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joint works with
E. Carlini, N. Forcadel, R. Monneau, P. Hoch

”Nonlocal aspects in PDEs and applications”
Journées Numériques, Besançon, May 20, 2010
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The classical Fast Marching Method

Propagation of front: level set approach

The curve
Γt = {(x, y) ∈ R

2, u(x, y, t) = 0}
moves with normal velocity c, if the function u solves the PDE

{
ut = c(x, y, t)|∇u| R

2 × (0, T )

u(x, y, 0) = 1
2dist(x, y,Γ0)

2.

in the class of continuous viscosity solutions.
Ref. Crandall, Lions, Evans, Ishii, etc...



A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics

The classical Fast Marching Method

The Main Fast Marching schemes

c(x, y) > 0
Fast Marching Method
(Tsitsiklis 95, Sethian 96)

c(x, y) ≥ 0
Semi-Lagrangian Fast Marching Methods
(F., Cristiani 05)

Monotone evolution: c(x, y, t) > 0 (or c(x, y, t) < 0)
Ordered Upwind Method
(Sethian,Vladimirsky 01)

unsigned c(x, y, t)
Generalized Fast Marching Method
(Carlini, F., Forcadel, Monneau 08)
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The classical Fast Marching Method

The stationary problem for the monotone eikonal equation

Γt = {(x, y) ∈ R
2 : u(x, y, t) = 0} = {(x, y) ∈ R

2 : T (x, y) = t}
where T (x, y) solves the minimum time problem.

Ω = {(x, y) ∈ R
2 : u(x, y, 0) ≤ 0}

c(x, y) > 0 (see Osher (93), F.-Giorgi-Loreti (94)){
c(x, y)|∇T (x, y)| = 1 R

2 \ Ω

T (x, y) = 0 Ω

c(x, y, t) > 0 (see Sethian Vladimirsky 01){
c(x, y, T (x, y))|∇T (x, y)| = 1 R

2 \ Ω

T (x, y) = 0 Ω
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The classical Fast Marching Method

The Finite Difference approximation

Let us write the equation as

T 2
x + T 2

y =
1

c2(x, y)

The standard up-wind FD approximation is

(1) max(0, Ti,j − Ti−1,j , Ti,j − Ti+1,j)
2+

max(0, Ti,j − Ti,j−1, Ti,j − Ti,j+1)
2 =

(
∆x

ci,j

)2

The scheme satisfies a specific (Causality property ) :
the solution at each grid point depends only on the smallest
adjacent value.
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The classical Fast Marching Method

Properties of the FD scheme

The iterative method is

consistent

stable, provided a CFL condition is satisfied

convergent

expensive, since it globally works on all the grid values at
every iteration
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The classical Fast Marching Method

The Classical Fast Marching Method (FMM)
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Far

Accepted

• NB ≡ V (Ω∆)\Ω∆ where Ω∆ = {(i, j) : (xi, yj) ∈ Ω} and
V (i, j) ≡ {(l,m) : |(l,m) − (i, j)| = 1}.
• Ω, T = 0
• T = ∞
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The classical Fast Marching Method

FMM at work
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1 Compute the time T̃i,j in the NB with:

max(0, T̃i,j − Ti−1,j , T̃i,j − Ti+1,j)
2+

max(0, T̃i,j − Ti,j−1, T̃i,j − Ti,j+1)
2 =

(
∆x

ci,j

)2
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The classical Fast Marching Method

FMM at work
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1 Compute the time T̃i,j in the NB

2 Call Ti,j the minimal time on the NB
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The classical Fast Marching Method

FMM at work
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1 Compute the time T̃i,j in the NB

2 Call Ti,j the minimal time on the NB
and accept it .
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The classical Fast Marching Method

FMM at work
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Far

Accepted

1 Compute the time T̃i,j in the NB

2 Call Ti,j the minimal time on the NB and accept it

3 The new NB is defined as the boundary of the new accepted
region A
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The classical Fast Marching Method

FMM at work
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Far

Accepted

3 The new NB is defined as the boundary of the new accepted
region A

4 Iterate until the NB is empty
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The classical Fast Marching Method

Main properties of FMM

The FMM method compute the time T (i, j) the front reaches
the point (i, j) with complexity O(NlogN) and it has been
proved:

Convergence
Theorem in the case c ≥ 0, the FM method is convergent to
(1), in the sense that

||T (xi, yj) − Ti,j||∞ → 0 for ∆x→ 0

Idea of the proof:
Show that the solution computed by the FM method is exactly the

same that the one computed by the iterative scheme

Some references: Sethian(1996,1999), Cristiani-F. (2005).
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A Generalized Fast Marching Method (GFMM)

A Generalized Fast Marching Method (GFMM)

AIM: to extend the FMM to the case c(x, y, t) unsigned.

