> M. Falcone Dipartimento di Matematica SAPIENZA - Università di Roma

joint works with E. Carlini, N. Forcadel, R. Monneau, P. Hoch

"Nonlocal aspects in PDEs and applications" Journées Numériques, Besançon, May 20, 2010

1 The classical Fast Marching Method

- 2 A Generalized Fast Marching Method (GFMM)
- 3 Extension to dislocation dynamics
- **4** GFMM on unstructured grids

Propagation of front: level set approach

The curve

$$\Gamma_t = \{(x, y) \in \mathbb{R}^2, u(x, y, t) = 0\}$$

moves with normal velocity c, if the function u solves the PDE

$$\begin{cases} u_t = c(x, y, t) |\nabla u| & \mathbb{R}^2 \times (0, T) \\ u(x, y, 0) = \frac{1}{2} dist(x, y, \Gamma_0)^2. \end{cases}$$

in the class of continuous viscosity solutions. Ref. Crandall, Lions, Evans, Ishii, etc...

The Main Fast Marching schemes

- c(x, y) > 0
 Fast Marching Method
 (Tsitsiklis 95, Sethian 96)
- c(x, y) ≥ 0
 Semi-Lagrangian Fast Marching Methods (F., Cristiani 05)
- Monotone evolution: c(x, y, t) > 0 (or c(x, y, t) < 0)
 Ordered Upwind Method (Sethian, Vladimirsky 01)

 unsigned c(x, y, t)
 Generalized Fast Marching Method (Carlini, F., Forcadel, Monneau 08)

The stationary problem for the monotone eikonal equation

$$\Gamma_t = \{(x, y) \in \mathbb{R}^2 : u(x, y, t) = 0\} = \{(x, y) \in \mathbb{R}^2 : T(x, y) = t\}$$

where $T(x, y)$ solves the minimum time problem.

$$\Omega = \{(x,y) \in \mathbb{R}^2 : u(x,y,0) \le 0\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

•
$$c(x, y) > 0$$
 (see Osher (93), F.-Giorgi-Loreti (94))

$$\begin{cases} c(x, y) |\nabla T(x, y)| = 1 \quad \mathbb{R}^2 \setminus \Omega \\ T(x, y) = 0 \qquad \Omega \end{cases}$$

$$\begin{aligned} \mathbf{c}(x,y,t) &> 0 \text{ (see Sethian Vladimirsky 01)} \\ \begin{cases} c(x,y,\mathbf{T}(x,y)) |\nabla T(x,y)| = 1 & \mathbb{R}^2 \setminus \Omega \\ T(x,y) = 0 & \Omega \end{cases} \end{aligned}$$

The Finite Difference approximation

Let us write the equation as

$$T_x^2 + T_y^2 = \frac{1}{c^2(x,y)}$$

The standard up-wind FD approximation is

(1)
$$\max(0, T_{i,j} - T_{i-1,j}, T_{i,j} - T_{i+1,j})^2 + \max(0, T_{i,j} - T_{i,j-1}, T_{i,j} - T_{i,j+1})^2 = \left(\frac{\Delta x}{c_{i,j}}\right)^2$$

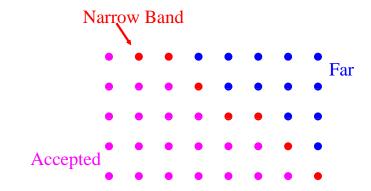
The scheme satisfies a specific (Causality property) : the solution at each grid point depends only on the smallest adjacent value.

Properties of the FD scheme

The iterative method is

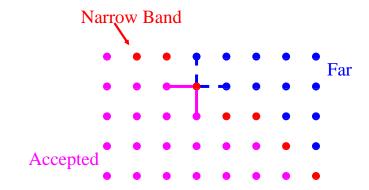
- consistent
- stable, provided a CFL condition is satisfied
- convergent
- expensive, since it globally works on *all* the grid values at every iteration

The Classical Fast Marching Method (FMM)



• $NB \equiv V(\Omega_{\Delta}) \setminus \Omega_{\Delta}$ where $\Omega_{\Delta} = \{(i, j) : (x_i, y_j) \in \Omega\}$ and $V(i, j) \equiv \{(l, m) : |(l, m) - (i, j)| = 1\}.$ • $\Omega, T = 0$ • $T = \infty$

