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Three Model Examples of Front Propagation Problems
with Nonlocal Normal Velocities

In these examples, the front, denoted by Γt , is the
boundary of an open subset Ωt. Typically, in phase
transitions problems, Ωt is a phase and Γt the interface
between two phases.

Model problem 1 : dislocation type equations

Vn = c0(·, t) ? 11Ωt
+ c1(x, t) + εκ(x)

where c0, c1 are given function and κ(x) is the mean
curvature of Γt at x. The parameter ε will be 0 or 1

NB : dislocation lines are defects in crystals.
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Model problem 2 : a Fitzhugh-Nagumo type system

Vn = α(v) + εκ(x)

where v solves an equation like

vt −∆v = g+(v)11Ωt
+ g−(v)(1− 11Ωt

) in IRN × (0, T )

NB : This system is obtained as the asymptotics of
a Fitzhugh-Nagumo system arising in neural wave
propagation or chemical kinetics (cf. Soravia-
Souganidis).
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Model problem 3 : Volume dependent velocities

Vn = β(LN(Ωt)) + εκ(x)

where the function β : IR→ IR is Lipschitz continuous.

NB : Such fronts arise as the asymptotic limits of Allen-
Cahn type equations with integral terms (cf. Chen-
Hilhorst-Logak, Da Lio-Kim-Slepcev).
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The General Framework : Level Set Formulation

The idea is to represent Ωt by setting Ωt = {u(·, t) > 0}
and Γt = {u(·, t) = 0} : then u solves the “level-sets
equation”

∂u

∂t
+H[11Ωt

](x, t,Du,D2u) = 0 in IRN × (0, T )

u(x, 0) = u0(x) in IRN

The nonlinearity H[χ] depends in a nonlocal way on
the function χ ∈ L∞(IRN× (0, T ), [0, 1]) and is a “good”
level set equation for any fixed χ, i.e. it is degenerate
parabolic and geometric.
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Typically, for the dislocations case

∂u

∂t
− c[χ](x, t)|Du| − ε

(
∆u−

D2uDu ·Du
|Du|2

)
= 0

where

c[χ](x, t) = (c0(·, t) ? χ)(x) + c1(x, t)

Important point : to have good informations on the
“standard” level set equation

∂u

∂t
− c(x, t)|Du| − ε

(
∆u−

D2uDu ·Du
|Du|2

)
= 0
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Some basic results for the “standard” LSA

– For any continuous initial data u0, there exists a
unique continuous solution of the level set equation

– If {u0 > 0} = {v0 > 0} and {u0 < 0} = {v0 < 0},
then {u(·, t) > 0} = {v(·, t) > 0} and {u(·, t) < 0} =
{v(·, t) < 0} for all t.

– Therefore {u(·, t) = 0} = {v(·, t) = 0} and the
“moving front” Γt := {u(·, t) = 0} does not depend on
the “representation” we have chosen for Ω0.

– Γt is well-defined and inherit the “good” stability
properties of viscosity solutions.
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A first key remark : Monotonicity

The level-set approach satisfies the property

Ω1
t ⊂ Ω2

t ⇒ Ω1
t+h ⊂ Ω2

t+h for all h ≥ 0

a geometric version of the Maximum Principle.

Nonlocal normal velocities can be handled as well
through the Slepcev’s approach BUT only if this
monotonicity property holds... and this is not always
the case !

Consequence : when the motion is not monotone, we
have to combine level-set and viscosity solutions method
with non-monotone arguments (contraction properties,
for example).
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Second remark : Γt is well-defined BUT it may have a
“non-empty interior”

Main consequence : if uk → u locally uniformly then we
do not have in general

11{uk(·,t)≥0} → 11{u(·,t)≥0} in L1(IRN)

Main difficulty : the nonlocal equation does not have
in general a good dependence w.r.t. u through the
nonlocal term...

