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1 Introduction

Free surface flows are described by the Navier-Stokes equations. It is well-known
that the numerical resolution of these equations can be expensive. For this reason
the shallow water equations (or Saint-Venant system [1]) are widely used in
hydraulics and hydrology to simulate free surface flows. We can refer, for instance,
to rain-water overland flows [2-5], river flows [6], flooding [7], dam breaks [8, 9],
and also oceanography [10]. These equations are derived from the Navier-Stokes
equations under the assumption that the ratio between the vertical and the horizontal
scales is small. However, the friction laws that are obtained from this derivation, are
not used in hydraulics and hydrology. In this context, the main friction laws used
are the ones of Manning and Darcy-Weisbach types.

In this paper, we propose to derive the shallow-water equations with Manning or
Darcy-Weisbach friction terms, starting from the Navier-Stokes equations with
suitable wall-laws at the bottom boundary. Details of the derivation, which follows
the ideas of [11, 12], will be presented in a forthcoming work. As an approximation
of first order, we obtain the classical Shallow water model (without diffusion source
term) with the classical Manning or Darcy-Weisbach laws. We next perform a
second order approximation and we obtain a viscous Shallow water model with
new friction laws of Manning or Darcy-Weisbach type. We then propose a
numerical scheme for the new model which is mainly based on a well-balanced
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finite volume method. Then we present analytical validation of the scheme on
steady state reference solutions obtained following the main lines of [13]. Finally,
this model is applied on real data.

2 Derivation of the Model

We give here the key points of the derivation of the model. Details will be given in
a forthcoming work. First, we consider the 2D free surface Navier-Stokes equations
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where u and w are respectively the horizontal and the vertical components of the
velocity, p is the pressure, ¢ is the viscosity tensor, Z is the topography variation
and g = 9.81 m/s” is the gravity acceleration.

System (1) needs to be completed with conditions on the free surface and at the
bottom. At the bottom z = Z(x), a Manning or a Darcy-Weisbach formula is pre-
scribed as follows

o =k ";l"‘ 2)

where o € (0,1/3).

If o = 0 (respectively o = 1/3), then a Darcy-Weisbach type formula is obtained
with k = f/8 (resp. k = n’g), where f (resp. n) is the Darcy-Weisbach (resp. Manning)
roughness coefficient. This roughness coefficient depends mainly on the roughness
of the soil, some values are tabulated in literature depending on the kind of ground
considered [14]. Following the same lines as in [11, 12], the derivation of the
Shallow Water system of first order is first obtained
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Then keeping smaller terms, and proceeding again as in [11, 12], a viscous
Shallow Water system with new friction term of Darcy-Weisbach (resp. Manning)
type is obtained
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3 Numerical Scheme

In order to solve systems (3) and (4), we use FullSWOF_1D software which stands
for Full Shallow Water equations for Overland Flow in 1 space Dimension [3, 15].
It is an open source C++ codes, freely available from https://sourcesup.renater.fr/
projects/fullswof-1d/. It is distributed under CeCILL-V2 free software license. The
structure of the code is made to facilitate the development of new evolutions. This
software solves the shallow water Eq. (3) thanks to a well-balanced finite volume
method based on the hydrostatic reconstruction [16, 17]. This numerical method has
good properties: water mass conservation, well-balanced property (at least preser-
vation of lake at rest equilibrium) and positivity water height preservation. We have
made some modifications in the sources to deal with system (4) as well. We will
first give the main lines of the numerical method implemented in FullSWOF to
solve system (3). Then we will explain the modification integrated in FullSWOF_
1D to solve (4). In FullSWOF, the shallow water equations are solved thanks to a
well-balanced finite volume scheme. The well-balanced property is achieved with
the hydrostatic reconstruction, which is based on a general principle of recon-
struction. We begin with a first order finite volume scheme for the homogeneous
shallow water equations: choosing a positive and consistent numerical flux
F(UL, Ug) (e.g. Rusanov, HLL, kinetic,... [2, 17]), it writes under the general form

U —Up | F(ULUL) = F(ULLUY)
At Ax

=0, (5)

where At is the time step and Ax is the space step. The idea is to modify this scheme
by applying the numerical flux to the reconstructed variables. Reconstruction can be
used to get higher order schemes (MUSCL, ENO, ...), and the higher order in time
is obtained thanks to TVD-Runge-Kutta methods. The purpose of the hydrostatic
reconstruction is to get a well-balanced scheme. It is designed to preserve at least
steady states at rest (u = 0 and h + Z = Cst). When it is directly applied on the initial
scheme, it gives a first order scheme, while coupling it with high order recon-
struction increases the order of the scheme and thus its accuracy.

