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Overview

I Introduction to the biology of cell adhesion.

I A nonlocal partial-differential equation model.

I Method of lines approach.

I Approximation and evaluation of the nonlocal term.

I Nonperiodic boundary conditions.

I Summary and outlook.
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Cell adhesion (1)

Adhesion [latin adhaesio] of cells in the body deter-
mined through expression and regulation of cell adhesion
molecules

I Cadherines (cell-cell adhesion)
I Integrines (cell-matrix adhesion)
I ...a few others.

Adhesion is important for tissue integrity and cell migra-
tion!

I Embryonic development: cells adhere selectively to each other and sort out to
form tissue and organs.

I Tumour invasion: modified adhesive properties of tumour cells are implicated
as an important factor.
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Cell adhesion (2)

[Gerhardt et al., J. Cell Biol. (161), ’03]

Cells explore their surrounding in search
of suitable adhesive sites.

Filopodia of endothelial cells (green).
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Cell sorting

[Foty & Steinberg, Dev. Biol. (278), ’05]

2 cell types, differing in number of cadherin
molecules on their cell surface only.

Cell type with larger number sorts to the core
of the cell pellet.

Differential Adhesion Hypothesis (Steinberg)

A mixture of two cell types sorts always to the
same final configuration, independent of its ini-
tial distribution. This final configuration depends
solely on the adhesive properties (self- and cross-
adhesion parameters) of the cell types.
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Figure 1: Sketches showing the behaviour of two adhesive cell populations, as predicted by the DAH.
(a) The same populations always approach the same final configuration, regardless of initial distri-
bution. Starting from left, populations of mixed and dissociated cells coalesce before evolving to a
final configuration (shown here as “engulfment”). Starting from right, the same two populations,
when placed together as fragments, spread over one another before reaching the same pattern. (b)
Hierarchical relationships in adhesive populations. (c) Two populations, A and B evolve into various
final configurations according to their self-adhesion SAA, SBB (between A and A, between B and B)
and cross-adhesion CAB (between A and B) strengths. For two populations, the observed patterns
are mixing (in which the populations are uniformly distributed – requires dominant cross adhesion
CAB > SAA+SBB

2 ), engulfment (in which the more cohesive population is engulfed by the less cohesive
population – requires Sv < C < Su (or SAA < CAB < SBB)), partial engulfment (for which the cross
adhesion strength is less than both the self adhesion strengths – CAB < SAA and CAB < SBBv) and
complete sorting (for which CAB = 0 and the two populations form separate aggregations). Figures
adapted from Foty and Steinberg (2004).

and Heath 1976).

1.1 Cell adhesion during pattern formation and development

In a series of classical experiments, Townes and Holtfreter (1955) demonstrated the intrinsic capacity for
certain embryonic cell populations, when dissociated and randomly mixed, to spontaneously reorganise
into their original embryonic relationship, a process attributed at the time to “tissue-affinity”. The
underlying mechanisms governing this “cell-sorting” have been the subject to a significant degree of
speculation and experimentation over the years, with the Differential Adhesion Hypothesis (DAH) of
Steinberg (see the reviews of Foty and Steinberg 2004; Steinberg 2007) to the fore of theories. The
series of experiments by Steinberg in the 1960s (Steinberg 1962a,b,c) demonstrated that embryonic
cell types obey strict rules: whatever the initial distribution for two separate populations was, the
cells always rearranged into the same configuration, Figure 1 (a). Furthermore, populations formed
hierarchical relationships: if cells of type B are engulfed by cells of type A and cells of type C are

3

[G. & Painter, ’10]
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Modelling of cell adhesion

Reasonable expectation for any model of cell adhesion at a population level
I predict aggregation of a population as “adhesiveness” of cells is increased,
I for multiple cell populations, predict the sorting properties as postulated by the

Differential Adhesion Hypothesis.

Two general classes of models
I individual cell based (discrete) models
 dynamics of individual cells,

I continuous models
 dynamics of population level behaviour.

←− this is what we do.
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Continuous modelling approaches

I Cells represented through their density at the tissue level.

I Cellular scale events captured in model parametrisation.

Examples
I Cell-matrix adhesion: haptotactic migration modelled by advective-flux type

term (cf. chemotaxis).

I Cell-cell adhesion: Is problematic!
I Some aspects of adhesion captured by density-dependent cell motility

coefficients.