ADVANTAGE :

1 no need of techniques of reinitialization, in case of small
gradient of the solution

2 complexity O(NlogN) in case of smooth speed c

TOOL : an auxiliary discontinuous function θ(x, y, t)
to track the front.
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A Generalized Fast Marching Method (GFMM)

Non monotone evolution

If the speed function is NOT always positive then the crossing time
T (x, y) is NOT single-valued function.
We decide to use a discontinuous function to track the position of
the front

θ(x, y, t) =

{
1 if x, y ∈ Ωt,
−1 if x, y 6∈ Ωt.

and to solve locally in time the stationary equation for the time
evolution {

|c(x, y, tn)||∇T (x, y)| = 1 R
2 \ Ωtn

T (x, y) = U(x, y) Ωtn
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A Generalized Fast Marching Method (GFMM)

GFMM method

We introduce an auxiliary discrete function

θn
i,j =

{
1 if (xi, yj) ∈ Ωn

−1 otherwise.

We define the two phases

Θn
± ≡ {i, j : θn

i,j = ±1},

and the fronts

Fn
+ ≡ V (Θn

−)\Θn
−, Fn

− ≡ V (Θn
+)\Θn

+

where V (D) represents the set of first neighbours to the nodes in
D.
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A Generalized Fast Marching Method (GFMM)

GFMM method

Def. We define two different narrow bands:

NBn
+ = Fn

+ ∩ {(i, j), cni,j < 0}, NBn
− = Fn

− ∩ {(i, j), cni,j > 0}.

• Fn
− • Fn

+
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A Generalized Fast Marching Method (GFMM)

GFMM

1 Compute the time ũn−1
i,j in the NBn−1

+ and NBn−1
−
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A Generalized Fast Marching Method (GFMM)

GFMM

1 Compute the time ũn−1
i,j in the NBn−1

+ and NBn−1
−

2 Call tn the minimal time ũn−1
i,j on the

NBn−1 = NBn−1
+ ∪NBn−1

−
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A Generalized Fast Marching Method (GFMM)

GFMM

1 Compute the time ũn−1
i,j in the NBn−1

+ and NBn−1
−

2 Call tn the minimal time ũn−1
i,j on the

NBn−1 = NBn−1
+ ∪NBn−1

− and accept at the time tn the
minimizing points (i, j)
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A Generalized Fast Marching Method (GFMM)

GFMM

1 Compute the time ũn−1
i,j in the NBn−1

+ and NBn−1
−

2 Compute the minimal time ũn−1
i,j on the NBn−1 and accept

(i, j)

3 The new Fn
± is defined as the boundary of the new regions

Θn ≡ 1 and Θn ≡ −1
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A Generalized Fast Marching Method (GFMM)

GFMM

1 Compute the time ũi,j in the NB+ and NB−

2 Compute the minimal ũi,j on the NBn−1 and accept (i, j)

3 The new Fn
± is defined as the boundary of the new regions

Θn ≡ 1 and Θn ≡ −1

4 Update the NBn and return to Step 1
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A Generalized Fast Marching Method (GFMM)

Convergence result

Theorem (Carlini, F., Forcadel, Monneau)
Let c(x, y, t) be globally Lipschitz continuous in space and time,
the initial set Ω0 be with piece wise smooth boundary and
θ∆(x, y, t) be an appropriate extension of the discrete function θn

i,j

over all the continuous space,then

θ
0
(x, y, t) = lim sup

∆→0,(z,w)→(x,y),s→t

θ∆(z,w, s)

(resp. θ0(x, y, t) = lim inf∆→0,(z,w)→(x,y),s→t θ
∆(z,w, s)) is a

viscosity sub-solution (resp. super-solution) of the problem

{
θt = c(x, y, t)|∇θ| R

2 × (0, T )

θ = 1Ω0
− 1Ωc

0
R

2.
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A Generalized Fast Marching Method (GFMM)

Non constant time step!

