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Dislocations

Dislocations are line defects in crystals whose typical length is ∼ 10−6 m
and their thickness is ∼ 10−9 m.

When the material is submitted to shear stresses, these lines can move in
the crystallographic planes and this dynamics can be observed using
electron microscopy.

One possible (simplified) model of the dislocation dynamics is given by
the system of ODEs

ẏi = F − V ′0(yi )−
∑

j∈{1,...,N}\{i}

V ′(yi − yj) for i = 1, ...,N,

where F is a given constant force, V0 is a given potential and V is a
potential of two-body interactions.



Eikonal equation
The rescaled “cumulative distribution function”

ρε(x , t) = ε

(
−1

2
+

N∑
i=1

H
(
x − εyi

( t

ε

)))

(where H is the Heaviside function) satisfies (as a discontinuous viscosity
solution) the following nonlocal eikonal equation

ρεt (x , t) =

(
c
(x

ε

)
+ Mε

(
ρε(·, t)

ε

)
(x)

)
|ρεx(x , t)|,

with c(y) = V ′0(y)− F .

Here, Mε is the nonlocal operator defined by

Mε(U)(x) =

∫
R

J(z) E
(
U(x + εz)− U(x)

)
dz , (1)

where J(z) = V ′′(z) on R \ {0} and E is the modification of the integer
part: E (r) = k + 1/2 if k ≤ r < k + 1.
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Continuous model

If the kernel J is a sufficiently smooth, even, nonnegative function, and

J(z) =
1

|z |2
for all |z | ≥ R0

and for some R0 > 0, the rescaled cumulative distribution function ρε

converges towards a solution of the nonlinear equation

ut = H̃(−Λu, ux),

where the Hamiltonian H̃ is a continuous function and Λ is defined for
any function U ∈ C 2

b (R) and for r > 0 by the formula

− ΛU(x) = C (1)

∫
R

(
U(x + z)− U(x)− zU ′(x)1{|z|≤1}

) 1

|z |2
dz

with a constant C (1) > 0.



Continuous model

In the particular case of

c = V ′0(y)− F ≡ 0

we have H̃(L, p) = L|p| which allows us to rewrite equation in the form

ut + |ux |Λu = 0.

For suitably chosen C (1), the operator

−ΛU(x) = C (1)

∫
R

(
U(x + z)− U(x)− zU ′(x)1{|z|≤1}

) 1

|z |2
dz

satisfies
Λ = Λ1 =

(
−∂2/∂x2

)1/2
.

Hence, this is the pseudodifferential operator defined in the Fourier

variables by (̂Λ1w)(ξ) = |ξ|ŵ(ξ).



Equivalent formulation

Denoting v = ux we may rewrite equation

ut + |ux |Λu = 0.

as follows
vt + (|v |Hv)x = 0,

where H is the Hilbert transform defined in the Fourier variables by

(̂Hv)(ξ) = −i sgn(ξ) v̂(ξ).

Well known properties of this transform:

Hv(x) =
1

π
P.V .

∫
R

v(y)

x − y
dy and Λ1v = Hvx .



Quasi-geostrophic equations

The 2D quasi-geostrophic equations, modeling the dynamics of the
mixture of cold and hot air in a thin layer and the fronts between them,
are of the form

θt + (u · ∇)θ = 0, u = ∇⊥ψ, θ = −(−∆)1/2ψ

for x ∈ R2 and t > 0, where ∇⊥ = (−∂x2 , ∂x1 ).

Here, θ(x , t) represents the air temperature.

D. Chae, A. Córdoba, D. Córdoba, M. A. Fontelos ( Adv. Math. (2005))
studied the one dimesional counterpart of QG equation for the unknown
function θ = θ(x , t) for x ∈ R and t > 0:

θt + (θHθ)x = 0

for x ∈ R and t > 0.
They proved the existence, the regularity and the blow up in finite time
of solutions this equation.



Nonlinear and nonlocal equation

Generalized initial value problem

ut = −|ux | Λαu on R× (0,+∞),

u(x , 0) = u0(x)

Here, for α ∈ (0, 2),

Λα =
(
−∂2/∂x2

)α/2

is the pseudodifferential operator defined via the Fourier transform

(̂Λαw)(ξ) = |ξ|αŵ(ξ) with the Lévy–Khintchine integral representation
for every α ∈ (0, 2)

− Λαw(x) = C (α)

∫
R

(
w(x + z)− w(x)− zw ′(x)1{|z|≤1}

) dz

|z |1+α
,

where C (α) > 0 is a constant.



Self-similar solutions

First note that equation
ut = −|ux | Λαu

is invariant under the scaling

uλ(x , t) = u(λx , λα+1t)

for each λ > 0.
We found explicit self-similar solutions of this equation in the following
form

uα(x , t) = Φα(y) with y =
x

t1/(α+1)
,

where the self-similar profile Φα has to satisfy the following equation

− (α + 1)−1 y Φ′α(y) = −(ΛαΦα(y)) Φ′α(y) for all y ∈ R.



