕ(t, x + z)− ϕ(t, x)−∇ϕ · z]π(dz) dx dt,

+
��

QT

�

|z|≥r
η�(u)[u(t, x + z)− u(t, x)]π(dz) dx dt, ∀r ∈ (0, 1),

Entropy formulation due to Alibaud (existemce, uniqueness, etc.)
Increasing jump

violating Oleinik’s E condition

Alibaud-Andreianov construct
a stationary weak solution

Not all weak solutions are entropy solutions !
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Fractional convection-diffusion equations

ut + f(u)x = (a(u)ux)x + L[u], a ≥ 0

u ∈ L∞ ∩ L1 is an entropy solution if

∀ convex entropies η, entropy-fluxes q, r, q� = η�f, r� = η�a

∂tη(u) + ∂xq(u) ≤ ∂2
xr(u)− η��(u)a(u)(∂xu)2 + L[η(u)]−mu,η

mu,η =
�

R\{0}
η��(u; z) (u(t, x + z)− u(t, x))2 π(dz),

(Chen-Perthame, Bendahmane-K, Ulusoy-K)
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Uniqueness, stability, continuous dependence (Ulusoy-K) ...

∂tu + divf(u) = div(a(u)∇u) + L[u], u|t=0 = u0

∂tv + divf̃(v) = div(ã(v)∇v) + L̃[v], v|t=0 = v0

Assume: u ∈ L∞(0, T ;BV (Rd)) entropy solution
with BV data u0 ∈ L1 ∩ L∞ ∩BV

L[u] =
� �

u(t, x + z)− u(t, x)− z ·∇xu1|z|<1

�
π(dz), π(dz) = m(z) dz

L̃[v] =
� �

v(t, x + z)− v(t, x)− z ·∇xv 1|z|<1

�
π̃(dz), π̃(dz) = m̃(z) dz
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with BV data u0 ∈ L1 ∩ L∞ ∩BV

L[u] =
� �

u(t, x + z)− u(t, x)− z ·∇xu1|z|<1

�
π(dz), π(dz) = m(z) dz

L̃[v] =
� �

v(t, x + z)− v(t, x)− z ·∇xv 1|z|<1

�
π̃(dz), π̃(dz) = m̃(z) dz

�u(t, ·)− v(t, ·)�L1(Rd)

For any t ∈ (0, T ),

≤ �u0 − v0�L1(Rd) + C1t
���f − f̃

���
W 1,∞(I);Rd)

+ C2

√
t
���
√

a−
√

ã
���

L∞(I;Rd×K)

+ C3

√
t

����
��

|z|<1
|z|2 |m(z)− m̃(z)| dz

�

+ C4t

�

|z|≥1
|z| |m(z)− m̃(z)| dz,
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1D entropy solutions in BV class 

L[u(x, t)] = cλ

�

|z|>0

u(x + z, t)− u(x, t)
|z|1+λ

dz, λ ∈ (0, 1)

ut + f(u)x = (a(u)ux)x + L[u], a ≥ 0

u ∈ L∞(QT ) is BV entropy solution if

u ∈ L∞(0, T ;L1(R)) ∩BV (QT );

A(u) ∈ C1, 1
2 (QT );

•  

•  

•  Kruzkov-type entropy condition

A =
� u

a;

(QT = (0, T )× R)
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1D entropy solutions in BV class 

L[u(x, t)] = cλ

�

|z|>0

u(x + z, t)− u(x, t)
|z|1+λ

dz, λ ∈ (0, 1)

ut + f(u)x = (a(u)ux)x + L[u], a ≥ 0

u ∈ L∞(QT ) is BV entropy solution if

u ∈ L∞(0, T ;L1(R)) ∩BV (QT );

A(u) ∈ C1, 1
2 (QT );

•  

•  

•  Kruzkov-type entropy condition

A =
� u

a;

(QT = (0, T )× R)

∀0 ≤ ϕ ∈ C∞c (R× [0, T )), ∀k ∈ R,
��

QT

|u− k| ϕt + qk(u)ϕx + rk(u)ϕxx

+sgn (u− k)L[u]ϕ dxdt

+
�

R
|u0 − k| ϕ(0, x) dx ≥ 0

qk(u) = sgn (u− k)(f(u)− f(k)) rk(u) = |A(u)−A(k)|
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1D entropy solutions in BV class 
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A(u) ∈ C1, 1
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•  

•  

•  Kruzkov-type entropy condition

A =
� u

a;

(QT = (0, T )× R)

∀0 ≤ ϕ ∈ C∞c (R× [0, T )), ∀k ∈ R,
��

QT

|u− k| ϕt + qk(u)ϕx + rk(u)ϕxx

+sgn (u− k)L[u]ϕ dxdt

+
�

R
|u0 − k| ϕ(0, x) dx ≥ 0

qk(u) = sgn (u− k)(f(u)− f(k)) rk(u) = |A(u)−A(k)|

Finite since u is BV

12onsdag 19. mai 2010



Numerical approximation

Vast literature for nonlocal linear equations•  
(finance applications)

•  Nonlinear convection of compressible radiating fluids
(Dedner-Rohde)

•  Fractional conservation laws (Droniou)
– convergence of monotone FV method

Fractional conservation laws / convection-diffusion•  
(Cifani-Jakobsen-K)

– discontinuous Galerkin methods
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Discontinuous Galerkin (DG) methods

Main features

Stability High-accuracy

Well established for the pure conservation law•  
∂tu + ∂xf(u) = 0

(Cockburn-Shu + many other names)

Results

Nonlinear 
stability

High-order 
accuracy for 
linear eqs

Error estimate of 
order 1/2 for BV 
entropy solutions

•  Aim is to extend to fractional CL / conv-diff
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A semi-discrete DG method

Ii = (xi, xi+1)•  Spatial grid xi = i∆x, i ∈ Z;

P k(Ii) polynomials of degree k•  

Orthogonal basis - Legendre polynomialsPlot:

�1.0 �0.5 0.5 1.0

�2

�1

1

2

�x from �1 to 1�
1

x

1
2
�3 x2�1�

1
2
�5 x3�3 x �

{ϕ0,i, ϕ1,i, . . . ,ϕk,i},

ϕj,i ∈ P j(Ii) j = 0, . . . , k
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•  Multiply ut + f(u)x = L[u] by a ϕ ∈ P k(Ii),
�

over the interval Ii and integrate by parts

=
�

Ii

L[u]ϕ.

Replace f by (consistent, monotone) numerical flux F

ũ(x, t) =
�

i∈Z

k�

p=0

Up,i(t)ϕp,i(x),•  Determine

such that equation holds ∀ϕ ∈ P k(Ii), i ∈ Z.

�

Ii

utϕ−
�

Ii

f(u)ϕx + F (ui+1)ϕ(x−i+1)− F (ui)ϕ(x+
i )
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•  Multiply ut + f(u)x = L[u] by a ϕ ∈ P k(Ii),
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over the interval Ii and integrate by parts

=
�

Ii

L[u]ϕ.