The time step ∆tn = tn+1 − tn is not constant and we can
actually have:

1 ∆tn >> 1 too large time step

2 ∆tn < 0 not increasing time

In order to avoid Case 1, we choose

t̂n ≡ tn + ∆t

and to avoid Case 2 we set tn = tn−1. Then one always gets

0 ≤ ∆tn < ∆t

WARNING: If Case 1 occurs we do not advance the front!
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Extension to dislocation dynamics

Dislocations

Crystal lattice showing
atoms and lattice planes1

An edge dislocation 2

1Picture from: http://en.wikipedia.org
2Picture from: http://en.wikipedia.org
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Extension to dislocation dynamics

A picture of dislocations
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Extension to dislocation dynamics

A model for dislocations

We study the phase field model of dislocation dynamics which has
been proposed by Rodney, Le Bouar and Finel.
To simplify the model, let us assume that:

the thickness of the dislocation is zero

there is only one dislocation in the domain

the dislocation is planar (it is contained in the slip plane)
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Extension to dislocation dynamics

A model for dislocations

We assume that the dislocation line is represented by the boundary
Γt of a smooth bounded domain Ωt ⊂ R

2.
Let us define

u(x, t) =





> 0 if x ∈ Ωt,
< 0 if x 6∈ Ωt

= 0 if x ∈ ∂Ωt.

{
ut = c(1u>0, x, t)|Du| in R

2 × (0,+∞),
u(x, 0) = u0(x) on R

2.
(1)

where c(x,t) is our non local velocity.
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Extension to dislocation dynamics

Dislocations dynamics, Peierls-Nabarro model

The resolved Peach-Koehler force acting on the dislocation is

c(x, t) = c0 ∗ 1u>0(x, t)

The Fourier transform of c0 is given by:

ĉ0δ(ξx1
, ξx2

) = −1

2

(
ξ2x1

+ ( 1
1−ν

)ξ2x2√
ξ2x1

+ ξ2x2

)
e−δ

√
ξ2
x1

+ξ2
x2 , (2)

δ ≃ size of the core of the dislocation
ν influences the anisotropy of the evolution
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Extension to dislocation dynamics

Short time existence and uniqueness

Theorem (Alvarez, Carlini, Monneau, Rouy)
Let c0 ∈ L∞(R2) ∩BV (R2). If u0 satisfies

|∇u0(x, y)| < B in R
2

and
∂u0

∂y
(x, y) > b > 0 in R

2,

then there exists T ∗ such that a unique viscosity solution of the
problem in R

2 × [0, T ∗) exists .
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Extension to dislocation dynamics

A finite difference scheme for the continuous model

{
vn+1
i,j = S(ci,j(1{vn>0}), v

n) for n = 0, ...,N

vn
i,j = u0(xi, yj)

S(ci,j(1{vn>0}), v
n) = vn

i,j + ∆tHd(ci,j(1{vn>0}),D
±
x v

n
i,j,D

±
y v

n
i,j)

where the discrete numerical Hamiltonian is

Hd(ci,j([v
n]),D±

x v
n
i,j,D

±
y v

n
i,j) =

{
ci,j([v

n])H+ ci,j[v
n] ≥ 0

ci,j([v
n])H− ci,j[v

n] < 0.

H+,H− are the standard numerical Hamiltonian:

H+ =
{

max(D+
x v

n
i,j ,D

+
y v

n
i,j, 0)

2 + min(D−
x v

n
i,j,D

−
y v

n
i,j, 0)

2
} 1

2
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Extension to dislocation dynamics

Properties of the FD scheme

The FD scheme is

consistent

NOT monotone

convergent under the CFL condition

0 <
∆t

∆x
≤ 1

2
√

2|c0δ(·, ·)|1

for small time
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Extension to dislocation dynamics

Convergence result

Theorem (Alvarez, Carlini, Monneau, Rouy)
If u0 satisfies

|∇u0(x, y)| < B in R
2

and
∂u0

∂y
(x, y) > b > 0 in R

2,

then there exists a positive constant C such that

sup
i,j∈Z

|u(xi, yj , n∆t) − vn
i,j| ≤ C

√
∆t n = 1, ...,NT ∗

with ∆t ≃ ∆x.
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Extension to dislocation dynamics

Computation of the discrete convolution

Under periodic assumption on w one have

(
ĉ∆
)

(p,m)
= ŵ(p,m) · (

̂̃
c0)(p,m) for every (p,m) ∈ Z

2

where ŵ is the Fourier transform of w = [vn] and c̃0 is well
approximated by:

̂̃c0(p,m) ≃ ĉ0(πp/L, πm/L)

where ĉ0 is the Fourier transform of the kernel c0.
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Extension to dislocation dynamics

Numerical tests: Anisotropic Shrinking of a circle
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Extension to dislocation dynamics

Convergence result for non-local dislocation dynamics

{
θt(x, t) = c[θ](x, t)|Dθ(x, t)| on R

N × (0, T )
θ(·, 0) = 1Ω0

− 1Ωc

0
.