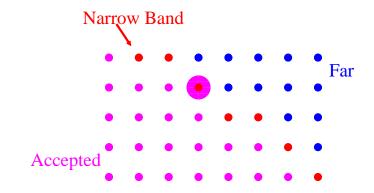
FMM at work



1 Compute the time $\tilde{T}_{i,j}$ in the NB with:

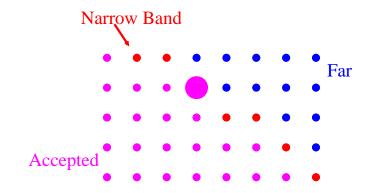
$$\max(0, \tilde{T}_{i,j} - T_{i-1,j}, \tilde{T}_{i,j} - T_{i+1,j})^2 + \\\max(0, \tilde{T}_{i,j} - T_{i,j-1}, \tilde{T}_{i,j} - T_{i,j\pm 1})^2 = \left(\frac{\Delta x}{\bar{c}_{i,j}}\right)^2 = \sum_{i=1}^{n} \left(\frac{\Delta x}{\bar{c}_{i,j}}\right)^2$$

FMM at work



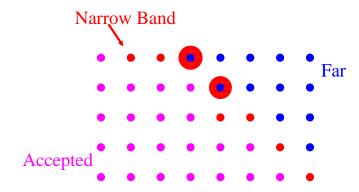
- 1 Compute the time $\tilde{T}_{i,j}$ in the NB
- 2 Call $T_{i,j}$ the minimal time on the NB

FMM at work



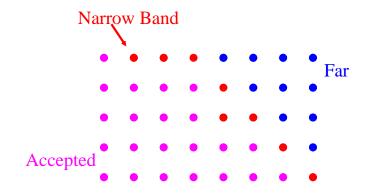
- 1 Compute the time $\tilde{T}_{i,j}$ in the NB
- 2 Call $T_{i,j}$ the minimal time on the NB and accept it .

FMM at work



- 1 Compute the time $\tilde{T}_{i,j}$ in the NB
- 2 Call $T_{i,j}$ the minimal time on the NB and accept it
- 3 The new NB is defined as the boundary of the new accepted region A

FMM at work



3 The new NB is defined as the boundary of the new accepted region ${\cal A}$

▲日▼▲□▼▲□▼▲□▼ □ のので

4 Iterate until the NB is empty

Main properties of FMM

- The FMM method compute the time *T*(*i*, *j*) the front reaches the point (*i*, *j*) with complexity *O*(*NlogN*) and it has been proved:
- Convergence

Theorem in the case $c \ge 0$, the FM method is convergent to (1), in the sense that

$$||T(x_i, y_j) - T_{i,j}||_{\infty} \to 0 \quad \text{for} \quad \Delta x \to 0$$

Idea of the proof:

Show that the solution computed by the FM method is exactly the same that the one computed by the iterative scheme Some references: Sethian(1996,1999), Cristiani-F. (2005).

A Generalized Fast Marching Method (GFMM)

AIM: to extend the FMM to the case c(x, y, t) unsigned.

ADVANTAGE :

no need of techniques of reinitialization, in case of small gradient of the solution

2 complexity O(NlogN) in case of smooth speed c

TOOL : an auxiliary discontinuous function $\theta(x, y, t)$ to track the front.

Non monotone evolution

If the speed function is NOT always positive then the crossing time T(x, y) is NOT single-valued function.

We decide to use a discontinuous function to track the position of the front

$$\theta(x, y, t) = \begin{cases} 1 & \text{if } x, y \in \Omega_t, \\ -1 & \text{if } x, y \notin \Omega_t. \end{cases}$$

and to solve locally in time the stationary equation for the time evolution

$$\begin{cases} |c(x, y, t_n)| |\nabla T(x, y)| = 1 & \mathbb{R}^2 \setminus \Omega_{t_n} \\ T(x, y) = U(x, y) & \Omega_{t_n} \end{cases}$$

▲日▼▲□▼▲□▼▲□▼ □ のので

GFMM method

We introduce an auxiliary discrete function

$$\theta_{i,j}^n = \begin{cases} 1 & \text{if } (x_i, y_j) \in \Omega_n \\ -1 & \text{otherwise.} \end{cases}$$

We define the two phases

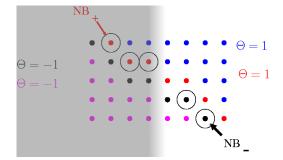
$$\Theta^n_{\pm} \equiv \{i, j: \theta^n_{i,j} = \pm 1\},\$$

and the fronts

$$F_{+}^{n} \equiv V(\Theta_{-}^{n}) \backslash \Theta_{-}^{n}, \quad F_{-}^{n} \equiv V(\Theta_{+}^{n}) \backslash \Theta_{+}^{n}$$

where V(D) represents the set of first neighbours to the nodes in D.