Replace f by (consistent, monotone) numerical flux F

ũ(x, t) =
�

i∈Z

k�

p=0
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�

Ii

utϕ−
�

Ii

f(u)ϕx + F (ui+1)ϕ(x−i+1)− F (ui)ϕ(x+
i )

this is computationally very convenient since we have a single recipe for the
mapping (a, b)W f̂(a, b) regardless of the form of the local spaces U(Ij).
Of course, we must make sure that the numerical flux is consistent with the
non-linearity f it approximates and so we require that f̂(a, a)=f(a), The
second idea is to pick the numerical flux in such a way that when the
approximate solution uh is piecewise-constant, the DG space discretization
gives rise to a monotone finite volume scheme. The motivation for this is
that, although only first-order accurate, monotone schemes are known to
be stable and convergent to the exact solution; see the 1976 papers by
Harten et al. [69] and by Kuznetsov [79] and the 1980 work by Crandall
and Majda [52]. This is achieved by simply requiring that aW f̂(a, · ) be
non-decreasing and bW f̂( · , b) be non-increasing. The main examples of
numerical fluxes satisfying the above properties are the following:

(i) The Godunov flux:

f̂G(a, b)=˛ mina [ u [ b
f(u), if a [ b

max
b [ u [ a

f(u), otherwise

(ii) The Engquist–Osher flux:

f̂EO(a, b)=F b
0
min(fŒ(s), 0) ds+F a

0
max(fŒ(s), 0) ds+f(0)

(iii) The Lax–Friedrichs flux:

f̂LF(a, b)=1
2 [f(a)+f(b)−C(b−a)]

C= max
inf u0(x) [ s [ sup u0(x)

|fŒ(s)|

This completes the definition of the DG space approximation.
Several comments about this DG space discretization are in order:

• The class of monotone schemes is one of the great achievements of
the development of numerical schemes for non-linear scalar hyperbolic
conservation laws. The stability and convergence properties of these
schemes are corner stones for the construction of high-resolution finite
volume and finite difference schemes. The same thing can be said about
DG space discretizations which, as we have seen, try to capture those
properties by incorporating their numerical fluxes.

Runge–Kutta Discontinuous Galerkin Methods 185
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•  Multiply ut + f(u)x = L[u] by a ϕ ∈ P k(Ii),
�

over the interval Ii and integrate by parts

=
�

Ii

L[u]ϕ.

Replace f by (consistent, monotone) numerical flux F
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�

i∈Z
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p=0

Up,i(t)ϕp,i(x),•  Determine

such that equation holds ∀ϕ ∈ P k(Ii), i ∈ Z.

Lemma: For ϕ, φ ∈ L1(R) ∩BV (R).
�

R
ϕL[φ]dx =

�

R
L[ϕ]φdx

�

Ii

utϕ−
�

Ii

f(u)ϕx + F (ui+1)ϕ(x−i+1)− F (ui)ϕ(x+
i )
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ũ(x, t) =
�

i∈Z

k�

p=0

Up,i(t)ϕp,i(x),•  Determine

such that equation holds ∀ϕ ∈ P k(Ii), i ∈ Z.

�

Ii

utϕ−
�

Ii

f(u)ϕx + F (ui+1)ϕ(x−i+1)− F (ui)ϕ(x+
i )

16onsdag 19. mai 2010



•  Multiply ut + f(u)x = L[u] by a ϕ ∈ P k(Ii),
�

over the interval Ii and integrate by parts

=
�

Ii

L[u]ϕ.

Replace f by (consistent, monotone) numerical flux F

ũ(x, t) =
�

i∈Z

k�

p=0

Up,i(t)ϕp,i(x),•  Determine

such that equation holds ∀ϕ ∈ P k(Ii), i ∈ Z.

�

Ii

utϕ−
�

Ii

f(u)ϕx + F (ui+1)ϕ(x−i+1)− F (ui)ϕ(x+
i )

Properties of Legendre polynomials =⇒
∀q = 0, . . . , k and i ∈ Z,

+
�

Ii

L[ũ]ϕq,i,

Uq,i(0) =
2q + 1
∆x

�

Ii

u0(x)ϕq,i(x)dx.

∆x

2q + 1
d

dt
Uq,i =

�

Ii

f(ũ)
d

dx
ϕq,i + (−1)qF (ũi)− F (ũi+1)

Time discretizations: Explicit, Runge–Kutta methods
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ũ(x, t) =
�

i∈Z

k�

p=0

Up,i(t)ϕp,i(x),•  Determine

such that equation holds ∀ϕ ∈ P k(Ii), i ∈ Z.

�

Ii

utϕ−
�

Ii

f(u)ϕx + F (ui+1)ϕ(x−i+1)− F (ui)ϕ(x+
i )

Properties of Legendre polynomials =⇒
∀q = 0, . . . , k and i ∈ Z,

+
�

Ii

L[ũ]ϕq,i,

Uq,i(0) =
2q + 1
∆x

�

Ii

u0(x)ϕq,i(x)dx.

∆x

2q + 1
d

dt
Uq,i =

�

Ii

f(ũ)
d

dx
ϕq,i + (−1)qF (ũi)− F (ũi+1)

Time discretizations: Explicit, Runge–Kutta methods

Existence/uniqueness of solutions

in C1([0, T ]; V k ∩ L2(R))

by Picard-Cauchy-Lipschitz theorem.
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Nonlinear stability

H
λ/2(R) fractional Sobolev space

�u�2
Hλ/2(R) := �u�2

L2(R) + |u|2
Hλ/2(R) < ∞

|u|2
Hλ/2(R) :=

�

R

�

R

[u(z)− u(x)]2

|z − x|1+λ
dzdx.

V k := {u : u|Ii ∈ P k(Ii) for all i ∈ Z} piecewise polynomials
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Hλ/2(R) := �u�2

L2(R) + |u|2
Hλ/2(R) < ∞

|u|2
Hλ/2(R) :=

�

R

�

R

[u(z)− u(x)]2

|z − x|1+λ
dzdx.

V k := {u : u|Ii ∈ P k(Ii) for all i ∈ Z} piecewise polynomials

V
k ∩ L

2(R) ⊆ H
λ/2(R)
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Nonlinear stability

H
λ/2(R) fractional Sobolev space

�u�2
Hλ/2(R) := �u�2

L2(R) + |u|2
Hλ/2(R) < ∞

|u|2
Hλ/2(R) :=

�

R

�

R

[u(z)− u(x)]2

|z − x|1+λ
dzdx.

V k := {u : u|Ii ∈ P k(Ii) for all i ∈ Z} piecewise polynomials

V
k ∩ L

2(R) ⊆ H
λ/2(R)

If φ ∈ V k ∩ L2(R), then for all λ ∈ (0, 1),

�φ�2

H
λ
2 (R)

≤ C

∆x
�φ�2

L2(R).
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Nonlinear stability

H
λ/2(R) fractional Sobolev space

�u�2
Hλ/2(R) := �u�2

L2(R) + |u|2
Hλ/2(R) < ∞

|u|2
Hλ/2(R) :=

�

R

�

R

[u(z)− u(x)]2

|z − x|1+λ
dzdx.

V k := {u : u|Ii ∈ P k(Ii) for all i ∈ Z} piecewise polynomials

Theorem (Stability). u∆x numerical solution.