I Direct incorporation of surface tension (e.g. Byrne, Chaplain, Lowengrub,...)  
higher-order PDE models arising from expansion of nonlocal terms.

I Integro-PDE models (Armstrong and co-workers).
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The nonlocal continuous adhesion model (1)

Cell population i with density ui (t , x) in 1D space.

Conservation of mass⇒

∂ui

∂t
= − ∂

∂x

(
−Di

∂u
∂x

+ Ja,i (t , x)
)

.

From Stokes law for a ball (cell) of radius R in a laminar flow:

Ja,i(t , x) =
1
φR

ui (t , x)Fi (t , x) ,

I Fi (t , x) ... total force acting on cells of type i at x caused by adhesion,
I φ ... viscosity of the medium.
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The nonlocal continuous adhesion model (2)

The total force Fi in x is the sum of “local” forces: Fi (t , x) :=
∫ R̂

−R̂
fi (t , x , r ) dr

sensing region︷ ︸︸ ︷
local force in x + r :
fi (t , x , r ) = sign(r ) gi (u(t , x + r )) Ω(|r |)

︸ ︷︷ ︸
rx − R̂ x x + r x + R̂

Integro-PDE model with adhesion velocity Ai{u(t , ·)}(x)

Ai{u(t , ·)}(x) :=
1

ΦR

∫ R̂

−R̂
sign(r ) gi (u(t , x + r )) Ω(|r |) dr ,

∂ui

∂t
=− ∂

∂x

(
−Di

∂ui

∂x
+ uiAi{u(t , ·)}

)
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The nonlocal continuous adhesion model (3)

Ω(r ) ≥ 0 for r ≥ 0, e.g.
I constant,

I linearly decaying to zero on [0, R̂].

gA(uA) ≥ 0 — one cell population
I linear: gA(uA) = CAAuA

may lead to unbounded aggregation,

I logistic: gA(uA) = CAAuA max{0, 1− uA}
aggregate density remains bounded.

gi (uA, uB) ≥ 0 , i = A, B — two cell populations
I logistic: gi (uA, uB) = (CiAuA + CiBuB) max{0, 1− uA − uB}.

+ initial conditions and periodic boundary conditions.
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The nonlocal continuous adhesion model (4)

I Global existence and boundedness has been shown for a similar nonlocal
chemotaxis model [Hillen et al., ’07].

I Boundedness of solution in 1D requires additional assumptions on g and Ω
[Sherratt et al. (’09)] and is open in 2D.

I One cell population: aggregation takes place for C11 > 0 sufficiently large
(Turing instability).

I For R̂ → 0: adhesion model reduces to [G., Chaplain, ’08]

standard taxis model for linear g,
volume-filling taxis [Hillen, Painter, ’01] model for logistic g.
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Cell sorting experiment – two cell populations

increasing cross-adhesion coefficient CAB −→
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two cell populations
densities uA, uB ;
shown is uA − uB

self-adhesion:
CAA = 30
CBB = 15

initial conditions:
← mixed

← separated

[G. & Painter, ’10]
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Numerical approach
Method of Lines

I Uniform spatial grid (1D and 2D) with h = 1/N.

I 2nd order finite volume spatial discretisation

 large stiff IVP for ODE system U̇(t) = f(t , U(t))

for the average densities/concentrations U(t) in the grid cells.

I Time integration with matrix-free, linearly implicit Runge-Kutta method
ROWMAP [Weiner et al., ’97].

I Simulation environment in Matlab.

I Computational bottleneck is the evaluation of the nonlocal expression for the
adhesion velocity within each right-hand side evaluation.
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Treatment of the nonlocal term (1)
Approximation

Adhesion velocity in 1D

Ai{u(t , ·)}(x) :=
1

ΦR

∫ R̂

−R̂
sign(r ) gi (u(t , x + r )) Ω(|r |) dr

must be evaluated on all grid cell interfaces.
1. Evaluate gi (u(t , x)) for averages U(t) to yield vector G.
2. Compute a (pcw. constant or linear) reconstruction g̃i (x) of gi (u(t , x)) from G.
3. Replace gi (u(t , x)) by g̃i (x) and determine weights wl of an integration formula

for the adhesion velocity (arbitrarily exact determination of the wl possible).

 Ai {u(t , ·)} (xj + h/2) ≈
l+∑

l=−l−

wlGj+l =: aj

Collect all evaluations on the grid as

a = M × G with a pre-computed matrix M .
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Treatment of the nonlocal term (2)
Efficient evaluation

a = M × G

In 1D with periodic BCs:
 circulant matrix M

Exploit structure!