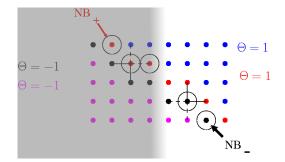
GFMM method



Def. We define two different **narrow bands**:

 $NB_{+}^{n} = F_{+}^{n} \cap \{(i, j), c_{i, j}^{n} < 0\}, \quad NB_{-}^{n} = F_{-}^{n} \cap \{(i, j), c_{i, j}^{n} > 0\}.$ • $F_{-}^{n} \bullet F_{+}^{n}$

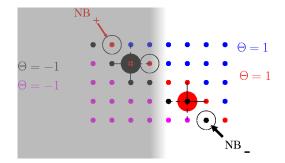
GFMM



◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $1\;\; {\rm Compute}\; {\rm the}\; {\rm time}\; \tilde{u}_{i,j}^{n-1}\; {\rm in}\; {\rm the}\; NB^{n-1}_+\; {\rm and}\; NB^{n-1}_-$

GFMM

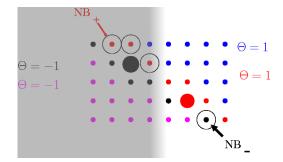


▲日▼▲□▼▲□▼▲□▼ □ のので

1 Compute the time $\tilde{u}_{i,j}^{n-1}$ in the NB_+^{n-1} and NB_-^{n-1}

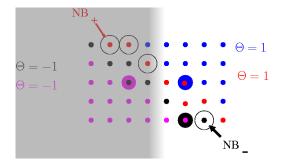
2 Call t_n the minimal time $\tilde{u}_{i,j}^{n-1}$ on the $NB^{n-1} = NB^{n-1}_+ \cup NB^{n-1}_-$

GFMM



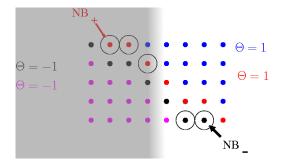
- $1 \ \mbox{Compute the time } \tilde{u}_{i,j}^{n-1}$ in the NB^{n-1}_+ and NB^{n-1}_-
- 2 Call t_n the minimal time $\tilde{u}_{i,j}^{n-1}$ on the $NB^{n-1} = NB^{n-1}_+ \cup NB^{n-1}_-$ and accept at the time t_n the minimizing points (i, j)

GFMM



- 1 Compute the time $\tilde{u}_{i,i}^{n-1}$ in the NB_+^{n-1} and NB_-^{n-1}
- 2 Compute the minimal time $\tilde{u}_{i,j}^{n-1}$ on the NB^{n-1} and accept (i,j)
- 3 The new F_{\pm}^n is defined as the boundary of the new regions $\Theta^n \equiv 1$ and $\Theta^n \equiv -1$

GFMM



- 1 Compute the time $\tilde{u}_{i,j}$ in the NB_+ and NB_-
- 2 Compute the minimal $\tilde{u}_{i,j}$ on the NB^{n-1} and accept (i,j)
- 3 The new F_{\pm}^n is defined as the boundary of the new regions $\Theta^n\equiv 1$ and $\Theta^n\equiv -1$

4 Update the NB^n and return to **Step 1**

Convergence result

Theorem (Carlini, F., Forcadel, Monneau)

Let c(x, y, t) be globally Lipschitz continuous in space and time, the initial set Ω_0 be with piece wise smooth boundary and $\theta^{\Delta}(x, y, t)$ be an appropriate extension of the discrete function $\theta_{i,j}^n$ over all the continuous space,then

$$\overline{\theta}^{0}(x, y, t) = \limsup_{\Delta \to 0, (z, w) \to (x, y), s \to t} \theta^{\Delta}(z, w, s)$$

(resp. $\underline{\theta}^{0}(x, y, t) = \liminf_{\Delta \to 0, (z,w) \to (x,y), s \to t} \theta^{\Delta}(z, w, s)$) is a viscosity sub-solution (resp. super-solution) of the problem

$$\begin{cases} \theta_t = c(x, y, t) |\nabla \theta| & \mathbb{R}^2 \times (0, T) \\ \theta = 1_{\Omega_0} - 1_{\Omega_0^c} & \mathbb{R}^2. \end{cases}$$

Non constant time step!