�u∆x(·, T )�2
L2(R) + cλ

�
T

0
|u∆x(·, t)|2

Hλ/2(R)dt ≤ �u0�2
L2(R).
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Nonlinear stability

H
λ/2(R) fractional Sobolev space

�u�2
Hλ/2(R) := �u�2

L2(R) + |u|2
Hλ/2(R) < ∞

|u|2
Hλ/2(R) :=

�

R

�

R

[u(z)− u(x)]2

|z − x|1+λ
dzdx.

V k := {u : u|Ii ∈ P k(Ii) for all i ∈ Z} piecewise polynomials

Proof.

Choose test function ϕ = u∆x(·, t) in the DG scheme

Sum over i ∈ Z, rearrange terms + integrate in time
��

(u∆x)tu∆x =
� T

0

�

i∈Z

�
F (ui)(u∆x(x+

i )− u∆x(x−i ))

−
� u∆x(x+

i )

u∆x(x−i )
f(ξ)dξ

�

+
��

L[ũ]ũ.F (ui) = F (u∆x(x−i ), u∆x(x+
i ))
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� T
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�

i∈Z

�
F (ui)(u∆x(x+

i )− u∆x(x−i ))

−
� u∆x(x+

i )

u∆x(x−i )
f(ξ)dξ

�

+
��

L[ũ]ũ.F (ui) = F (u∆x(x−i ), u∆x(x+
i ))

E-flux

F (ui)(u∆x(x+
i )− u∆x(x−i ))−

� u∆x(x+
i )

u∆x(x−i )
f(ξ)dξ ≤ 0
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Nonlinear stability

H
λ/2(R) fractional Sobolev space

�u�2
Hλ/2(R) := �u�2

L2(R) + |u|2
Hλ/2(R) < ∞

|u|2
Hλ/2(R) :=

�

R

�

R

[u(z)− u(x)]2

|z − x|1+λ
dzdx.

V k := {u : u|Ii ∈ P k(Ii) for all i ∈ Z} piecewise polynomials

Proof.

Choose test function ϕ = u∆x(·, t) in the DG scheme

Sum over i ∈ Z, rearrange terms + integrate in time
��

(u∆x)tu∆x =
� T

0

�

i∈Z

�
F (ui)(u∆x(x+

i )− u∆x(x−i ))

−
� u∆x(x+

i )

u∆x(x−i )
f(ξ)dξ

�

+
��

L[ũ]ũ.F (ui) = F (u∆x(x−i ), u∆x(x+
i ))

for ϕ ∈ L1(R) ∩BV (R)

�

R
ϕg[ϕ]dx = −cλ

2

�

R

�

R

(ϕ(z)− ϕ(x))2

|z − x|1+λ
dzdx,

“Integration-by-parts”
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Higher-order accuracy (linear equations)

Exists a unique H
k+1(QT ) solution to the linear equation

Theorem (error estimate).

�u(·, T )− u∆x(·, T )�L2(R) ≤ ck,T ∆xk+ 1
2 .

For any T > 0,

∂tu + c∂xu = L[u], u(0, x) = u0 ∈ H
k(R), (k ≥ 0)
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Higher-order accuracy (linear equations)

Exists a unique H
k+1(QT ) solution to the linear equation

Theorem (error estimate).

�u(·, T )− u∆x(·, T )�L2(R) ≤ ck,T ∆xk+ 1
2 .

For any T > 0,

∂tu + c∂xu = L[u], u(0, x) = u0 ∈ H
k(R), (k ≥ 0)

Proof. Error e := u− u∆x ∈ H
λ/2(R) obeys

B(e, ϕ) :=
�

R
etϕ +

�

i∈Z

�
F (ei)(ϕ(x−i )− ϕ(x+

i ))−
�

Ii

ceϕx

�

−
�

R
g[e]ϕ = 0

•  
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Theorem (error estimate).
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2 .

For any T > 0,

∂tu + c∂xu = L[u], u(0, x) = u0 ∈ H
k(R), (k ≥ 0)

Proof. Error e := u− u∆x ∈ H
λ/2(R) obeys

B(e, ϕ) :=
�

R
etϕ +

�

i∈Z

�
F (ei)(ϕ(x−i )− ϕ(x+

i ))−
�

Ii

ceϕx

�

−
�

R
g[e]ϕ = 0

•  

Let u be L2-projection of u into V k•  
Thenand set e := u− u∆x ∈ H

λ/2(R).
� T

0

�

R
ete =

� T

0

�

R
(u− u)te−

� T

0

�

i∈Z

�
F (ei)(e(x−i )− e(x+

i ))−
�

Ii

ceex]

+
� T

0

�

i∈Z

�
F ((u− u)i)(e(x−i )− e(x+

i ))−
�

Ii

c(u− u)ex

�

+
� T

0

�

R
g[e]e−

� T

0

�

R
g[e− e]e.
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Bounded by by ck,T ∆x2k+1
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Remains to estimate this term
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�
F ((u− u)i)(e(x−i )− e(x+
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c(u− u)ex

�

+
� T

0

�

R
g[e]e−

� T

0

�

R
g[e− e]e.

Remains to estimate this term

•  
� T

0

�

R
g[e]e−

� T

0

�

R
g[e− e]e

=
1
2

�
T

0

�

R
g[e]e +

1
2

�
T

0

�

R
g[e]e− 1

2

�
T

0

�

R
g[e− e](e− e)

≤
�

T

0
�(u− u)(·, t)�2

Hλ/2(R)dt

and moreover

�(u− u)(·, t)�2
Hλ/2(R) ≤ ck�u(·, t)�2

Hk+1(R)∆x2k+2−λ.

≤ Ck∆x2k+1+ε, ε := 1− λ ∈ (0, 1).

18onsdag 19. mai 2010



Convergence / error estimate in nonlinear case

•  Restrict to piecewise constant elements (k = 0):

{ϕ0,i, ϕ1,i, . . . ,ϕk,i} = {ϕ0,i}, ϕ0,i = 1Ii

•  Implicit-explicit method






Un+1
i = Un

i − ∆tD−F (Un
i , Un

i+1) + ∆tL�Un+1�i,

U0
i =

1
∆x

�

Ii

u0(x)dx
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Convergence / error estimate in nonlinear case

•  Implicit-explicit method






Un+1
i = Un

i − ∆tD−F (Un
i , Un

i+1) + ∆tL�Un+1�i,

U0
i =

1
∆x

�

Ii

u0(x)dx

•  Nonlocal operator

L�Un�i :=
1

∆x

�

Ii

L[Un
∆x]dx =

1
∆x

�

j∈Z
Gi

jU
n
j ,

Gi
j :=

�

Ii

L[1Ij ]dx
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Convergence / error estimate in nonlinear case

•  Implicit-explicit method






Un+1
i = Un

i − ∆tD−F (Un
i , Un

i+1) + ∆tL�Un+1�i,

U0
i =

1
∆x

�

Ii

u0(x)dx

•  Nonlocal operator

L�Un�i :=
1

∆x

�

Ii

L[Un
∆x]dx =

1
∆x

�

j∈Z
Gi

jU
n
j ,

Gi
j :=

�

Ii

L[1Ij ]dx

For all (i, j) ∈ Z× Z,
�

k∈Z
|Gi

k| <∞,
�

k∈Z
Gi

k = 0, Gi
j = Gj

i , Gi+1
j+1 = Gi

j .