Remark : If ε = 0 (no curvature dependence) AND if c
does not change sign, Γt has an empty-interior for all t
(Soner-Souganidis-GB) and even a 0-Lebesgue measure
(Ley). Less problem in that case !
But this also shows that either c changing sign and/or
curvature dependence is a problem...
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CONCLUSIONS : Difficulties with

(i) Suitable definition of “weak” solution

(ii) Existence

(iii) Uniqueness
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Definition of “Weak Solutions”

A function u is said to be a weak solution of the nonlocal
geometric equation if u is a viscosity solution in the L1–
sense of

∂u

∂t
+H[χ](x, t,Du,D2u) = 0 in IRN × (0, T )

for some function χ satisfying

11{u(·,t)>0}(x) ≤ χ(x, t) ≤ 11{u(·,t)≥0}(x) in IRN × (0, T )
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Existence of “Weak Solutions”

Key Additional Assumption : if χn ⇀ χ weakly-∗ in
X := L∞(IRN × [0, T ]; [0, 1]) with χn, χ ∈ X for all n,
then∫ t

0

H[χn](x, s, p,M)ds −→
n→+∞

∫ t

0

H[χ](x, s, p,M)ds

locally uniformly for t ∈ [0, T ].

Theorem : Under general assumptions, there exists a
weak solution of the nonlocal HJ Equation.

Main steps of the proof :
(i) Use Kakutani’s fixed point theorem for the set-valued
map ξ : X ⇒ X

ξ(χ) =
{
χ′ : 11{u(·,t)>0} ≤ χ′(·, t) ≤ 11{u(·,t)≥0}

}
where u is the L1-viscosity solution of the nonlocal HJ
Equation associated to H[χ].
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(ii) In the Hausdorff convex space L∞(IRN × [0, T ]; IR),
the subset X is convex and compact for the L∞-weak-∗
topology (since it is closed and bounded) and, for any
χ ∈ X, ξ(χ) is a non-empty convex compact subset of
X for the L∞-weak-∗ topology.
(iii) ξ is upper semicontinuous for this topology, i.e. if

χn ∈ X ⇀
L∞-weak-∗

χ and χ′n ∈ ξ(χn) ⇀
L∞-weak-∗

χ′,

then χ′ ∈ ξ(χ).

If un is the unique L1-viscosity solution of the nonlocal
Equation associated to χn, one has to show that un
converges to the unique solution u of the nonlocal
Equation associated to χ.

Consequence of :
1. the half-relaxed limit method
2. a new stability result for L1-viscosity solutions
3. strong comparison results for the limiting equation
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Uniqueness ? (and other approaches)

Case 1 : the “monotone” case and Slepčev’s formulation

Assumption : H[χ] ≤ H[χ′] if χ ≥ χ′ a.e.

The “natural” formulation (in terms of the “level-sets
approach” and viscosity solutions) should be

∂v

∂t
+H[11{v(·,t)≥v(x,t)}](x, t,Dv,D

2v) = 0 in IRN × (0, T )

Theorem : Under general assumptions, there exists a
unique solution v ∈ C(IRN × [0, T ]) of this equation
such that v(x, 0) = u0(x) in IRN .
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Remark : connections with “weak solutions ?

The maximal and minimal weak solutions are the solu-
tions associated respectively to

χ+ = 11{v(·,t)≥0} and χ− = 11{v(·,t)>0}

The associated solutions u± satisfy

{u±(·, t) ≥ 0} = {v(·, t) ≥ 0} → χ+ = 11{u+(·,t)≥0}

{u±(·, t) ≤ 0} = {v(·, t) ≤ 0} → χ− = 11{u−(·,t)>0}

and the nonlocal equation has a unique weak
solution if and only if the set {v(·, t) = 0} has a
zero-Lebesgue measure for almost all t ∈ (0, T )

A counter-example is available for the dislocations’
equation if this condition is not satisfied !
(It is based on a counter-example of Soner-Souganidis-
GB showing that {v(·, t) = 0} may have a non-empty
interior.)
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Case 2 : the “non-monotone” first-order case (without
curvature term)

Here the equation is
∂u

∂t
− c[χ](x, t)|Du| = 0 and a key

assumption is

c[χ](x, t) ≥ 0 in IRN × (0, T )

for any characteristic function χ.

WHY ?

