

Introduction to Riemann surfaces, moduli spaces and its applications

Oscar Brauer

M2, Mathematical Physics

Outline

- 1. Introduction to Moduli Spaces
 - 1.1 Moduli of Lines
 - 1.2 Line Bundles
- 2. Moduli space of curves
 - 2.1 Riemann Surfaces
 - $2.2 \, g = 0$
 - $2.3 \, g = 1$
 - 2.4 Higher genus

Motivation

Problem:

Describe the collection of all lines in the real plane \mathbb{R}^2 that pass through the origin.

Motivation

Problem:

Describe the collection of all lines in the real plane \mathbb{R}^2 that pass through the origin.

A way to solve this is to assign to each line *l* a parameter

Example

Define a function $\theta(l)$ between l and the x-axis, so $0 \le \theta < \pi$.

So the set of lines l or better known as $\mathbb{RP}^1 = \{l \in \mathbb{R}^2 \mid 0 \in l\}$ is in one to one correspondence with the interval $[0, \pi)$.

So the set of lines l or better known as $\mathbb{RP}^1 = \{l \in \mathbb{R}^2 \mid 0 \in l\}$ is in one to one correspondence with the interval $[0, \pi)$.

We need to impose a structure on the interval that recognizes the point 0 and π as the same.

So the set of lines l or better known as $\mathbb{RP}^1 = \{l \in \mathbb{R}^2 \mid 0 \in l\}$ is in one to one correspondence with the interval $[0, \pi)$.

We need to impose a structure on the interval that recognizes the point 0 and π as the same.

When we do this, we get a circle

Another construction is to consider the unit circle $\mathbb{S}^1 \subset \mathbb{R}^2$, to each line we assign two points in \mathbb{S}^1 .

Another construction is to consider the unit circle $\mathbb{S}^1 \subset \mathbb{R}^2$, to each line we assign two points in \mathbb{S}^1 .

Another construction is to consider the unit circle $\mathbb{S}^1 \subset \mathbb{R}^2$, to each line we assign two points in \mathbb{S}^1 .

The advantage of this procedure is that we can endow \mathbb{RP}^1 with a topology inherited of \mathbb{S}^1 .

Now we are allowed to study continuous functions $f: C \to \mathbb{RP}^1$ with C a topological space.

Example

Let $C \subset \mathbb{R}^2 \setminus \{0\}$ be a curve given by

$$\gamma:I\subset\mathbb{R}\to C$$

Because γ is continuous in \mathbb{R}^2 , l(c) is also a continuous function from

$$l: C \to \mathbb{RP}^1$$
$$c \mapsto l(c)$$

In the same way we can extend the notion of continuity for maps from \mathbb{R}^n to \mathbb{RP}^1 by assigning to each $x \in \mathbb{R}^n$, $\theta(l(x)) \in \mathbb{RP}^1$, in the case $\theta(l) = 0$ or π we can use the angle φ from the vertical axis.

• Family of lines in \mathbb{R}^2 parametrized by a topological space X

• Family of lines in \mathbb{R}^2 parametrized by a topological space X

• Continuous functions from X to \mathbb{RP}^1

• Family of lines in \mathbb{R}^2 parametrized by a topological space X

• Continuous functions from X to \mathbb{RP}^1

We say \mathbb{RP}^1 is the moduli space of lines in \mathbb{R}^2

Line Bundles

Let X be a smooth manifold, for each $x \in X$, we assign a copy of \mathbb{R}^2 so we can visualize l(x). This is known as the **line bundle**.

Line Bundles

Let X be a smooth manifold, for each $x \in X$, we assign a copy of \mathbb{R}^2 so we can visualize l(x). This is known as the **line bundle**.

If $X = \mathbb{RP}^1$, we call this the **tautological line bundle**.

- Family of lines in R² parametrized by a topological space X
- Continuous functions from X to \mathbb{RP}^1

- Family of lines in \mathbb{R}^2 parametrized by a topological space X
- Continuous functions from X to \mathbb{RP}^1
- Line bundle on X contained in the trivial bundle $X \times \mathbb{R}^2$

Outline

- Introduction to Moduli Spaces
 - 1.1 Moduli of Lines
 - 1.2 Line Bundles
- 2. Moduli space of curves
 - 2.1 Riemann Surfaces
 - 2.2 g = 0
 - 2.3 g = 1
 - 2.4 Higher genus

Moduli space of curves

Problem Classify compact Riemann surfaces

A geometric solution is Moduli spaces \mathcal{M}_g

- Each point of \mathcal{M}_g is a Riemann surface
- Studying \mathcal{M}_g can tell us things of the geometry of the Riemann surfaces.

Riemann Surfaces

A Riemann surface is a $\mathbf{1}_{\mathbb{C}}$ -dimensional manifold where the transitions functions are holomorphic.