Moreover, Gi
j ≥ 0 whenever i �= j, while

Gi
i = −dλ∆x1−λ, where dλ := cλ

��

|z|<1

dz

|z|λ +
�

|z|>1

dz

|z|1+λ

�
> 0.

Lemma.
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Lemma. Suppose u0 ∈ L1(R) ∩BV (R).

Let u∆x be piecewise constant numerical solution.

Then for all t ≥ 0,

i) �u∆x(·, t)�L∞(R) ≤ �u0�L∞(R),

ii) �u∆x(·, t)�L1(R) ≤ �u0�L1(R),

iii) |u∆x(·, t)|BV (R) ≤ |u0|BV (R).

iv) �ũ(·, s)− ũ(·, t)�L1(R) ≤ c(|s− t| + ∆x).
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Theorem (convergence/error estimate).

Suppose u0 ∈ L1(R) ∩BV (R).
Let u be BV entropy solution of fractional CL.
Let u∆x be numerical solution.

The there exists a constant CT > 0 such that

�u(·, T )− u∆x(·, T )�L1(R) ≤ CT

√
∆x.
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Proof based on adaption of Kuznetsov’s lemma

Lemma (Kuznetsov)

For any � > 0, 0 < δ < T ,

�u(·, T )− ũ(·, T )�L1(R) ≤ c(� + δ + ∆x)− Λ�,δ[ũ, u].

Let u be the exact BV entropy solution
Let ũ be an approximate solution

Λ[u, ϕ, k] :=
��

|u− k|ϕt + qk(u)ϕx + sgn (u− k)L[u]ϕdxdt

+
�

R
|u0(x)− k| ϕ(x, 0)dx−

�

R
|u(x, T )− k| ϕ(x, T )dx

Kruzkov form:
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Lemma (Kuznetsov)

For any � > 0, 0 < δ < T ,

�u(·, T )− ũ(·, T )�L1(R) ≤ c(� + δ + ∆x)− Λ�,δ[ũ, u].

Let u be the exact BV entropy solution
Let ũ be an approximate solution

Λ[u, ϕ, k] :=
��

|u− k|ϕt + qk(u)ϕx + sgn (u− k)L[u]ϕdxdt

+
�

R
|u0(x)− k| ϕ(x, 0)dx−

�

R
|u(x, T )− k| ϕ(x, T )dx

Kruzkov form:

Lemma.
qk(u) = sgn (u− k)(f(u)− f(k))

ϕ(x, y, t, s) = ω�(x− y)ωδ(t− s)

ωα ∈ C∞c (R), α > 0, is an approximate delta function.
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Convection / diffusion / fractional diffusion

•  ut − uxx = 0DG for diffusion equation
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:

∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j+1/2v

+
j−1/2

− 1
2
(vx)−j+1/2

(
u+

j+1/2 − u−
j+1/2

)
− 1

2
(vx)+j−1/2

(
u+

j−1/2 − u−
j−1/2

)
= 0,

where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose

u, v piecewise polynomials
with respect to cells Ij = (xj−1/2, xj+1/2)
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Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫
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utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to
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∫
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uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to
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uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose

u, v piecewise polynomials
with respect to cells Ij = (xj−1/2, xj+1/2)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

676 HAILIANG LIU AND JUE YAN

conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫
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utv +
∫
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uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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Fig. 1. On the left ûx = ux and on the right ûx = [u]
∆x + ux at t = 1, mesh size N = 40.

p1 polynomial approximation.

a path which sticks to the direct weak formulation (1.2) but with new choices of nu-
merical flux ûx to obtain a stable and accurate DG scheme. More precisely, the heart
of the DDG method is to use the direct weak formulation for parabolic equations and
let cells communicate via the numerical flux ûx. A key observation is that the jump
of the function itself relative to the mesh size, when numerically measuring slopes
of a discontinuous function, plays an essential role. For example, for the piecewise
constant approximation (k = 0), the choice of

ûx =
u+ − u−

∆x

leads to the standard central finite difference scheme. When we use the numerical
flux

ûx =
u+ − u−

∆x
+

1
2

(
u+

x + u−
x

)
,

the resulting scheme with piecewise linear approximation is found of 2nd order accu-
rate and of course gives the correct solution; see Figure 1 (right).

However, the trace of the solution derivative under a diffusion process is rather
subtle. From the PDE point of view, jumps of all even order derivatives as well as the
average of odd order derivatives all contribute to the trace of the solution derivative.
We propose a general numerical flux formula, which is consistent with the solution
gradient and conservative. The form of the numerical flux is motivated by an exact
trace formulation derived from solving the heat equation with smooth initial data
having only one discontinuous point.

We then introduce a concept of admissibility for numerical fluxes. The admissibil-
ity condition serves as a criterion for selecting suitable numerical fluxes to guarantee
nonlinear stability of the DDG method and corresponding error estimates. Indeed in
the linear case, the convergence rate of order (∆x)k for the error in a parabolic energy
norm L∞(0, T ; L2) ∩ L2(0, T ; H1) is obtained when pk polynomials are used.

In this paper, we restrict ourselves to diffusion problems with periodic boundary
conditions. We shall display the most distinctive features of the DDG method using
as simple a setting as possible. This paper is organized as follows. In section 2, we
introduce the DDG methods for the 1D problems. For this model problem, the main
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23onsdag 19. mai 2010



• Local DG method (LDG) of Cockburn & Shu

Rewrite heat equation ut − uxx = 0 as 1st order system

ut − qx = 0, q − ux = 0.

So both solution u and flux q are evolved in each cell !

Apply DG method to system.

24onsdag 19. mai 2010



• Local DG method (LDG) of Cockburn & Shu

Rewrite heat equation ut − uxx = 0 as 1st order system

ut − qx = 0, q − ux = 0.

So both solution u and flux q are evolved in each cell !

Apply DG method to system.

• Direct DG method (DDG) of Liu & Yan

+ convenient choice of numerical flux.
Based on the standard weak formulation

24onsdag 19. mai 2010



• Local DG method (LDG) of Cockburn & Shu

Rewrite heat equation ut − uxx = 0 as 1st order system

ut − qx = 0, q − ux = 0.

So both solution u and flux q are evolved in each cell !

Apply DG method to system.

• Direct DG method (DDG) of Liu & Yan

+ convenient choice of numerical flux.
Based on the standard weak formulation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

676 HAILIANG LIU AND JUE YAN

conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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utv +
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose

Piecewise constant approximation (k = 0):

�ux =
u+ − u−

∆x

yields standard central differencing.
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:

∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j+1/2v

+
j−1/2

− 1
2
(vx)−j+1/2

(
u+

j+1/2 − u−
j+1/2

)
− 1

2
(vx)+j−1/2

(
u+

j−1/2 − u−
j−1/2

)
= 0,

where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to
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where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:

∫
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utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
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+
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose

Piecewise linear approximation (k = 1):

�ux =
u+ − u−

∆x
+

1
2

�
(ux)+ + (ux)−

�
.

yields a second order approximation.
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
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where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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Fig. 1. On the left ûx = ux and on the right ûx = [u]
∆x + ux at t = 1, mesh size N = 40.

p1 polynomial approximation.

a path which sticks to the direct weak formulation (1.2) but with new choices of nu-
merical flux ûx to obtain a stable and accurate DG scheme. More precisely, the heart
of the DDG method is to use the direct weak formulation for parabolic equations and
let cells communicate via the numerical flux ûx. A key observation is that the jump
of the function itself relative to the mesh size, when numerically measuring slopes
of a discontinuous function, plays an essential role. For example, for the piecewise
constant approximation (k = 0), the choice of

ûx =
u+ − u−

∆x

leads to the standard central finite difference scheme. When we use the numerical
flux

ûx =
u+ − u−

∆x
+

1
2

(
u+

x + u−
x

)
,

the resulting scheme with piecewise linear approximation is found of 2nd order accu-
rate and of course gives the correct solution; see Figure 1 (right).