The time step $\Delta t_n = t_{n+1} - t_n$ is not constant and we can actually have:

- **1** $\Delta t_n >> 1$ too large time step
- **2** $\Delta t_n < 0$ not increasing time

In order to avoid Case 1, we choose

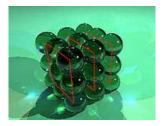
$$\widehat{t}_n \equiv t_n + \Delta t$$

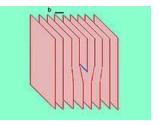
and to avoid Case 2 we set $t_n = t_{n-1}$. Then one always gets

$$0 \le \Delta t_n < \Delta t$$

WARNING: If Case 1 occurs we do not advance the front!

Dislocations





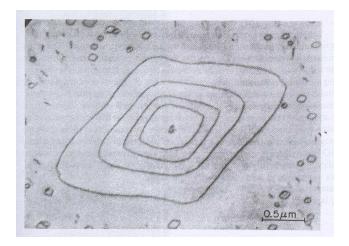
Crystal lattice showing atoms and lattice planes¹

An edge dislocation 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

¹Picture from: http://en.wikipedia.org ²Picture from: http://en.wikipedia.org A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics LExtension to dislocation dynamics

A picture of dislocations



A model for dislocations

We study the phase field model of dislocation dynamics which has been proposed by Rodney, Le Bouar and Finel. To simplify the model, let us assume that:

- the thickness of the dislocation is zero
- there is only one dislocation in the domain
- the dislocation is planar (it is contained in the slip plane)

▲日▼▲□▼▲□▼▲□▼ □ ののの

A model for dislocations

We assume that the dislocation line is represented by the boundary Γ_t of a smooth bounded domain $\Omega_t \subset \mathbb{R}^2$. Let us define

$$u(x,t) = \begin{cases} >0 & \text{if } x \in \Omega_t, \\ <0 & \text{if } x \notin \Omega_t \\ =0 & \text{if } x \in \partial\Omega_t. \end{cases}$$
$$\begin{cases} u_t = c(1_{u>0}, x, t) |Du| & \text{in } \mathbb{R}^2 \times (0, +\infty), \\ u(x, 0) = u_0(x) & \text{on } \mathbb{R}^2. \end{cases}$$
(1)

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

where c(x,t) is our non local velocity.

Dislocations dynamics, Peierls-Nabarro model

The resolved Peach-Koehler force acting on the dislocation is

$$c(x,t) = c_0 * 1_{u>0}(x,t)$$

The Fourier transform of c_0 is given by:

$$\widehat{c}_{\delta}^{0}(\xi_{x_{1}},\xi_{x_{2}}) = -\frac{1}{2} \left(\frac{\xi_{x_{1}}^{2} + (\frac{1}{1-\nu})\xi_{x_{2}}^{2}}{\sqrt{\xi_{x_{1}}^{2} + \xi_{x_{2}}^{2}}} \right) e^{-\delta\sqrt{\xi_{x_{1}}^{2} + \xi_{x_{2}}^{2}}}, \quad (2)$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

 $\delta\simeq$ size of the core of the dislocation

 ν influences the anisotropy of the evolution

Short time existence and uniqueness

Theorem (Alvarez, Carlini, Monneau, Rouy) Let $c^0 \in L^{\infty}(\mathbb{R}^2) \cap BV(\mathbb{R}^2)$. If u^0 satisfies

 $|\nabla u^0(x,y)| < B \quad in \ \mathbb{R}^2$

and

$$\frac{\partial u^0}{\partial y}(x,y)>b>0 \quad in \ \mathbb{R}^2,$$

then there exists T^* such that a unique viscosity solution of the problem in $\mathbb{R}^2 \times [0, T^*)$ exists .

A finite difference scheme for the continuous model

$$\left\{ \begin{array}{l} v_{i,j}^{n+1} = S(c_{i,j}(1_{\{v^n > 0\}}), v^n) & \text{for } n = 0, ..., N \\ v_{i,j}^n = u^0(x_i, y_j) \end{array} \right.$$