Because if c[χ] does not change sign, Γt has an empty-
interior for all t (Soner-Souganidis-GB) and even a
0-Lebesgue measure (Ley)

Main consequence : if uk → u locally uniformly then

11{uk(·,t)≥0} → 11{u(·,t)≥0} in L1(IRN)
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What is the difficulty to prove uniqueness ?

To connect sup-norms of u (or other solutions) and
L1-norms of 11{u(·,t)≥0} (or characteristic functions of
other solutions).

Key computation to prove uniqueness : (in the case of
the dislocation type equation)

If u1, u2 are two solutions, by a classical “continuous
dependence” result, we have

sup
t∈[0,T ]

|(u1−u2)(·, t)|∞ ≤ KT sup
t∈[0,T ]

|(c[11{u1(·,t)>0}]−c[11{u2(·,t)>0}])|∞
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and, since c[χ] = c0 ? χ+ c1

|(c[11{u1(·,t)>0}]− c[11{u2(·,t)>0}])(·, t)|∞ ≤

|c0|L1|11{u1(·,t)>0} − 11{u2(·,t)>0})(·, t)|L1

On the other hand, if δT = supt∈[0,T ] |(u1 − u2)(·, t)|∞,

|11{u1(·,t)>0}−11{u2(·,t)>0})(·, t)|L1 = LN({−δT ≤ u1(·, t) < 0})+

LN({−δT ≤ u2(·, t) < 0})
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Need to estimate the measure of sets like

{a ≤ u(·, t) ≤ b}

where −δ ≤ a < b ≤ δ for some small enough δ.

NB : one can do it only for the “simple” Eikonal
Equation

∂u

∂t
= c(x, t)|Du| in IRN × (0, T )
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Such estimates are related with perimeter estimates.

Formal computation : by the co-area formula

∫
IRN

11{a≤u(·,t)≤b}dx =

∫ b

a

∫
{u(·,t)=s}

|Du|−1dHn−1ds

≤
b− a
η̄

sup
a≤s≤b

Per({u(·, t) = s}) ,

where η̄ is the lower bound on |Du| on the set
{x : |u(x, t)| ≤ δ̄} (which is also needed).

This computation shows the two key points

– a lower bound on |Du|

– perimeter estimates on the fronts.
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Olivier Ley’s result :

If c(x, t) ≥ 0 and u0 satisfies

−|u0(x)| − |Du0(x)| ≤ −η0 < 0 in IRN

⇒ −|u(x, t)| −
eγt

4
|Du(x, t)|2 ≤ η < 0 in IRN × [0, T ]

The gradient of u does not vanish on the front !

= first key ingredient
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Then two ways to conclude

If u0 and c are more regular, a curvature estimate
is available which implies the perimeter estimates :
Alvarez, Cardaliaguet and Monneau (geometrical argu-
ments) or Ley and GB (pde arguments).

Without further regularity, an interior cone condition
is preserved : Cardaliaguet, Ley, Monteillet and GB
(control type arguments, rather technical...)

Remark : This provides uniqueness results for all times.
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Case 3 : the “non-monotone” second-order case (with a
curvature term)

Theorem : Under general assumptions on H[χ], one
has a short time uniqueness result of weak solutions
provided that the initial data u0 satisfies

there exist constants λ0 ∈ (0, 1), η0 > 0 and ν ∈
C(IRN , IRN) such that

u0(x+λν(x)) ≥ u0(x)+λη0 in a neighb. of {u0(·) = 0}

for all λ ∈ [0, λ0].

Other results in this direction :
– Forcadel for the case of graphs (dislocations type
equation)
– Forcadel - Monteillet (minimizing movement for
dislocations type equation)
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Proof : it consists in showing that u(·, t) satisfies the
same property as u0 for small enough t.

=⇒ lower gradient bound + interior cone condition.

Key Ingredients of the proof : a general continuous
dependence result for the “standard” level equation
equation + a suitable change of variable

Remark : The perimeter estimate does not play a so
important role in this case : in “simple” situations, we
conclude almost directly with the lower gradient bound
and, in more difficult cases, the interior cone condition
is the main ingredient.