However, the trace of the solution derivative under a diffusion process is rather
subtle. From the PDE point of view, jumps of all even order derivatives as well as the
average of odd order derivatives all contribute to the trace of the solution derivative.
We propose a general numerical flux formula, which is consistent with the solution
gradient and conservative. The form of the numerical flux is motivated by an exact
trace formulation derived from solving the heat equation with smooth initial data
having only one discontinuous point.

We then introduce a concept of admissibility for numerical fluxes. The admissibil-
ity condition serves as a criterion for selecting suitable numerical fluxes to guarantee
nonlinear stability of the DDG method and corresponding error estimates. Indeed in
the linear case, the convergence rate of order (∆x)k for the error in a parabolic energy
norm L∞(0, T ; L2) ∩ L2(0, T ; H1) is obtained when pk polynomials are used.

In this paper, we restrict ourselves to diffusion problems with periodic boundary
conditions. We shall display the most distinctive features of the DDG method using
as simple a setting as possible. This paper is organized as follows. In section 2, we
introduce the DDG methods for the 1D problems. For this model problem, the main

(Liu-Yan)
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to
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−
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+
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where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:
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where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose

Piecewise linear approximation (k = 1):
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u+ − u−
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+
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�
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yields a second order approximation.Formula for gradient of solution to heat equation:
(Liu-Yan)
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Solution gradient for the heat equation. Consider the heat equation ut =
uxx with smooth initial data g, having only one discontinuity at x = 0. A straight-
forward calculation from the solution formula

u(x, t) =
1√
4πt

∫ ∞

−∞
e−(x−y)2/(4t)g(y)dy

gives

ux(0, t) =
∑ 2m−1

(2m − 1)!!
tm

[
∂2m

x g
]
/
√

πt +
∑ 2m

(2m)!!
tm∂2m+1

x g

=
1√
4πt

[g] + ∂xg +
√

t

π

[
∂2

xg
]
+ t∂3

xg + · · · ,(7.3)

where the jump or the average of g and its derivatives are involved to evaluate ux at
x = 0.
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation
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Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
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where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:

∫

Ij

utv +
∫

Ij

uxvxdx − (̂ux)j+1/2v
−
j+1/2 + (̂ux)j+1/2v

+
j−1/2

− 1
2
(vx)−j+1/2

(
u+

j+1/2 − u−
j+1/2

)
− 1

2
(vx)+j−1/2

(
u+

j−1/2 − u−
j−1/2

)
= 0,

where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose

Piecewise linear approximation (k = 1):

�ux =
u+ − u−

∆x
+

1
2

�
(ux)+ + (ux)−

�
.

yields a second order approximation.Formula for gradient of solution to heat equation:
(Liu-Yan)
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Solution gradient for the heat equation. Consider the heat equation ut =
uxx with smooth initial data g, having only one discontinuity at x = 0. A straight-
forward calculation from the solution formula

u(x, t) =
1√
4πt

∫ ∞

−∞
e−(x−y)2/(4t)g(y)dy

gives

ux(0, t) =
∑ 2m−1

(2m − 1)!!
tm

[
∂2m

x g
]
/
√

πt +
∑ 2m

(2m)!!
tm∂2m+1

x g

=
1√
4πt

[g] + ∂xg +
√

t

π

[
∂2

xg
]
+ t∂3

xg + · · · ,(7.3)

where the jump or the average of g and its derivatives are involved to evaluate ux at
x = 0.
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• Local DG method (LDG) of Cockburn & Shu

Rewrite heat equation ut − uxx = 0 as 1st order system

ut − qx = 0, q − ux = 0.

So both solution u and flux q are evolved in each cell !

Apply DG method to system.

• Direct DG method (DDG) of Liu & Yan

+ convenient choice of numerical flux.
Based on the standard weak formulation

Piecewise linear approximation (k = 1):

�ux =
u+ − u−

∆x
+

1
2

�
(ux)+ + (ux)−

�
.

yields a second order approximation.Formula for gradient of solution to heat equation:
(Liu-Yan)
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Local Discontinuous Galerkin (LDG) method

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

ut + (f(u)−
�

a(u)q)x = bL[u]

q − g(u)x = 0, g =
� √

a

Rewrite as a system

Apply DG method
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Local Discontinuous Galerkin (LDG) method

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

ut + (f(u)−
�

a(u)q)x = bL[u]

q − g(u)x = 0, g =
� √

a

Rewrite as a system

Apply DG method

h(w) = h(u, q) =
�

hu(w)
hq(u)

�
=

�
f(u)−

�
a(u)q

−g(u)

�
.
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Local Discontinuous Galerkin (LDG) method

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

ut + (f(u)−
�

a(u)q)x = bL[u]

q − g(u)x = 0, g =
� √

a

Rewrite as a system

Apply DG method

h(w) = h(u, q) =
�

hu(w)
hq(u)

�
=

�
f(u)−

�
a(u)q

−g(u)

�
.

Variational form
�

Ii

∂tuvu −
�

Ii

hu(w)∂xvu + hu(wi+1)v−u,i+1 − hu(wi)v+
u,i =

�

Ii

L[u]vu,

�

Ii

qvq −
�

Ii

hq(u)∂xvq + hq(ui+1)v−q,i+1 − hq(ui)v+
q,i = 0,

For all vu, vq ∈ P k(Ii)
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hq(u)∂xvq + hq(ui+1)v−q,i+1 − hq(ui)v+
q,i = 0,

For all vu, vq ∈ P k(Ii)

Replace hu, hq by numerical fluxes ala Cockburn & Shu.
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Local Discontinuous Galerkin (LDG) method

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

ut + (f(u)−
�

a(u)q)x = bL[u]

q − g(u)x = 0, g =
� √

a

Rewrite as a system

Apply DG method

h(w) = h(u, q) =
�

hu(w)
hq(u)

�
=

�
f(u)−

�
a(u)q

−g(u)

�
.

Variational form
�

Ii

∂tuvu −
�

Ii

hu(w)∂xvu + hu(wi+1)v−u,i+1 − hu(wi)v+
u,i =

�

Ii

L[u]vu,

�

Ii

qvq −
�

Ii

hq(u)∂xvq + hq(ui+1)v−q,i+1 − hq(ui)v+
q,i = 0,

For all vu, vq ∈ P k(Ii)

�

Ii

∂tuvu −
�

Ii

hu(w)∂xvu + ĥu(wi+1)v−u,i+1 − ĥu(wi)v+
u,i = b

�

Ii

L[u]vu,

�

Ii

qvq −
�

Ii

hq(u)∂xvq + ĥq(ui+1)v−q,i+1 − ĥq(ui)v+
q,i = 0,

for all vu, vq ∈ P k(Ii), i ∈ Z

Local DG method
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Theorem (nonlinear stability).