 $S(c_{i,j}(1_{\{v^n>0\}}), v^n) = v_{i,j}^n + \Delta t H_d(c_{i,j}(1_{\{v^n>0\}}), D_x^{\pm} v_{i,j}^n, D_y^{\pm} v_{i,j}^n)$

where the discrete numerical Hamiltonian is

$$H_d(c_{i,j}([v^n]), D_x^{\pm} v_{i,j}^n, D_y^{\pm} v_{i,j}^n) = \begin{cases} c_{i,j}([v^n])H^+ & c_{i,j}[v^n] \ge 0\\ c_{i,j}([v^n])H^- & c_{i,j}[v^n] < 0. \end{cases}$$

$$\begin{split} H^+, H^- & \text{ are the standard numerical Hamiltonian:} \\ H^+ &= \left\{ \max(D_x^+ v_{i,j}^n, D_y^+ v_{i,j}^n, 0)^2 + \min(D_x^- v_{i,j}^n, D_y^- v_{i,j}^n, 0)^2 \right\}^{\frac{1}{2}} \end{split}$$

Properties of the FD scheme

- The FD scheme is
 - consistent
 - NOT monotone
 - convergent under the CFL condition

$$0 < \frac{\Delta t}{\Delta x} \le \frac{1}{2\sqrt{2}|c_{\delta}^{0}(\cdot, \cdot)|_{1}}$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

for small time

Convergence result

Theorem (Alvarez, Carlini, Monneau, Rouy) If u^0 satisfies

$$|\nabla u^0(x,y)| < B \quad in \ \mathbb{R}^2$$

and

$$\frac{\partial u^0}{\partial y}(x,y)>b>0\quad in\ \mathbb{R}^2,$$

then there exists a positive constant C such that

$$\sup_{i,j\in\mathbb{Z}} |u(x_i, y_j, n\Delta t) - v_{i,j}^n| \le C\sqrt{\Delta t} \quad n = 1, ..., N_{T^*}$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

with $\Delta t \simeq \Delta x$.

Computation of the discrete convolution

Under periodic assumption on w one have

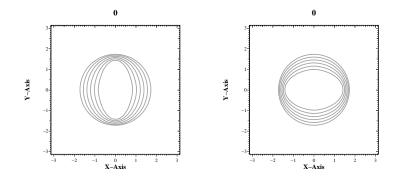
$$\left(\widehat{c^{\Delta}}\right)_{(p,m)} = \widehat{w}_{(p,m)} \cdot (\widehat{\widetilde{c^{0}}})_{(p,m)} \quad \text{for every} \quad (p,m) \in \mathbb{Z}^{2}$$

where \hat{w} is the Fourier transform of $w = [v^n]$ and \tilde{c}^0 is well approximated by:

$$\widehat{c}^{\widehat{0}}{}_{(p,m)}\simeq \widehat{c}^{\widehat{0}}(\pi p/L,\pi m/L)$$

where \hat{c}^0 is the Fourier transform of the kernel c^0 .

Numerical tests: Anisotropic Shrinking of a circle



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Convergence result for non-local dislocation dynamics

$$\begin{cases} \theta_t(x,t) = c[\theta](x,t)|D\theta(x,t)| & \text{on} \quad \mathbb{R}^N \times (0,T) \\ \theta(\cdot,0) = 1_{\Omega_0} - 1_{\Omega_0^c}. \end{cases}$$

$$c[\theta](x,t) = c_1(x,t) + (c_0 \star \theta(\cdot,t))(x).$$
More assumptions

Main assumptions

- (A1) Existence and uniqueness for problem (2)
- (A2) Existence and uniqueness for the perturbed problem with $c^e(x,t) = c[\theta](x,t) + e$

(A3) Stability of the perturbed problem

$$|\theta^e - \theta|_{L^{\infty}((0,T); {}^1(\mathbb{R}^N))} \le CeT$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Convergence result for non-local dislocation dynamics

Theorem (Carlini, Forcadel, Monneau) Under assumptions (A1)-(A2)-(A3). Let $\theta^{\Delta}(x,t)$ be the solution of GFMM algorithm applied to problem (2) with discrete speed c^{Δ} defined by

$$c^{\Delta} = c[\theta^{\Delta}]$$

Then

$$|\theta^{\Delta} - \theta|_{L^{\infty}((0,T);L^{1}(\mathbb{R}^{N}))} \le \omega_{T}(\Delta).$$

with $\omega_T(\Delta)$ modulus of continuity with respect to Δ and T small enough.

Checking assumption

If a closed dislocation loop is a smooth curve $\partial \Omega_0$ in \mathbb{R}^2 at the initial time,

if Ω_0 bounded and $\partial\Omega_0$ smooth enough and if $c_1\in W^{1,\infty},\ c_0\in W^{1,1}\cap L^\infty$ then (A1)-(A3) are verified for short time

(see Alvarez ,Hoch, LeBouar, Monneau '04).