Examples

• Classification of compact R.S. up to topological equivalence is given by the integer number g (genus), where g=0 corresponds to $\mathbb{S}^2 \cong \mathbb{CP}^1$.

- Such Classification ignores the complex structure.
- Contrary to the genus (discrete), there are inequivalent R.S. that can be parametrized by continuous parameters.

$$g = 0$$

Riemann Uniformization Theorem

Any symply connected R.S. is biholomorphic to either \mathbb{CP}^1 , $\mathbb C$ or $\mathbb H$.

- Any compact R.S. with g=0 is simply connected, then by RUT, it can only be \mathbb{CP}^1 .
- For this case the topological and holomorphic classifications agree.

g=1

- Torus with one handle can be obtained by taking the quotient $\mathbb{C}/(\mathbb{Z} \times \mathbb{Z})$
- Replace $\mathbb{Z} \times \mathbb{Z}$ by a lattice L, and $z \sim w$ if $z w \in L$.
- A basis for L is a pair of numbers $w_1, w_2 \in \mathbb{C}$, such that $\forall z \in L$, $z = aw_1 + bw_2$ with $a, b \in \mathbb{Z}$.
- Any compact R.S with g = 1 can be obtained as the quotient \mathbb{C}/L .
- The zero of $\mathbb C$ is preserved by the quotient, such point is a marked point in the torus.

Definition

An elliptic curve over *C* is a Riemann surface of genus one with a marked point.

- There is a one -to -one correspondence between elliptic curves and lattices.
- If L is a lattice λL is also a lattice, also $\mathbb{C}/L \cong \mathbb{C}/\lambda L$
- Given a lattice L and its oriented basis $(w_1, w_2) = (1, \tau = \frac{w_2}{w_1})$, where $\tau \notin \mathbb{R}$, this suggest \mathbb{H} is the parameter space.

Given two basis on \mathbb{H} , the change of basis is given by the matrix:

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \text{where } a, b, c, d \in \mathbb{Z}$$

This is fact must be an element of $PSL(2, \mathbb{R})$ as well, so:

• Two points in \mathbb{H} correspond to the same elliptic curve if there exists an element $T \in PSL(2, \mathbb{Z})$ that relates them.

Elliptic curves are in one-to-one correspondence with orbits of $PSL(2, \mathbb{Z})$ in \mathbb{H} , i.e. elements of $\mathbb{H}/PSL(2, \mathbb{Z})$

- However, NOT every continuous family of elliptic curves over a topological space X can be identified with a map from X to M_{1,1}
- There are two points in $\mathbb{H}/PSL(2,\mathbb{Z})$ with additional symmetry.
- These two points have symmetries corresponding to the groups $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$

To see this we note that one of the points correspond to the lattice (1, i), this lattice is the same if we rotate it by $\pi/2$ and $\pi/6$ for the lattice $(1, \frac{1+i\sqrt{3}}{2})$, this means the automorphism group is discontinuous at these points.

Because of this "hidden" symmetry, we can no longer have the correspondence of maps from X to $\mathcal{M}_{(1,1)}$, because there will be more elliptic curves than maps in these points.

The structure that actually deals with this situations is called: **orbifold**.

Orbifolds can handle points with internal symmetries and therefore play an important role on the description of moduli spaces.

Higher genus

- Any compact Riemann surface X of genus g > 1 can be obtained as a quotient $X = \mathbb{H}/\Gamma$.
- Γ is a representation of the fundamental group $\pi_1(X)$ in $PSL(2,\mathbb{R})$ with 2g generators.

There is a one-to-one correspondence between holomorphic maps from a complex manifold Y to T_g and biholomorphism classes of marked Riemann surfaces of genus g

• Unfortunately the Teichmüller space (space of parameters for the complex structure) associated to *X* might not have a complex structure.

- This is caused by the fact that $\pi_1(X)$ is not abelian, therefore cannot be identified to the homology group $H_1(X, \mathbb{Z})$
- Fortunately there is an "abelian" moduli, called: **Abelian** varieties, but such descriptions are quite complicated.

Bibliography

- [1] Martin Schlichenmaier An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces. Theoretical and Mathematical Physics Springer, Berlin Heidelberg 2007.
- [2] Timothy Gowers, editor; June Barrow-Green, Imre Leader, associate editors *The Princeton companion to mathematics*. Princeton University Press, 2008.
- [3] Dimitri Zvonkine An introduction to moduli spaces of curves and its intersection theory. Available at https: //www-fourier.ujf-grenoble.fr/sites/ifmaquette. ujf-grenoble.fr/files/ete2011-zvonkine.pdf.
- [4] Ravi Vakil The Moduli Space of Curves and Its Tautological Ring Notices of the AMS, Vol. 50 No. 6, June/July 2003, pp. 647-658.