Self-similar solutions

−(α + 1)−1 y Φ′α(y) = −(ΛαΦα(y)) Φ′α(y) for all y ∈ R.

THEOREM (Existence of self-similar profile)
Let α ∈ (0, 2). There exists a nondecreasing function Φα of the regularity
C 1+α/2 at each point and analytic on the interval (−yα, yα) for some
yα > 0, which satisfies

Φα =

{
0 on (−∞,−yα),
1 on (yα,+∞),

and
(ΛαΦα)(y) =

y

α + 1
for all y ∈ (−yα, yα).



Self-similar solutions
Proof
The crucial role is played by the function

v(x) =

{
K (α)

(
1− |x |2

)α/2
for |x | < 1,

0 for |x | ≥ 1,

with K (α) = Γ(1/2) [2αΓ(1 + α/2)Γ((1 + α)/2)]−1.
It was computed by Getoor (1961) using a purely analytical argument
(based on properties of the Fourier transform) that Λαv ∈ L1(R) and

Λαv(x) = 1 for |x | < 1.

Now, we put

u(x) =

∫ x

0

v(y) dy

which satisfies u(x) = M(α) for all x ≥ 1 and u(x) = −M(α) for x ≤ −1

with M(α) = K (α)
∫ 1

0

(
1− |y |2

)α/2 dy = π

2α(α+1)Γ( 1+α
2 )2 .

Finally, we define

Φα(y) =
γ

α + 1

{
u
(
γ−1/(α+1)y

)
+ M(α)

}
with γ−1 =

2M(α)

α + 1
.



Uniqueness of self-similar solutions

At least formally, the function

uα(x , t) = Φα(y) with y =
x

t1/(α+1)
,

is a solution of the equation with the initial datum being the Heaviside
function

u0(x) = H(x) =

{
0 if x < 0,
1 if x > 0.

(2)

THEOREM (Uniqueness of self-similar solution)
Let α ∈ (0, 2). The function uα with the profile Φα is the unique
viscosity solution of equation with the initial datum (2).



Viscosity solutions

THEOREM
Consider u0 ∈ BUC (R). Then there exists the unique bounded
continuous viscosity solution u of the initial value problem

ut = −|ux | Λαu on R× (0,+∞),

u(x , 0) = u0(x)

REMARK
The function uα(x , t) at t = 0 does not belong to BUC (R).



Stability

THEOREM (Stability of the self-similar solution)
Let α ∈ (0, 2). For any initial data u0 ∈ BUC (R) satisfying

lim
x→−∞

u0(x) = 0 and lim
x→+∞

u0(x) = 1,

let us consider the unique viscosity solution u = u(x , t) and, for each
λ > 1, its rescaled version

uλ(x , t) = u(λx , λα+1t).

Then, for any compact set K ⊂ (R× [0,+∞)) \ {(0, 0)}, we have

uλ(x , t)→ Φα

( x

t1/(α+1)

)
in L∞(K ) as λ→ +∞.



Stability

We have

u(λx , λα+1t) = uλ(x , t)→ Φα

( x

t1/(α+1)

)
in L∞(K ) as λ→ +∞.

COROLLARY (Large time asymptotics of solutions)

Substituting, first t = 1, next λ = t1/(α+1) we obtain the convergence:

u
(
xt1/(α+1), t

)
→ Φα(x) as t →∞.



Lévy operator

We define
L̂u(ξ) = a(ξ)û(ξ)

with

a(ξ) = ib · ξ + q(ξ) +

∫
Rn

(
1− e−iηξ − iηξ1I{|η|<1}(η)

)
Π(dη).

Inverting the Fourier transform we obtain

Lu(x) = b · ∇u(x)−
n∑

j,k=1

ajk
∂2u

∂xj∂xk

−
∫

Rn

(
u(x − η)− u(x)− η · ∇u(x)1I{|η|<1}(η)

)
Π(dη).



Important example: fractional Laplacian

Let

Π(dη) =
C (α)

|η|n+α
with α ∈ (0, 2)

in

Lu(x) = −
∫

Rn

(
u(x − η)− u(x)− η · ∇u(x)1I{|η|<1}(η)

)
Π(dη).

In this case, we obtain the α-stable anomalous diffusion:

L = (−∆)α/2 and a(ξ) = |ξ|α for 0 < α ≤ 2.

Using symmetry of the Lévy measure, we can simplify:

(−∆)α/2u(x) = −C (α) PV

∫
Rn

u(x − η)− u(x)

|η|n+α
Π(dη).