If dislocation dynamics has a non-negative velocity and the initial curve satisfyes an *interior ball condition*, if c₁ ∈ W^{2,∞}, c₀ ∈ W^{1,1} ∩ L¹ then (A1)-(A3) are verified for large time (see Alvarez, Cardialiaguet, Monneau '05).

A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics LExtension to dislocation dynamics

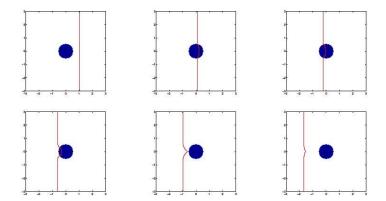
Local dynamics a rotating line

Speed: $c(x,t) = \sin(2\pi t)x_1$

	GFMM		FD	
Δx	$\mathcal{H}(\mathcal{C}, ilde{\mathcal{C}})$	CPU	$\mathcal{H}(\mathcal{C}, ilde{\mathcal{C}})$	CPU
0.04	$5.21 \cdot 10^{-2}$	0.52s	$4.82 \cdot 10^{-2}$	1.82s
0.02	$3.07 \cdot 10^{-2}$	1.71s	$2.46 \cdot 10^{-2}$	13.3s
0.01	$1.54\cdot 10^{-2}$	10.5s	$1.35\cdot 10^{-2}$	102s
0.005	$9.00\cdot 10^{-3}$	130s	$7.00\cdot 10^{-3}$	842s

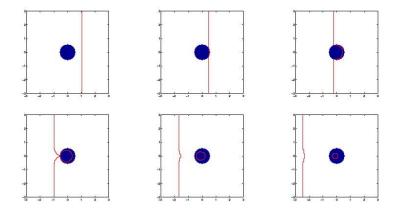
◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The dislocation line passes the obstacle

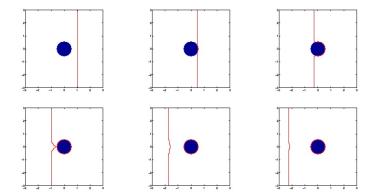


A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics LExtension to dislocation dynamics

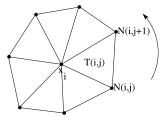
The obstacle breaks the line



The obstacle captures the line



GFMM on UNSTRUCTURED grids: local solver

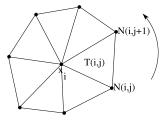


The neighborhood of the node *i*, is the set of nodes defined

$$V(i) = \{N(i,l), l \in \mathcal{V}(i)\}$$

where $\mathcal{V}(i) = \{1, \ldots, \mathcal{N}_v(i)\}$.

GFMM on UNSTRUCTURED grids: local solver



We suppose there exists a $\gamma_0 > 0$ s.t. for any mesh

$$\gamma_0 \le \frac{h}{\Delta} \le 1$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

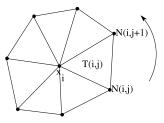
where $\Delta := \max\{l_{ij}, i, j \in \{1, \dots, \mathcal{N}_v\}\},$ and $h := \min\{l_{ij}, i, j \in \{1, \dots, \mathcal{N}_v\}\}$

GFMM on UNSTRUCTURED grids

Local problem

$$|Du(x)| = \frac{1}{|c(x_i, t_n)|}$$
 in $D_i \times [t_n, t_{n+1}]$

where D_i is:



General local solver

$$Q\left(x_{i}, u_{i}, \{u_{N(i,j)}, u_{N(i,j+1)}\}_{j \in \mathcal{V}(i)}\}\right) = \frac{1}{|c(x_{i}, t_{n})|} \quad i \in \{1, \dots, \mathcal{N}_{v}\}.$$

-1

Properties Local Solver: Consistency

(H1) For any $\psi \in C^2(\mathbb{R}^2)$, let us denote by $\psi_i := \psi(x_i)$ for any $i \in \{1 \dots N_v\}$ and consider true the following assumptions:

$$\lim_{m \to \infty} Q\left(x_{i_m}, \psi_{i_m}, \{\psi_{N(i_m, j_m)}, \psi_{N(i_m, j_m+1)}\}_{j_m \in \mathcal{V}(i_m)}\right) = |D\psi(x)|$$

where m is an index of refinement for a family of grids $\{\mathcal{M}_m^T\}_{m\geq 0}$ and $(x_{i_m}) \in \mathcal{M}_m^T$ is a sequence of nodes such that for $m \to \infty$

$$\Delta_m \to 0$$
 and $x_{i_m} \to x_{i_m}$

Properties Local Solver: Monotonicity

(H2) Let us suppose $u_i \leq t$ and define

 $\mathcal{C}(i) := \{ j \in \mathcal{V}(i), \text{ s. t. } u_{N(i,j)} \ge \psi_{N(i,j)}, \ u_{N(i,j+1)} \ge \psi_{N(i,j+1)} \}$

then

$$Q(x_i, u_i, \{u_{N(i,j)}, u_{N(i,j+1)}\}_{j \in \mathcal{C}(i)}) \le Q(x_i, t, \{\psi_{N(i,j)}, \psi_{N(i,j+1)}\}_{j \in \mathcal{C}(i)}).$$