0BBBBBBBB@

1 2 3 0 0 6 7
7 1 2 3 0 0 6
6 7 1 2 3 0 0
0 6 7 1 2 3 0
0 0 6 7 1 2 3
3 0 0 6 7 1 2
2 3 0 0 6 7 1

1CCCCCCCCA
Theorem

Every circulant matrix M, defined by its first column m, is diagonalised by the dis-
crete Fourier transform matrix F , i.e.

M = F HΛF with Λ = diag(F ×m) .

a = M × G = F Hdiag(F ×m)F × G = iFFT(FFT(m). ∗ FFT(G)) .
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Treatment of the nonlocal term (3)
Numerical test

Similar approach but in 2D leads to matrix-vector product a = M × G .

Due to periodicity:
M is block-circulant
with circulant blocks.

 efficient evaluation
Use 2D version of FFT.

Reduction of operations (h = 1
N )

∼ N4 → ∼ N2log(N).

Speed-up: 10 − 100 for matrix-
vector product.
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Full cell sorting simulation: speed-up about 20 (from 2 h to 6 min).
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Nonperiodic boundary conditions (1)

Ai{u(t , ·)}(x) :=
1

ΦR

∫ R̂

−R̂
sign(r ) gi (u(t , x + r )) Ω(|r |) dr ,

∂ui

∂t
=− ∂

∂x

(
−Di

∂ui

∂x
+ uiAi{u(t , ·)}

)
Periodic Lead to a = M × G with circulant M ∈ RN1,N1 .

Zero-flux No adhesive interaction outside of Ω extend gi by zero out-
side of Ω rectangular Toeplitz matrix M ∈ RN1+1,N1 .

Symmetry There is adhesive interaction outside of Ω  extend gi by
symmetry outside of Ω  rectangular Toeplitz matrix M ∈
RN1+1,Nleft+N1+Nright .

Dirichlet What does this mean for adhesive interaction outside of Ω?
Requires specific experimentalist/modeller input!
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Nonperiodic boundary conditions (2)
Toeplitz to circulant conversion

Theorem

Let G ∈ Rn and M ∈ Rm,n be a banded Toeplitz matrix with upper and lower
bandwidth l+ and l−, respectively, and entry wj on its j th diagonal, j = −l−, ... , l+.
Then

MG =
[
CG̃
]

1,...,m

for the circulant matrix C ∈ R`,` with ` := max{n + l−, m + l+} and its first column c
is given by

c := (w0w−1 ... w−l− 0 ... 0︸ ︷︷ ︸
`−l+−l−−1 zeros

wl+wl+−1 ... w1)T ,

together with G̃ := (G 0)T ∈ R`.
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Nonperiodic boundary conditions (3)
Steady states

Periodic, symmetry BCs:
Homogeneous steady state.

Zero-flux BCs:
Homogeneous steady states are
not possible by construction!

Example −→
Boundary conditions:

Left: symmetry
Right: zero-flux

Initial condition: u(0, x) = 0.1
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Complex geometries (1)

uA uB uA − uB
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Complex geometries (2)

uA uB uA − uB
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Summary...

I Cell adhesion is important as a basic mechanism in biology but also in
biomedical applications.

I We studied a flexible continuous model of cell adhesion; capable to correctly
reproduce many aspects of cellular adhesion.

I This model can be efficiently simulated [G., ’10]. The technique allows for
spatially highly resolved long time simulations with reasonable CPU time
requirements.

I The requirements of periodic boundary conditions and rectangular domains
can be relaxed without destroying favourable algorithmic properties.

I The modelling approach can be utilised in more complex applications; we
have demonstrated that for tumour invasion [G. & Chaplain, ’08; G. & Painter ’10].
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... and Outlook

I What are the implications of nonperiodic boundary conditions for biology and
mathematics?

I Improve the pre-processing for nonlocal term evaluation.
I Extend the analytical results regarding the model equations, in particular

refined boundedness results.
I Derive (or at least justify) parameter functions like gi (u) from microscopic

models of cell adhesion.
I Cell adhesion does not only cause forces resulting in cell migration but also

impacts, through the signalling initiated by binding events, on other aspects of
cell behaviour including cell division and apoptosis (programmed cell death).

Merci beaucoup pour votre attention!
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