We now give the implementation of this method to get high order accuracy. The
first step consists in performing a high order reconstruction (MUSCL, ENO, ...). To
deal properly with the topography source term 9,z, this reconstruction is applied on
u, h and h + z. Thus we get the set of reconstructed variables (U, z,,) and (U, z,),
on which the hydrostatic reconstruction is applied
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The finite volume scheme (9) needs to be modified as follows

v —ur n F o = Filyjor — FC

At Ax =0, ()

where

Fin+l/2L = Fin+1/2 + S?+1/2L7 8)

FLor = Flijp + Sk

are left (resp. right) modifications of the numerical flux for the homogeneous
system. In this formula, the numerical flux is now applied on the reconstructed

variables Fi"H/2 = F(U'n+1/2u U'er/zR) and we take
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Finally, for consistency and well-balancing properties, a centered source term is
added to the scheme

. 0
FCi = <ghi1/2p;hil/2m ( ) (10)

Zi+1/2m — Zi—l/zp)

The chosen numerical strategy consists in the HLL flux (see [2, 17]) combined
with a modified MUSCL reconstruction. It has shown to be the best compromise
between accuracy, stability and CPU time cost [2]. The MUSCL reconstruction of a
real variable s writes

DSi DS,‘
Si71/2p:Si_Ax~7asi+l/2m:Si+Ax-7a (11)

with the minmod slope limiter

min (x,y) ifx,y>0,
) , min mod (x,y) = max (x,y) ifx,y<0,
0 else.

Si — Si—1 Si+1 — i

Ax T Ax

Ds; = min mod (

(12)



Numerical Scheme for a Viscous Shallow Water System ... 231

In order to keep the discharge conservation, the reconstruction of the velocity
has to be modified as follows

hit1/2m Ax
' h,/ mTDuia”i+1/2m =u; —

hi,l/sz)C
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We can notice that if we take Ds; = 0, we recover the first order scheme in space.
The friction term is treated numerically by a fractional step, with the following
system

o= _ sy ) (14)

where Sf is the friction source term. This system is solved thanks to a semi-implicit
treatment [18, 19]. As an example, for the Manning friction law, it writes

hn+1 _ hstar
n+1 _ qstar _ _n2 qn+1|qn‘ (15)
At hn(hn+1)4/3 ’

q

This method allows to preserve stability (under a classical CFL condition) and
steady states at rest. Finally a TVD-Runge Kutta (Heun) method is applied to get
second order in time. This is what has been currently developed in FullSWOF to
solve system (3). To solve our new system (4), we have integrated the new friction
laws treated with a semi-implicit treatment such as (15). A Crank-Nicolson method
is used to deal with the diffusion source term. The obtained tridiagonal linear
system is solved thanks to the LAPACK library (Linear Algebra PACKage [20]).
We have to mention that these modifications of the code are not currently available
on FullSWOF website.

4 Numerical Validations

4.1 Analytical Solutions

FullSWOF has been widely validated on analytical solutions implemented in
SWASHES library [21, 22]. Keeping this philosophy in mind, we have developed
some analytical solutions to validate our approach following the main lines of [13].
From (4), steady state solutions are constructed. At stationary equilibrium this
system reduces into
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The above relation allows to compute topography corresponding to sufficiently
smooth function for the free surface. For all the following tests, we will consider
dry initial conditions (A(t = 0, x) = 0 m and u(z = 0, x) = 0 m/s), this allows to test the
ability of the numerical to deal properly with wet/dry transitions and to catch steady
state solutions. We will consider successively three kinds of regimes: subcritical (or
fluvial), supercritical (or torrential) and transcritical, for both the new Manning and
Darcy-Weisbach friction laws.