Then

�ũ(·, T )�2
L2(R) + 2�q̃�2

L2(QT ) + 2ΘT (w̃)

Let w̃ = (ũ, q̃) be a solution of LDG method.

ΘT [w] =
� T

0

�

i∈Z
[wi]�C[wi] (≥ 0).

where

(the matrix C is semipositive definite)

+cλ

�
T

0
|ũ(·, t)|2

Hλ/2(R) dt ≤ �u0�2
L2(R),
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Theorem (error estimate linear eqs).

�

R
e2
u(x, T ) +

� T

0

�

R
e2
q + ΘT [e]

+cλ

�
T

0
|eu|

2
Hλ/2(R) = O(1)∆x2k.

Let w̃ = (ũ, q̃) be a solution of LDG method.

With eu = u− ũ and eq = q − q̃,

NB! Error estimate is optimal without fractional diffusion.
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Direct Discontinuous Galerkin (LDG) method

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

�

Ii

utv −
�

Ii

f(u)vx + f(ui+1)v−i+1 − f(ui)v+
i

For an arbitrary v ∈ P k(Ii),

+
�

Ii

a(u)uxvx − h(ui+1, ux,i+1)v−i+1 + h(ui, ux,i)v+
i

=
�

Ii

L[u]v, (h(u, ux) = a(u)ux)
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Direct Discontinuous Galerkin (LDG) method

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0
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|z|1+λ

dz

�

Ii

utv −
�

Ii

f(u)vx + f(ui+1)v−i+1 − f(ui)v+
i

For an arbitrary v ∈ P k(Ii),

+
�

Ii

a(u)uxvx − h(ui+1, ux,i+1)v−i+1 + h(ui, ux,i)v+
i
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�

Ii
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f̂(ui) = f̂(u(x−i ), u(x+
i )).

For convection, choose any
consistent and monotone flux

For diffusion flux h = a(u)ux = A(u)x, we follow Liu-Yan

ĥ(ui) = ĥ(u(x−i ), . . . , ∂k
xu(x−i ), u(x+

i ), . . . , ∂k
xu(x+

i ))

= β0
[A(ui)]

∆x
+ A(ui)x +

�k/2��

m=1

βm∆x2m−1[∂2m
x A(ui)],
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i ), . . . , ∂k
xu(x+
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= β0
[A(ui)]

∆x
+ A(ui)x +

�k/2��

m=1

βm∆x2m−1[∂2m
x A(ui)],

{β0, . . . ,β�k/2�} satisfy for some γ ∈ (0, 1) and α ≥ 0

�

i∈Z
ĥ(ui)[ui] ≥ α

�

i∈Z

[A(ui)]
∆x

[ui]− γ
�

i∈Z

�

Ii

a(u)(ux)2.
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+ A(ui)x +

�k/2��
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x A(ui)],

{β0, . . . ,β�k/2�} satisfy for some γ ∈ (0, 1) and α ≥ 0

�

i∈Z
ĥ(ui)[ui] ≥ α

�

i∈Z

[A(ui)]
∆x

[ui]− γ
�

i∈Z

�

Ii

a(u)(ux)2.

For example, if k = 0 and β0 = 1,

ĥ(ui) =
1

∆x
[A(ui)] =

A(u(x+
i ))−A(u(x−i ))

∆x
.

29onsdag 19. mai 2010



f̂(ui) = f̂(u(x−i ), u(x+
i )).

For convection, choose any
consistent and monotone flux

For diffusion flux h = a(u)ux = A(u)x, we follow Liu-Yan
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x A(ui)],

{β0, . . . ,β�k/2�} satisfy for some γ ∈ (0, 1) and α ≥ 0

�

i∈Z
ĥ(ui)[ui] ≥ α

�

i∈Z

[A(ui)]
∆x

[ui]− γ
�

i∈Z

�

Ii

a(u)(ux)2.

With k = 2,
�k/2��

m=1

βm∆x2m−1[∂2m
x A(ui)]

= β1∆x[∂2
xA(ui)]

= β1∆x[a�(ui)(∂xui)2 + a(ui)∂2
xui].
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Theorem (nonlinear stability).

Then

�û(·, T )�2
L2(R) + 2ΓT [û] + cλ

�
T

0
|û(·, t)|2

Hλ/2(R) dt ≤ �u0�2
L2

Let û be DDG solution.

ΓT [u] = (1− γ)
� T

0

�

i∈Z

�

Ii

a(u)(ux)2 + α

� T

0

�

i∈Z

[A(ui)]
∆x

[ui].
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Theorem (error estimate for linear eqs).

Let u ∈ H
k+1(QT ) be a solution of IPDE.

Let û be a DDG solution.

With e = u− û,
�

R
e2(x, T ) +

|c|
2

� T

0

�

i∈Z
[ei]2 + (1− γ)

� T

0

�

R
(ex)2

+α

� T

0

�

i∈Z

[ei]2

∆x

+cλ

�
T

0
|e|2

Hλ/2(R) = O(1)∆x2k.
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Convergence of DDG method in nonlinear case

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

Piecewise constant elements (k = 0):

∆x
d

dt
Ui + f̂(Ui, Ui+1)− f̂(Ui−1, Ui)

− [A(Ui+1)]
∆x

+
[A(Ui)]

∆x
=

�

j∈Z
Uj

�

Ii

L[1Ij ].
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Convergence of DDG method in nonlinear case

∂tu + ∂xf(u) = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz






Un+1
i − Un

i

∆t
+ D−

�
f̂(Un

i , Un
i+1) − D+A(Un

i )
�

= L�Un�i,

U0
i =

1
∆x

�

Ii

u0(x) dx.

Explicit method
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i) �Un�L1(Z) ≤ �u0�L1(R),

ii) �Un�L∞(Z) ≤ �u0�L∞(R),

iii) |Un|BV (Z) ≤ |u0|BV (R).

Lemma (a priori estimates).
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����f̂(Un
i , Un

i+1) − D+A(Un
i )−

i�

k=−∞

�

j∈Z
Gk

j Un
j

����
L∞(Z)

≤
����f̂(U0

i , U0
i+1)−D+A(U0

i )−
i�

k=−∞

�

j∈Z
Gk

j U0
j

����
L∞(Z)

,

Moreover,
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�

i∈Z
|Um

i − Un
i | ≤ C

∆t

∆x
|m− n|.

Consequently,
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i) �Un�L1(Z) ≤ �u0�L1(R),

ii) �Un�L∞(Z) ≤ �u0�L∞(R),

iii) |Un|BV (Z) ≤ |u0|BV (R).

Lemma (a priori estimates).

�

i∈Z
|Um

i − Un
i | ≤ C

∆t

∆x
|m− n|.

Consequently,

This implies strong compactness / convergence

of DDG solution u∆x.
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Lemma (diffusion term)

|A(Um
i )−A(Un

j )| = O(1)
�
|i− j|∆x +

�
|m− n|∆t

�
.