Maximum principle

Definition
The operator A satisfies the positive maximum principle if for any
ϕ ∈ D(A) the fact

0 ≤ ϕ(x0) = sup
x∈Rn

ϕ(x) for some x0 ∈ Rn

implies
Aϕ(x0) ≤ 0.

�

REMARK
Aϕ = ϕ′′ or, more generally, Aϕ = ∆ϕ satisfies the positive maximum
principle.



Maximum principle

THEOREM
Denote by L the Lévy diffusion operator. Then A = −L satisfies the
positive maximum principle.

Proof.
Assume that 0 ≤ ϕ(x0) = supx∈Rn ϕ(x). Then

−Lϕ(x0)

= −b · ∇ϕ(x0) +
n∑

j,k=1

ajk
∂2ϕ(x0)

∂xj∂xk

+

∫
Rn

ϕ(x0 − η)− ϕ(x0)−
n∑

j=1

ηj
∂ϕ(x0)

∂xj
1I{|η|<1}(η)

 Π(dη) ≤ 0.

�



Kato inequality for Lévy operator

THEOREM
For every ϕ ∈ C∞c (Rn) ∫

Rn

(Lϕ) sgnϕ dx ≥ 0.



Strook-Varopoulos inequality
THEOREM
Assume that L is a Lévy operator.
For every p ∈ (1,∞) and ϕ ∈ C∞c (Rn) such that ϕ ≥ 0 we have

4
p − 1

p2

∫
Rn

(Lϕp/2)ϕp/2 dx ≤
∫

Rn

(Lϕ)ϕp−1 dx .

REMARK
For L = b · ∇, both sides of the Strook-Varopoulos inequality are equal
to 0.

REMARK
For L = −∆ we integrate by parts to obtain the equality∫

Rn

(−∆ϕ)ϕp−1 dx = (p − 1)

∫
Rn

|∇ϕ|2 ϕp−2 dx

= (p − 1)

∫
Rn

|∇ϕϕp/2−1|2 dx

= 4
p − 1

p2

∫
Rn

|∇ϕp/2|2 dx .



Decay estimates

THEOREM (Optimal decay estimates)
Let α ∈ (0, 1]. For any initial condition u0 ∈ BUC (R) such that
u0,x ∈ L1(R), the unique viscosity solution u satisfies

‖u(·, t)‖∞ ≤ ‖u0‖∞ and ‖ux(·, t)‖∞ ≤ ‖u0,x‖∞ for any t > 0.

Moreover, for every p ∈ [1,+∞) we have

‖ux(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1

p(α+1)

1 t−
(p−1)
p(α+1) for any t > 0,

with some constant Cp,α > 0 depending only on p and α.



Proof of the decay estimates
For v = ux , we consider the regularized problem

vt = εvxx − (|v |Λα−1Hv)x on R× (0,+∞), (3)

v(·, 0) = v0 = u0,x ∈ L1(R) ∩ L∞(R) (4)

We multiply this equation by |v |p−2v with p > 1 to get

1

p

d

dt

∫
R
|v |p dx = ε

∫
R

vxx |v |p−2v dx −
∫

R

(
(Λα−1Hv)|v |

)
x
|v |p−2v dx .

We drop the first term on the right hand side, because it is nonpositive.
Integrating by parts and using the elementary identity

|v |
(
|v |p−2v

)
x

=
p − 1

p

(
|v |p−1v

)
x
,

we transform the second quantity on the right hand side as follows

−
∫

R

(
(Λα−1Hv)|v |

)
x
|v |p−2v dx = −p − 1

p

∫
R

(Λαv)|v |p−1v dx .

Consequently, we can apply the Stroock–Varopoulos inequality.



Nonlocal porous medium equation

The equation satisfied by v = ux

vt = −(|v |Λα−1Hv)x (5)

(with the Hilbert transform H ) can be treated as a nonlocal counterpart
of the porous medium equation. For α = 2 and for nonnegative v , this
equation reduces to

vt = (vvx)x =
(
v2/2

)
xx
.

The Lp-decay estimates of ux show a regularizing effect created by the
equation, even for the anomalous diffusion:

if v0 ∈ L1(R) then v ∈ Lp(R) for each p > 1.

Equation (5) has compactly supported self-similar solution

v(x , t) = t−
1

α+1 Φ′α

(
x/t

1
α+1

)
, where the profile Φα was constructed

above. This function for α = 2 corresponds to the well known
Barenblatt–Prattle solution of the porous medium equation.



Nonlocal porous medium equation

Multidimensional case

∂tu = ∇ · (|u|m−1∇α−1u), t > 0, x ∈ RN

where m > 1 and ∇α−1 is a singular integral operator which coincides
with the classical gradient when α = 2.

One possible definition: this is the Fourier multiplier with symbol

|ξ|α−2iξ.

Work in progress – jointly with Piotr Biler and Cyril Imbert.



Recent works by Caffarelli and Vazquez !



Thank you !