For each numerical result, we also compute the relative L2 error at the final time
between the reference and the computed water height.

4.2 Numerical Results

4.2.1 Subcritical Flow for Manning Friction Law

A 1000 m long channel is considered. The following water height is chosen and
plotted on Fig. 1:

hex(x) = G)m(l +%exp<—l6<ﬁ—%>2>>. (21)
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At the inflow boundary x = 0, we impose a constant discharge q = 1.5 m?/s. At
the outflow x = 1000 m, we use the reference solution to impose the water height
h.(1000).

Parameters : n=0.33,v=10"% Ax=0.5m, Ar=0.02 s.

We have represented the critical free surface Z + A, in red, where A, = ( qz/g )3 s
the critical water height. This height allows to visualize the flow regime. We can
notice that the subcritical stationary flow is perfectly catched by the numerical
method (Fig. 1). The relative L*- error is approximately 5.6384 x 107°.

4.2.2 Subcritical Flow for Darcy-Weisbach Friction Law
A 1000 m long channel is considered. We consider the water height defined by
(21). At the inflow boundary x = 0, we impose a constant discharge ¢ = 1.5 m?/s. At
the outflow x = 1000 m, we use the reference solution to impose the water height £,
(1000) (Fig. 2).
Parameters : f =0.25, v=10"%, Ax=0.5m, Ar=0.02 s.

As for the Manning friction law (Sect. 4.2.1), we get a perfect agreement
between the reference solution and the numerical solution. Moreover the relative
L?- error is also approximately 5.6384 x 107>

4.2.3 Supercritical Flow for Manning Friction Law

A 1000 m long channel is considered. The following water height is chosen and
plotted on Fig. 3:
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At the inflow boundary, we impose a constant discharge g=2.25 m?/s and a
constant water height equal to the steady state reference solution at inflow £,,(0).
The outflow boundary at x = 1000 m is let free (Neumann condition).

Parameters : n = 0.33, v=10"% Ax=0.25m, Ar=0.02s.

On Fig. 3, we can notice that the numerical method allows to catch perfectly the
torrential equilibrium for the Manning friction law. For this case, the relative L*-
error is approximately 1.4876 x 107°.

4.2.4 Supercritical Flow for Darcy-Weisbach Friction Law

A 1000 m long channel is considered. We consider the water height defined by
formula (22). At the inflow boundary x = 0, we impose a constant discharge
g=2.25 m?/s and a constant water height equal to the steady state reference
solution at the income 4., (0). The outflow boundary at x = 1000 m is let free
(Neumann condition).

Parameters : f =0.25, v=10"% Ax=0.25m, Ar=0.02s.

Perfect agreement is observed between the reference solution and the numerical
solution (Fig. 4) and the relative L*-error is approximately 1.5.27 x 107,
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4.2.5 Transcritical Flow for Manning Friction Law

A 100 m long channel is considered. The following water height is chosen and
plotted on Fig. 5:

1
hex(x) = 508 (%x) +1 (23)

At the inflow boundary x = 0, we impose a constant discharge ¢ =2.2 m?/s. The
outflow boundary at x = 100 m is let free (Neumann condition).

Parameters : n =0.33, v=10"% Ax=0.5m, Ar=0.01s.

Transcritical solutions might be difficult to catch numerically. We can see on
Fig. 5, that this numerical difficulty is overcome by the scheme we have considered.
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Fig. 6 Comparison between 2 T T T

. gray h Z —
the numerical result Numenca result 3
Z+ k (plotted every 5 points) 15 F’°°€#$?‘?é‘°‘§i’f£§§ezﬁl’ﬁ —

and the reference solution

Z + h,, for transcritical flow -é-
and Darcy-Weisbach friction = 1
law 'C+
N
~ 05F
N

x (m)

The equilibrium is perfectly obtained by the numerical method. The relative L’-
error is approximately 1.208 x 107,

4.2.6 Transcritical Flow for Darcy-Weisbach Friction Law

A 80 m long channel is considered. We consider the water height defined by (23).
At the inflow boundary x = 0, we impose a constant discharge q =3 m?/s. The
outflow boundary at x = 80 m is let free (Neumann condition).