There holds

Consequently, the limit obeys A(u) ∈ C1/2,1(QT ).
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Lemma (cell entropy inequality)

ηn+1
i − ηn

i + ∆tD−Qn
i

−∆tD−D+|A(Un
i )−A(k)| ≤ ∆tη�k(Un+1

i )L�Un�i,

Qn
i = f̂(Un

i ∨ k, Un
i+1 ∨ k)− f̂(Un

i ∧ k, Un
i+1 ∧ k)

34onsdag 19. mai 2010



Lemma (cell entropy inequality)

ηn+1
i − ηn

i + ∆tD−Qn
i

−∆tD−D+|A(Un
i )−A(k)| ≤ ∆tη�k(Un+1

i )L�Un�i,

Qn
i = f̂(Un

i ∨ k, Un
i+1 ∨ k)− f̂(Un

i ∧ k, Un
i+1 ∧ k)

Theorem (convergence).

Suppose u0 ∈ L1 ∩BV is s.t. |f(u0)− ∂xA(u0)|BV <∞.

Let û∆x be explicit DGG solution.

Then {û∆x}∆x>0 converges in L1
loc

to the BV entropy solution of the IPDE.
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Numerical examples

Implemented in the cases k = 0, 1, 2.•  

Set our numerical solutions to zero outside the region•  

Ω = {(x, t) : |x| ≤ 3/2, t ≥ 0}.

Example.

L[ϕ(x)] = cλ

�

|z|>0

ϕ(x + z)− ϕ(x)
|z|1+λ

dz

Pure fractional equation ∂tu = L[u]
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(a) T = 0.5 (b) T = 1.3

(c) T = 0.5 (d) T = 1.3

Figure 1. Initial data (piecewise linear) and solutions of the pure

fractional equation (λ = 0.5) with k = 0 and ∆x = 1/160.

5. Numerical experiments

We have implemented the numerical method (2.3) in the cases k = 0, 1, 2 with

fully explicit time discretization. To perform computations, we have set our nu-

merical solutions to zero outside the region Ω = {(x, t) : |x| ≤ 3/2, t ≥ 0}. In other

words, we have computed the value Up,i(tn+1) using only the values {Up,i(tn)},
where xi ∈ Ω and p = 0, . . . , k. This has been done also at the boundaries |x| = 3/2.

Remark 5.1. Due to infinite speed of propagation (cf. [2]), solutions of (1.1) do not

have, in general, compact support. Therefore, the use of the region Ω introduces

an additional error which we have not considered in Theorem 3.3 and Theorem 4.4.

Example 5.1. Let us consider the pure fractional equation ∂tu = g[u]. From

e.g. [28], it follows that the solution of this equation is given by the convolution

product u(x, t) = (K ∗ u0)(x, t), where K is the kernel of g. Using the properties

of the kernel, it can be shown that this equation has a regularizing effect on the

initial datum (see e.g. [3]); this regularization appears clearly in our numerical

experiments presented in Figure 1.

Example 5.2. Let us consider the fractional transport equation ∂tu + ∂xu = g[u].

Our numerical results suggest that, as done by ∂tu+∂xu = ∂2
xu, this equation regu-

larizes and transports the initial datum. Our numerical experiments are presented

in Figure 2. The numerical flux (3.3) has been used.

Example 5.3. Let us consider the fractional Burgers’ equation ∂tu+u∂xu = g[u].

Our numerical experiments in Figure 3 confirm what has been shown by [3, 25]:
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Example. Fractional transport equation

∂tu + ∂xu = cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

Solution is smooth.
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(a) T = 0.1 (b) T = 0.2

(c) T = 0.1 (d) T = 0.2

Figure 2. Initial data (piecewise linear) and solutions of the frac-

tional transport equation (λ = 0.5) with k = 0 and ∆x = 1/160.

this equation does not regularize the initial condition. Discontinuities in the initial

datum can persist in the solution, and shocks can develop from smooth initial data.

Figure 4 shows how the behavior of the solution changes with λ: as λ → 0, our

numerical solution approaches the solution of the pure Burgers’ equation with a

source, ∂tu + u∂xu = u; as λ → 1, our numerical solution approaches the smooth

solution of the fractional Burgers’ equation with λ = 1 (see [25]). Figure 5 clearly

shows how a shock can develop and vanish in a finite time. Figure 6 shows how

the accuracy improves with k = 0, 1, 2. A third order Runge-Kutta (RK3) time

discretization and slope limiters (cf. [14]) have been deployed in Figure 6. We

have used the Lax-Friedrichs flux

F (a, b) =
1

2
[f(a) + f(b)− c(b− a)], c = max{|f �

(a)| : |a| ≤ �u0�L∞(R)}.

Let us note that the above numerical flux does not fulfil assumption A1. However,

this assumption can be replaced with a milder one: it is enough to ask F (a, b) to

be Lipschitz continuous on {(a, b) : |a| ≤ �u0�L∞(R) and |b| ≤ �u0�L∞(R)}.
To give an idea about the speed of convergence of our experiments, we have

computed their rate of convergence in Table 1. We have measured the error

E∆x,p := �ũ∆x(·, T )− ũe(·, T )�Lp(R)

(ũe is the numerical solution which has been computed using ∆x = 1/640), the

relative error

R∆x,p := E∆x,p/�ũe(·, T )�Lp(R),
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Example. Fractional Burgers’ equation

Solution not necessarily smooth.

∂tu + u∂xu = cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

Accuracy improves with k = 0, 1, 2.

A third order Runge-Kutta (RK3) time discretization
and slope limiters

Lax-Friedrichs flux F (a, b) =
1
2
[f(a) + f(b)− c(b− a)],

c = max{|f �(a)| : |a| ≤ �u0�L∞(R)}.
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(a) u0(x) = −sgn(x) (b) u0(x) = −arctan(15x)/90

(c) u0(x) = sgn(x)1|x|>1/4 + 4x1|x|≤1/4 (d) u0(x) = sin(2πx)

Figure 3. Initial data and solutions of the fractional Burgers’
equation (λ = 0.5) using k = 0; T = 0.5 and ∆x = 1/160.

Table 1. k = 0 (left) as in Figure 3 (c) and k = 1 (right) as in
Figure 6 (b).

∆x E∆x,1 R∆x,1 α∆x,1 E∆x,2 R∆x,2 α∆x,2

1/10 0.1990 0.1109 0.5726 0.4580 0.3765 1.0714
1/20 0.1338 0.0746 0.4711 0.2180 0.1792 1.2024
1/40 0.0965 0.0538 0.3964 0.0947 0.0779 1.1717
1/80 0.0734 0.0409 0.4399 0.0421 0.0346 1.0881
1/160 0.0541 0.0301 0.7235 0.0198 0.0163 -
1/320 0.0327 0.0183 - - - -

and the approximate rate of convergence

α∆x,p := (log E∆x,p − log E∆x/2,p)/ log 2.

We expected to see numerical convergence of order 1/2 for k = 0 and numerical
convergence of order 3/2 for k = 1 (i.e, high-order convergence). The values α∆x,1

roughly suggest 1/2 convergence while the values α∆x,2 do not reach the expected
rate 3/2. This could be due to our way or reducing the problem from a nonlocal to
a local one (cf. Remark 5.1).
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(a) λ = 0.1 (b) λ = 0.3

(c) λ = 0.7 (d) λ = 0.99

Figure 4. Initial data and solutions of the fractional Burgers’
equation for different values of λ using k = 0; T = 0.5, ∆x = 1/200,
and u0(x) = −arctan(15x)/90.