(2)

c[θ](x, t) = c1(x, t) + (c0 ⋆ θ(·, t))(x).
Main assumptions

(A1) Existence and uniqueness for problem (2)

(A2) Existence and uniqueness for the perturbed problem with
ce(x, t) = c[θ](x, t) + e

(A3) Stability of the perturbed problem

|θe − θ|L∞((0,T );1(RN )) ≤ CeT
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Extension to dislocation dynamics

Convergence result for non-local dislocation dynamics

Theorem (Carlini, Forcadel, Monneau)
Under assumptions (A1)-(A2)-(A3).
Let θ∆(x, t) be the solution of GFMM algorithm applied to
problem (2) with discrete speed c∆ defined by

c∆ = c[θ∆]

Then
|θ∆ − θ|L∞((0,T );L1(RN )) ≤ ωT (∆).

with ωT (∆) modulus of continuity with respect to ∆ and T small
enough.
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Extension to dislocation dynamics

Checking assumption

If a closed dislocation loop is a smooth curve ∂Ω0 in R
2 at

the initial time,
if Ω0 bounded and ∂Ω0 smooth enough and
if c1 ∈W 1,∞, c0 ∈W 1,1 ∩ L∞ then (A1)-(A3) are verified for
short time
(see Alvarez ,Hoch, LeBouar, Monneau ’04).

If dislocation dynamics has a non-negative velocity and the
initial curve satisfyes an interior ball condition,
if c1 ∈W 2,∞, c0 ∈W 1,1 ∩ L1 then (A1)-(A3) are verified for
large time
(see Alvarez, Cardialiaguet, Monneau ’05).
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Extension to dislocation dynamics

Local dynamics a rotating line

Speed: c(x, t) = sin(2πt)x1

GFMM FD

∆x H(C, C̃) CPU H(C, C̃) CPU

0.04 5.21 · 10−2 0.52s 4.82 · 10−2 1.82s
0.02 3.07 · 10−2 1.71s 2.46 · 10−2 13.3s
0.01 1.54 · 10−2 10.5s 1.35 · 10−2 102s
0.005 9.00 · 10−3 130s 7.00 · 10−3 842s
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Extension to dislocation dynamics

The dislocation line passes the obstacle
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Extension to dislocation dynamics

The obstacle breaks the line
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Extension to dislocation dynamics

The obstacle captures the line
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: local solver

The neighborhood of the node i, is the set of nodes defined

V (i) = {N(i, l), l ∈ V(i)}

where V(i) = {1, . . . ,Nv(i) } .
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: local solver

We suppose there exists a γ0 > 0 s.t. for any mesh

γ0 ≤ h

∆
≤ 1

where ∆ := max{lij , i, j ∈ {1, . . . ,Nv}},
and h := min{lij , i, j ∈ {1, . . . ,Nv}}
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids

Local problem

|Du(x)| =
1

|c(xi, tn)| in Di × [tn, tn+1[

where Di is:

General local solver

Q
(
xi, ui, {uN(i,j), uN(i,j+1)}j∈V(i)}

)
=

1

|c(xi, tn)| i ∈ {1, . . . ,Nv}.
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GFMM on unstructured grids

Properties Local Solver: Consistency

(H1)
For any ψ ∈ C2(R2), let us denote by ψi := ψ(xi) for any
i ∈ {1 . . .Nv} and consider true the following assumptions:

lim
m→∞

Q
(
xim, ψim , {ψN(im,jm), ψN(im,jm+1)}jm∈V(im)

)
= |Dψ(x)|

where m is an index of refinement for a family of grids {MT
m}m≥0

and (xim) ∈ MT
m is a sequence of nodes such that for m→ ∞

∆m → 0 and xim → x.
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GFMM on unstructured grids

Properties Local Solver: Monotonicity

(H2)
Let us suppose ui ≤ t and define

C(i) := {j ∈ V(i), s. t. uN(i,j) ≥ ψN(i,j), uN(i,j+1) ≥ ψN(i,j+1)}

then

Q(xi, ui, {uN(i,j), uN(i,j+1)}j∈C(i)) ≤
Q(xi, t, {ψN(i,j), ψN(i,j+1)}j∈C(i)).
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GFMM on unstructured grids

Properties Local Solver

(H3)
K

∆
≤ Q(xi, t, {t, t−K}) ≤ K

h

for any positive constant K
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GFMM on unstructured grids