Parameters : f =0.25, v=10"° Ax=0.5m, Ar=0.01s.

As for the Manning friction law (see Sect. 4.2.5), the transcritical steady state is
perfectly reached by the numerical (as observed on Fig. 6) and the relative L*- error
is approximately 1.2885 x 107,

We have validated our numerical method on various flow regimes. To complete
this work, some convergence analysis and accuracy study need to be done. This will
be considered in forthcoming work. We have to validate our model, this will be
done in next section on real data.

5 First Attempt on Real Data

In this section, we aim at validating our model (4) on real data. For this case, an
experimental flow over an inclined corrugated bottom (Fig. 7) is considered with an
inflow discharge of ¢ =3.9 x 10~*m?/s. Free surface profile is measured at steady
state along a 55 cm long profile with a 0.5 mm resolution using the device described
in [23]. A succession of transcritical transitions and hydraulic jumps is obtained.
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Fig. 7 Comparison between the two models against experimental data over a corrugated bottom

FullSWOF_1D has already been run on this data set [15]. It has been able to locate
the hydraulic jumps correctly but the simulated solution has exhibited shocks
steeper than the measured ones. In this work, we have considered successively
system (3) and system (4) with Manning friction law. The length of the domain is
L = 0.557 m, the space step length is Ax=35 x 10~* m. For system (4), the
viscosity is v =2 x 107,

On Fig. 7, we can notice that the hydraulic jumps are less steep with the new
model (4) than with the classical model. The relative L*- error on the water height
between the experimental and the classical shallow water model is approximately
9.5872 x 1072 and is closed to the one between the experimental and the new model
which is approximately 9.4747 x 1072, More comparisons on real data will be
necessary to completely validate this new model.

6 Conclusion and Perspectives

In this work, we have developed a new shallow-water system with diffusion source
term and new Manning and Darcy-Weisbach friction laws. We have validated a
numerical method adapted to this system on new various analytical solutions. This
numerical method showed good agreement with the reference solutions. In forth-
coming work, we will have to do convergence analysis. Then we have applied this
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model on real data. This model seems to be more adapted than the classical
shallow-water model. We will have to try other flow regimes to validate completely
this new model.
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(Contemporary Topics on Conservation Laws), Carine Lucas for her advices and Frédéric Darboux
for the data used in Sect. 4.2.

References

1. de Saint-Venant, A. J.-C. (1871). Théorie du mouvement non-permanent des eaux, avec
application aux crues des rivicres et a I’introduction des marées dans leur lit. Comptes Rendus
de I’Académie des Sciences, 73, 147-154.

2. Delestre, O. (2010). Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. PhD
thesis University of Orléans, in french. http:/tel.archives-ouvertes.fr/INSMI/tel-00531377/fr.

3. Delestre, O., Cordier, S., Darboux, F., Du, M., James, F., & Laguerre, C., et al. (2014).
FullSWOF: A software for overland flow simulation. In P.Gourbesville, J. Cunge, & G.
Caignaert, (Eds.), Advances in Hydroinformatics, Springer Hydrogeology (pp. 221-231).
Springer: Singapore.

4. Esteves, M., Faucher, X., Galle, S., & Vauclin, M. (2000). Overland flow and infiltration
modelling for small plots during unsteady rain: numerical results versus observed values.
Journal of Hydrology, 228, 265-282.

5. Tatard, L., Planchon, O., Wainwright, J., Nord, G., Favis-Mortlock, D., Silvera, N., et al.
(2008). Measurement and modelling of high-resolution flow-velocity data under simulated
rainfall on a low-slope sandy soil. Journal of Hydrology, 348(1-2), 1-12.

6. Goutal, N., & Maurel, F. (2002). A finite volume solver for 1D shallow-water equations
applied to an actual river. International Journal for Numerical Methods in Fluids, 38, 1-19.

7. Caleffi, V., Valiani, A., & Zanni, A. (2003). Finite volume method for simulating extreme
flood events in natural flood events in natural channels. Journal of Hydraulic Research, 41(2),
167-1717.