Properties Local Solver

(H3)

$$\frac{K}{\Delta} \le Q(x_i, t, \{t, t - K\}) \le \frac{K}{h}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

for any positive constant \boldsymbol{K}

Example of Local Solver

1 Local problem

$$\begin{cases} |Du(x)| = \frac{1}{|c(x_i, t_n)|} & x \in D_i \\ u(x) = u_h(x) & x \in \partial D_i \end{cases}$$

2 the Hopf-Lax formula :

$$u_{h}^{*}(x_{i}) = \min_{y \in \partial D_{i}} (u_{h}(y) + \frac{|x_{i} - y|}{|c(x_{i}, t_{n})|})$$

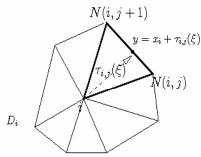
3 Local Solver:

$$Q = \max_{y \in \partial D_i} \left(\frac{u_h^*(x_i) - u_h(y)}{|x_i - y|} \right)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Example of Local Solver: Semi-Lagrangian

$$Q = \max_{j \in \mathcal{V}(i)} \max_{0 \le \xi \le 1} \left(\frac{u_i - (1 - \xi)u_{N(i,j+1)} - \xi u_{N(i,j)}}{|\tau_{i,j}(\xi)|} \right)$$



Refs: Tsitsiklis (95), Cristiani-Falcone (2005), Sethian Vladimirsky(2006), Bornemann Rash(2005))

GFMM on UNSTRUCTURED grids

We introduce an auxiliary discrete function

$$\theta_i^n = \begin{cases} 1 & \text{if } x_i \in \Omega_n \\ -1 & \text{otherwise.} \end{cases}$$

We define the two phases

$$\Theta^n_{\pm} \equiv \{i: \ \theta^n_i = \pm 1\},\$$

and the fronts

$$F_{+}^{n} \equiv V(\Theta_{-}^{n}) \backslash \Theta_{-}^{n}, \quad F_{-}^{n} \equiv V(\Theta_{+}^{n}) \backslash \Theta_{+}^{n}$$

GFMM algorithm on Unstructured grids

Initialization

$$\begin{array}{l} \bullet \quad \textit{Initialization of the matrix } \theta^{0} \\ \theta^{0}_{i} = \left\{ \begin{array}{cc} 1 & x_{i} \in \Omega_{0} \\ -1 & x_{i} \notin \Omega_{0} \end{array} \right. \end{array}$$

Initialization of the time on the front $u_i^0 = 0$ for all $i \in F^0$

GFMM algorithm on Unstructured grids

Main Cycle

 $1 \ \mbox{Compute the time } \tilde{u}_i^{n-1} \mbox{ in the } NB_+^{n-1} \mbox{ and } NB_-^{n-1} \mbox{ using a local solver}$

$$Q(\tilde{u}_i^{n-1}, \{u_{N(i,j)}^{n-1}, u_{N(i,j)}^{n-1}\}_{j \in V(i)}) = \frac{1}{|c(x_i, t_n)|}$$

using respectively the values u^{n-1} defined on F_{-}^{n-1} or F_{+}^{n-1} .

- 2 Compute the minimal time \tilde{u}^{n-1} on the NB^{n-1}_{\pm}
- 3 Initialize the new accepted points $NA^n_{\pm} = \{i \in NB^{n-1}_{\pm} \ u^n_i = t_n\}$,
- 4 Update Θ^n_{\pm} on the NA^n_{\pm}
- 5 Update F^n_{\pm} and NB^n_{\pm} and return to 1

A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of $\theta^{\epsilon}(x,t)$

 $\{t_{k_n}, n \in \mathbb{N}\}$ is a strictly increasing subsequence of $(t_n)_n$ such that

$$t_{k_n} = t_{k_n+1} = \dots = t_{k_{n+1}-1} < t_{k_{n+1}}.$$

Extension of $(\theta_i^n)_{n,i}$ on the continuous time interval [0,T]

$$\theta(x_i, t) = \theta_i^{k_{n+1}-1}$$
 if $(x_i, t) \in \{x_i\} \times [t_{k_n}, t_{k_{n+1}}]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

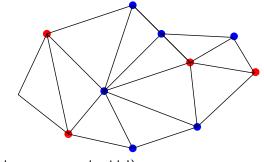
(Same extension on structured grids.)