Appendix A. Technical lemmas

Lemma A.1. Let ϕ ∈ L1(R) ∩BV (R). Then, there exists C > 0 such that

�g[ϕ]�L1(R) ≤ cλ
R |z|>0

|ϕ(x + z)− ϕ(x)|
|z|1+λ

dzdx ≤ cλC�ϕ�1−λ
L1(R)|ϕ|λBV (R).

Proof. For all � > 0,

|z|<� R

|ϕ(x + z)− ϕ(x)|
|z|1+λ

dxdz ≤ �1−λ|ϕ|BV (R)
|z|<1

1
|z|λ dz,

|z|>� R

|ϕ(x + z)− ϕ(x)|
|z|1+λ

dxdz ≤ 2�−λ�ϕ�L1(R)
|z|>1

1
|z|1+λ

dz.

Set � =
�ϕ�L1(R)
|ϕ|BV (R)

to conclude. �

Lemma A.2. Let ϕ, φ ∈ L1(R) ∩BV (R). Then

R
ϕg[φ]dx =

R
g[ϕ]φdx

and, in particular,

R
ϕg[ϕ]dx = −cλ

2 R R

(ϕ(z)− ϕ(x))2

|z − x|1+λ
dzdx.
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(a) T = 0.1 (b) T = 0.7

(c) T = 1.7 (d) T = 2.9

Figure 5. Initial data (piecewise linear) and solutions of the frac-
tional Burgers’ equation (λ = 0.5) at different times T using k = 0;
∆x = 1/200.

Proof. By Lemma A.1 and the fact that BV (R) ⊂ L
∞(R),

�ϕg[φ]�L1(R) ≤ cλC�φ�1−λ
L1(R)|φ|λ

BV (R)�ϕ�L∞(R) <∞,

and, then, Fubini’s theorem can be used to obtain

R
ϕ(x)g[φ(x)]dx =

1
2 R R

(φ(x)− φ(z))(ϕ(z)− ϕ(x))
|z − x|1+λ

dzdx =
R

g[ϕ(x)]φ(x)dx.

�

Corollary A.3. Lemma A.2 holds true for all ϕ, φ ∈ H
λ/2(R).

Proof. Lemma A.2 holds true, in particular, for all ϕn,φn step functions with com-
pact support,

(A.1)
R

ϕn(x)g[φn(x)]dx =
R

g[ϕn(x)]φn(x)dx.

Let us choose, by density, ϕn,φn → ϕ, φ in H
λ/2(R), and recall the following

definition of the H
λ/2-norm (cf. [22, Chapter 6]):

�ϕ�2
Hλ/2(R) :=

R
(1 + ξ2)λ/2ϕ̂2(ξ)dξ.(A.2)

37onsdag 19. mai 2010



Example. Fractional Burgers’ equation

Solution not necessarily smooth.

∂tu + u∂xu = cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

Accuracy improves with k = 0, 1, 2.

A third order Runge-Kutta (RK3) time discretization
and slope limiters

Lax-Friedrichs flux F (a, b) =
1
2
[f(a) + f(b)− c(b− a)],

c = max{|f �(a)| : |a| ≤ �u0�L∞(R)}.
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(a) k = 0 (b) k = 1

(c) k = 2 (d) Solution computed using ∆x = 1/640

Figure 6. Initial data and solutions of the fractal Burgers’ equa-
tion at T = 1/10 using different values of k = 0, 1, 2; ∆x = 1/10,
and u0(x) = sin(2πx).

Note that, using (A.2) and (1.2),

�g[ϕn]− g[ϕ]�H−λ/2(R) =
R
(1 + ξ2)−λ/2ξ2λ[ϕ̂n(ξ)− ϕ̂(ξ)]2dξ

≤
R
(1 + ξ2)λ/2[ϕ̂n(ξ)− ϕ̂(ξ)]2dξ = �ϕn − ϕ�Hλ/2(R)

since (1 + ξ2)−λ/2ξ2λ ≤ (1 + ξ2)λ/2 for all ξ ∈ R (indeed, call ξ2 = x, and multiply
both sides by (1+x)1−λ/2 to get x

λ ≤ (1+x)λ which holds true for all x ≥ 0). Thus,
since g[ϕn], g[φn] → g[ϕ], g[φ] in H

−λ/2(R) whenever ϕn,φn → ϕ, φ in H
λ/2(R),

equality (A.1) holds true also in the limit n →∞. �

Lemma A.4. If φ ∈ V
k ∩L

2(R), then φ ∈ H
λ/2(R) and, for some constant c > 0,

�φ�2
Hλ/2(R) ≤

c

∆x
�φ�2

L2(R).

Proof. Let us choose a function φ ∈ V
k ∩ L

2(R), φ(x) =
�

i∈Z
�

k

p=0 cp,iϕp,i(x),
and let φ�

r
be the regular part of its derivative,

φ�
r
(x) =

�

i∈Z

k�

p=0

cp,i

d

dx
ϕp,i(x).
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Example.

∂tu + ∂xu2 = ∂x(a(u)∂xu) + cλ

�

|z|>0

u(t, x + z)− u(t, x)
|z|1+λ

dz

Convection / diffusion / fractional diffusion

a(u) =






0 for u ≤ 0.5
2.5u− 1.25 for 0.5 < u ≤ 0.6
0.25 for u > 0.6,
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We consider two different sets of data taken from [13]. In example 1 we take

f1(u) = u2,

a1(u) =






0 for u ≤ 0.5
2.5u− 1.25 for 0.5 < u ≤ 0.6
0.25 for u > 0.6,

u0,1(x) =






0 for x ≤ −0.5
5x + 2.5 for − 0.5 < x ≤ −0.3
1 for − 0.3 < x ≤ 0.3
2.5− 5x for 0.3 < x ≤ 0.5
0 for x > 0.5,

(Ex.1)

while in example 2 we choose

f2 =
1
4
f1,

a2 = 4a1,

u0,2(x) =






1 for x ≤ −0.4
−2.5x for − 0.4 < x ≤ 0
0 for x > 0.

(Ex.2)

The numerical results are presented in Figure 1, 2, and 3. The results confirm
what we expected: the solutions of the initial value problem (1.1) can develop
shocks in finite time (this feature has been proved in [3] for the case a = 0). In
Figure 2 (b)-(c) you can see how the presence of the fractional diffusion L influences
the shock’s size and speed

In Figure 3, the dashed-dotted curve represents method (5.2), while the solid one
represents method (5.25). The two numerical solutions stay close, and numerical
convergence has been observed for finer grids. Note that here we have set b = 0 (no
fractional diffusion) in order to stress the differences between the two methods.

(a) ut + f(u)x = (a(u)ux)x (b) Equation (1.1) with λ = 0.5

Figure 1. (Ex.1): T = 0.15 and ∆x = 1/640.

Appendix A. Technical lemmas

In this appendix we state some technical results from [4] that are needed in this
paper. All proofs can be found in [4].
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