Example of Local Solver

1 Local problem

{ |Du(x)| = 1
|c(xi,tn)| x ∈ Di

u(x) = uh(x) x ∈ ∂Di

2 the Hopf-Lax formula :

u∗h(xi) = min
y∈∂Di

(uh(y) +
|xi − y|
|c(xi, tn)| )

3 Local Solver:

Q = max
y∈∂Di

(
u∗h(xi) − uh(y)

|xi − y|

)
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GFMM on unstructured grids

Example of Local Solver: Semi-Lagrangian

Q = max
j∈V(i)

max
0≤ξ≤1

(
ui − (1 − ξ)uN(i,j+1) − ξuN(i,j)

|τi,j(ξ)|

)

Refs: Tsitsiklis (95), Cristiani-Falcone (2005), Sethian
Vladimirsky(2006), Bornemann Rash(2005) )
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids

We introduce an auxiliary discrete function

θn
i =

{
1 if xi ∈ Ωn

−1 otherwise.

We define the two phases

Θn
± ≡ {i : θn

i = ±1},

and the fronts

Fn
+ ≡ V (Θn

−)\Θn
−, Fn

− ≡ V (Θn
+)\Θn

+
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GFMM on unstructured grids

GFMM algorithm on Unstructured grids

Initialization

Initialization of the matrix θ0

θ0
i =

{
1 xi ∈ Ω0

−1 xi /∈ Ω0

Initialization of the time on the front
u0

i = 0 for all i ∈ F 0
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GFMM on unstructured grids

GFMM algorithm on Unstructured grids

Main Cycle

1 Compute the time ũn−1
i in the NBn−1

+ and NBn−1
− using a

local solver

Q(ũn−1
i , {un−1

N(i,j), u
n−1
N(i,j)}j∈V (i)) =

1

|c(xi, tn)|

using respectively the values un−1 defined on Fn−1
− or Fn−1

+ .

2 Compute the minimal time ũn−1 on the NBn−1
±

3 Initialize the new accepted points
NAn

± = {i ∈ NBn−1
± un

i = tn},
4 Update Θn

± on the NAn
±

5 Update Fn
± and NBn

± and return to 1



A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics

GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of θǫ(x, t)

{tkn
, n ∈ N} is a strictly increasing subsequence of (tn)n such that

tkn
= tkn+1 = ... = tkn+1−1 < tkn+1

.

Extension of (θn
i )n,i on the continuous time interval [0, T ]

θ(xi, t) = θ
kn+1−1
i if (xi, t) ∈ {xi} × [tkn

, tkn+1
[

(Same extension on structured grids.)
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of θǫ(x, t)

Let ǫ = (∆,∆t) and θǫ(x, t) be an extension of (θ(xi, tn))i on a
continuous domain Ω of R

2

• θ = 1, • θ = −1

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

(Different than structured grids!)
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of θǫ(x, t)

Let ǫ = (∆,∆t) and θǫ(x, t) be an extension of (θ(xi, tn)i) on a
continuous domain Ω of R

2

• θ = 1, • θ = −1
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GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of θǫ(x, t)

Let ǫ = (∆,∆t) and θǫ(x, t) be an extension of (θ(xi, tn)i) on a
continuous domain Ω of R

2

• θ = 1, • θ = −1
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GFMM on unstructured grids

Partial Convergence result

Theorem (Carlini, F., Hoch )
Let c(x, t) 6= 0 be globally Lipschitz continuous in space and time,
the initial set Ω0 be with piecewise smooth boundary then

θ
0
(x, t) = lim sup

ǫ→0,z→x,s→t
θǫ(z, s)

(resp. θ0(x, t) = lim infǫ→0,z→x,s→t θ
ǫ(z, s))

is a viscosity sub-solution (resp. super-solution) of the problem

θt = c(x, t)|∇θ| R
2 × (0, T )
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GFMM on unstructured grids

Numerical tests: evolution of one circle

Speed c(x, y, t) = 0.1t− x
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GFMM on unstructured grids

Numerical tests: evolution of two circles

Speed c(x, y, t) = 1 − t

Increasing (left) and decreasing (right) evolution of two circles
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GFMM on unstructured grids

Conclusions and perspectives

The GFMM can deal with unsigned front propagation

It can work on structured and unstructured grids

The GFMM can deal with non local velocities

A general result of convergence on unstructured grids is still
missing (on going)

To have a complete convergence result we need

1 to prove that θ
0

is sub-solution in the case c = 0
2 to prove a comparison principle
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