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Motivation
Problem:

Describe the collection of all lines in the real plane R2 that pass
through the origin.

A way to solve this is to assign to each line  a parameter

Example

Define a function θ() between  and the -axis, so 0 ≤ θ < π.

2/24



Motivation
Problem:

Describe the collection of all lines in the real plane R2 that pass
through the origin.

A way to solve this is to assign to each line  a parameter

Example

Define a function θ() between  and the -axis, so 0 ≤ θ < π.

2/24



3/24



So the set of lines  or better known as RP1 =
{︀
 ∈ R2 | 0 ∈ 

}︀
is

in one to one correspondence with the interval [0, π).

We need to impose a structure on the interval that recognizes the
point 0 and π as the same.

When we do this, we get a circle
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Another construction is to consider the unit circle S1 ⊂ R2, to each
line we assign two points in S1.

The advantage of this procedure is that we can endow RP1 with a
topology inherited of S1.
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Now we are allowed to study continuous functions ƒ : C→ RP1

with C a topological space.

Example

Let C ⊂ R2\{0} be a curve given by

γ :  ⊂ R→ C
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Because γ is continuous in R2, (c) is also a continuous function
from

 : C→ RP1

c 7→ (c)

In the same way we can extend the notion of continuity for maps
from Rn to RP1 by assigning to each  ∈ Rn, θ(()) ∈ RP1, in the
case θ() = 0 or π we can use the angle φ from the vertical axis.
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This means it is equivalent to have:

• Family of lines in R2

parametrized by a
topological space X

• Continuous functions from X

to RP1

We say RP1 is themoduli space of lines in R2
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Line Bundles

Let X be a smooth manifold, for each  ∈ X, we assign a copy of R2

so we can visualize (). This is known as the line bundle.

If X = RP1, we call this the tautological line bundle.
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This means it is equivalent to have:

• Family of lines
in R2

parametrized
by a topological
space X

• Continuous
functions from
X to RP1

• Line bundle on
X contained in
the trivial
bundle X × R2
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Moduli space of curves
Problem Classify compact Riemann surfaces

A geometric solution is Moduli spacesMg

• Each point ofMg is a Riemann surface

• StudyingMg can tell us things of the geometry of the Riemann
surfaces.
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Riemann Surfaces

A Riemann surface is a 1C-dimensional manifold where the
transitions functions are holomorphic.
Examples
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• Classification of compact R.S. up to topological equivalence is
given by the integer number g (genus), where g = 0
corresponds to S2 ∼= CP1.

• Such Classification ignores the complex structure.

• Contrary to the genus (discrete), there are inequivalent R.S. that
can be parametrized by continuous parameters.
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g = 0

Riemann Uniformization Theorem

Any symply connected R.S. is biholomorphic to either CP1, C orH.

• Any compact R.S. with g = 0 is simply connected, then by RUT,
it can only be CP1.

• For this case the topological and holomorphic classifications
agree.
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g = 1

• Torus with one handle can be obtained by taking the quotient
C/(Z× Z)

• Replace Z× Z by a lattice L, and z ∼  if z −  ∈ L.

• A basis for L is a pair of numbers1, 2 ∈ C, such that ∀z ∈ L,
z = 1 + b2 with , b ∈ Z.

• Any compact R.S with g = 1 can be obtained as the quotient
C/L.

• The zero of C is preserved by the quotient, such point is a
marked point in the torus.
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Definition

An elliptic curve over C is a Riemann surface of genus one with a
marked point.

• There is a one -to -one correspondence between elliptic curves
and lattices.

• IfL is a lattice λL is also a lattice, also C/L ∼= C/λL

• Given a lattice L and its oriented basis
(1, 2) = (1, τ =

2

1
), where τ /∈ R, this suggestH is the

parameter space.
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Given two basis onH, the change of basis is given by the matrix:

T =

(︃
 b

c d

)︃
where , b, c, d ∈ Z

This is fact must be an element of PSL(2,R) as well, so:

• Two points inH correspond to the same elliptic curve if there
exists an element T ∈ PSL(2,Z) that relates them.

Elliptic curves are in one-to-one correspondence with orbits of
PSL(2,Z) inH, i.e. elements ofH/PSL(2,Z)
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• However, NOT every continuous family of elliptic curves over a
topological space X can be identified with a map from X to
M1,1

• There are two points inH/PSL(2,Z) with additional symmetry.

• These two points have symmetries corresponding to the groups
Z/4Z and Z/6Z
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To see this we note that one of the points correspond to the lattice
(1, ), this lattice is the same if we rotate it by π/2 and π/6 for the

lattice (1,
1 + 

p
3

2
), this means the automorphism group is

discontinuous at these points.
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Because of this "hidden" symmetry, we can no longer have the
correspondence of maps from X toM(1,1), because there will be
more elliptic curves than maps in these points.

The structure that actually deals with this situations is called:
orbifold.

Orbifolds can handle points with internal symmetries and therefore
play an important role on the description of moduli spaces.
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Higher genus

• Any compact Riemann surface X of genus g > 1 can be
obtained as a quotient X = H/.

•  is a representation of the fundamental group π1(X) in
PSL(2,R) with 2g generators.

There is a one-to-one correspondence between holomorphic maps
from a complex manifold Y to Tg and biholomorphism classes of
marked Riemann surfaces of genus g
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• Unfortunately the Teichmüller space (space of parameters for
the complex structure) associated to X might not have a
complex structure.

• This is caused by the fact that π1(X) is not abelian, therefore
cannot be identified to the homology group H1(X,Z)

• Fortunately there is an "abelian" moduli, called: Abelian
varieties, but such descriptions are quite complicated.
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