8. Alcrudo, F., & Gil, E. (1999). The Malpasset dam break case study. Proceedings of the 4th
CADAM Workshop, Zaragoza (pp. 95-109).

9. Valiani, A., Caleffi, V., & Zanni, A. (2002). Case study: Malpasset dam-break simulation
using a two-dimensional finite volume methods. Journal of Hydraulic Engineering, 128(5),
460-472.

10. Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61(9), 1261—
1285.

11. Gerbeau, J.-F., & Perthame, B. (2001). Derivation of viscous Saint-Venant system for laminar
shallow water; numerical validation. Discrete and Continuous Dynamical Systems—Series S,
1, 89-102.

12. Marche, F. (2007). Derivation of a new two-dimensional viscous shallow water model with
varying topography, bottom friction and capillary effects. European Journal of Mechanics
B/Fluids, 26, 49-63.

13. MacDonald, 1., Baines, M. J., Nichols, N. K., & Samuels, P. G. (1997). Journal of Hydraulic
Engineering, 123, 1041-1045.

14. Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill.

15. Delestre, O., Darboux, F., James, F., Lucas, C., Laguerre, C., & Cordier, S. (Submitted).
FullSWOF: A free software package for the simulation of shallow water flows. arxiv.
org/abs/1401.4125.


http://tel.archives-ouvertes.fr/INSMI/tel-00531377/fr

Numerical Scheme for a Viscous Shallow Water System ... 239

16.

17.

18.

19.

20.

21.

22.

23.

Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., & Perthame, B. (2004). A fast and stable
well-balanced scheme with hydrostatic reconstruction for shallow water flows. Journal of
Scientific Computing, 25(6), 2050-2065.

Bouchut, F. (2004). Nonlinear stability of finite volume methods for hyperbolic conservation
laws, and well-balanced schemes for sources. Frontiers in Mathematics. Basel: Birkhauser.
Bristeau, M.-O., & Coussin, B. (2001). Boundary conditions for the shallow water equations
solved by kinetic schemes. Inria report RR-4282.

Fiedler, R. F., & Ramirez, J. A. (2000). A numerical method for simulating discontinuous
shallow flow over an infiltrating surface. International Journal for Numerical Methods in
Fluids, 32, 219-240.

Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., & Dongarra, J., et al. (1999).
LAPACK Users’ guide (3™ ed.). Philadelphia: Society for Industrial and Applied Mathematics.
Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T. N. T., et al. (2013).
SWASHES: A compilation of Shallow-Water analytic solutions for hydraulic and
environmental studies. International Journal for Numerical Methods in Fluids, 72, 269-300.
doi:10.1002/1d.3741.

Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., & James, F., et al. (2014).
SWASHES: A library for benchmarking in hydraulic. In p. Gourbesville, J. Cunge & G.
Caignaert, (Eds.), Advances in Hydroinformatics, Springer Hydrogeology (pp. 233-243).
Springer: Singapore.

Legout, C., Darboux, F., Nédélec, Y., Hauet, A., Esteves, M., Renaux, B., et al. (2012). High
spatial resolution mapping of surface velocities and depths for shallow overland flow. Earth
Surface Processes and Landforms, 37(9), 984-993. doi:10.1002/esp.3220.


http://dx.doi.org/10.1002/fld.3741
http://dx.doi.org/10.1002/esp.3220

	16 Numerical Scheme for a Viscous Shallow Water System Including New Friction Laws of Second Order: Validation and Application
	1 Introduction
	2 Derivation of the Model
	3 Numerical Scheme
	4 Numerical Validations
	4.1 Analytical Solutions
	4.2 Numerical Results
	4.2.1 Subcritical Flow for Manning Friction Law
	4.2.2 Subcritical Flow for Darcy-Weisbach Friction Law
	4.2.3 Supercritical Flow for Manning Friction Law
	4.2.4 Supercritical Flow for Darcy-Weisbach Friction Law
	4.2.5 Transcritical Flow for Manning Friction Law
	4.2.6 Transcritical Flow for Darcy-Weisbach Friction Law


	5 First Attempt on Real Data
	6 Conclusion and Perspectives
	Acknowledgements
	References