A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of $\theta^{\epsilon}(x,t)$

Let $\epsilon=(\Delta,\Delta t)$ and $\theta^\epsilon(x,t)$ be an extension of $(\theta(x_i,t_n))_i$ on a continuous domain Ω of \mathbb{R}^2

• $\theta = 1$, • $\theta = -1$



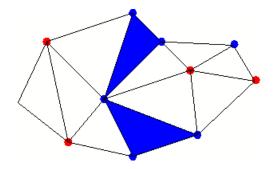
(Different than structured grids!)

A fast marching method for the non monotone evolution of fronts and some applications to dislocation dynamics GFMM on unstructured grids

GFMM on UNSTRUCTURED grids: Definition of $\theta^{\epsilon}(x,t)$

Let $\epsilon=(\Delta,\Delta t)$ and $\theta^\epsilon(x,t)$ be an extension of $(\theta(x_i,t_n)_i)$ on a continuous domain Ω of \mathbb{R}^2

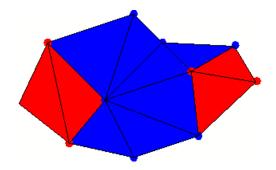
• $\theta = 1$, • $\theta = -1$



GFMM on UNSTRUCTURED grids: Definition of $\theta^{\epsilon}(x,t)$

Let $\epsilon = (\Delta, \Delta t)$ and $\theta^{\epsilon}(x, t)$ be an extension of $(\theta(x_i, t_n)_i)$ on a continuous domain Ω of \mathbb{R}^2

• $\theta = 1$, • $\theta = -1$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partial Convergence result

Theorem (Carlini, F., Hoch)

Let $c(x,t) \neq 0$ be globally Lipschitz continuous in space and time, the initial set Ω_0 be with piecewise smooth boundary then

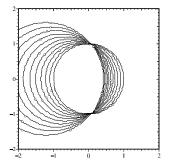
$$\overline{\theta}^0(x,t) = \limsup_{\epsilon \to 0, z \to x, s \to t} \theta^\epsilon(z,s)$$

(resp. $\underline{\theta}^{0}(x,t) = \liminf_{\epsilon \to 0, z \to x, s \to t} \theta^{\epsilon}(z,s)$) is a viscosity sub-solution (resp. super-solution) of the problem

$$\theta_t = c(x,t) |\nabla \theta| \quad \mathbb{R}^2 \times (0,T)$$

Numerical tests: evolution of one circle

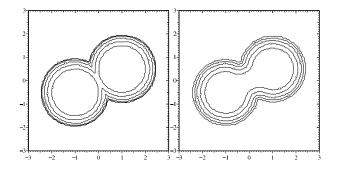
Speed c(x, y, t) = 0.1t - x



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical tests: evolution of two circles

Speed c(x, y, t) = 1 - t



Increasing (left) and decreasing (right) evolution of two circles

Conclusions and perspectives

- The GFMM can deal with unsigned front propagation
- It can work on structured and unstructured grids
- The GFMM can deal with non local velocities
- A general result of convergence on unstructured grids is still missing (on going)

- To have a complete convergence result we need
 - **1** to prove that $\overline{\theta}^0$ is sub-solution in the case c = 0
 - 2 to prove a comparison principle

References

E. Carlini, E. Cristiani, N. Forcadel,

A non-monotone FM scheme modeling dislocation dynamics. Proceedings on ENUMATH 2005.

E. Carlini, M. Falcone, N. Forcadel, R. Monneau, Convergence of a Generalized Fast Marching Method for an eikonal equation

with a velocity changing sign SIAM J.Num.Anal. (2008)

N.Forcadel,

Comparison Principle for the Generalized Fast Marching Method. SIAM J.Num.Anal. (2009)

- E. Carlini, N. Forcadel, R. Monneau, Generalized Fast Marching Method for dislocation dynamics. Submitted Num. Math.
- E. Carlini, M. Falcone, P. Hoch,
 - A Generalized Fast Marching Method on Unstructured Grids