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Abstract. Let γ > 0, β > 0, α > 0 and 0 < σN < 4. In the present paper, we study, for c > 0 given, the constrained
minimization problem

m(c) := inf
u∈S(c)

E(u),

where

E(u) :=
γ

2

∫
R
N
|∆u|2 dx −

β

2

∫
R
N
|∇u|2 dx − α

2σ + 2

∫
R
N
|u|2σ+2 dx,

and

S(c) :=
{
u ∈H2(RN ) :

∫
R
N
|u|2 dx = c

}
.

The aim of our study is twofold. On one hand, this minimization problem is related to the existence and orbital
stability of standing waves for the mixed dispersion nonlinear biharmonic Schrödinger equation

i∂tψ −γ∆2ψ − β∆ψ +α|ψ|2σψ = 0, ψ(0,x) = ψ0(x), (t,x) ∈R×RN .
On the other hand, in most of the applications of the Concentration-Compactness principle of P.-L. Lions, the dif-
ficult part is to deal with the possible dichotomy of the minimizing sequences. The problem under consideration
provides an example for which, to rule out the dichotomy is rather standard while, to rule out the vanishing, here
for c > 0 small, is challenging. We also provide, in the limit c → 0, a precise description of the behavior of the
minima. Finally, some extensions and open problems are proposed.

1. Introduction

In this paper we consider a constrained minimization problem which is motivated by the search of stand-
ing waves solutions for the biharmonic NLS (Nonlinear Schrödinger Equation) with mixed dispersion

(1.1) i∂tψ −γ∆2ψ − β∆ψ +α|ψ|2σψ = 0, ψ(0,x) = ψ0(x), (t,x) ∈R×RN .

Here γ > 0, β ∈ R and α > 0 are given parameters and 0 < σN < 4∗ where we define 4∗ := 4N/(N − 4)+,
namely 4∗ = +∞ if N ≤ 4 and 4∗ = 4N/(N − 4) if N ≥ 5.

About twenty years ago, equation (1.1) was introduced for several distinct physical motivations, see
in particular [22, 23] and [18]. It has been since then the object of intensive studies, some dealing with
dynamical issues such as local or global well-posedness, others dealing with the existence and properties of
certain kind of solutions. We refer to the introductions of the papers [5, 6, 10, 28] for a presentation of the
more recent results concerning (1.1).

Of particular interest are the so called standing waves solutions, i.e. solutions of the form ψ(t,x) =
eiλtu(x) with λ > 0. The function u then satisfies the elliptic equation

(1.2) γ∆2u + β∆u +λu = α|u|2σu, u ∈H2(RN ).

A possible choice is to consider that λ > 0 in (1.2) is given and to look for solutions as critical points of the
functional

(1.3) E(u) :=
γ

2

∫
R
N
|∆u|2 dx −

β

2

∫
R
N
|∇u|2 dx+

λ
2

∫
R
N
|u|2 dx − α

2σ + 2

∫
R
N
|u|2σ+2 dx.

This work has been carried out in the framework of the project NONLOCAL (ANR-14-CE25-0013), funded by the French National
Research Agency (ANR)..

1
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Then, for physical reasons, one usually focus on the so-called least energy solutions, namely solutions which
minimize E on the set

(1.4) N :=
{
u ∈H2(RN )\{0} : E′(u) = 0

}
.

This is the approach followed in [5, 9].

Alternatively, one can consider the existence of solutions to (1.2) having a prescribed L2-norm. Since
solutions to (1.1) conserve their mass along time, it is natural from a physical point view to search for such
solutions. We shall focus on this issue. For c > 0 given, we consider the problem of finding solutions to

(Pc) γ∆2u + β∆u +λu = α|u|2σu, u ∈H2(RN ) with
∫
R
N
|u|2dx = c.

It is standard to show that a critical point of the energy functional

(1.5) E(u) :=
γ

2

∫
R
N
|∆u|2 dx −

β

2

∫
R
N
|∇u|2 dx − 1

2σ + 2

∫
R
N
|u|2σ+2 dx,

restricted to

(1.6) S(c) :=
{
u ∈H2(RN ) :

∫
R
N
|u|2 dx = c

}
,

corresponds to a solution of (Pc). The value of λ ∈ R in (Pc) is then an unknown of the problem and it
corresponds to the associated Lagrange multiplier.

In [5, 6] the authors study this problem assuming that β < 0. First, in [5] the mass subcritical case
0 < σN < 4 was considered. In this case, the functional E is bounded from below on S(c) for any c > 0.
Hence, it is possible to search for a critical point of E restricted to S(c) as a global minimizer. Setting, for
c > 0 given,

(1.7) m(c) := inf
u∈S(c)

E(u),

the following result was obtained.

Theorem 1.1. [5, Theorem 1.1] Assume γ > 0, β ≤ 0 and α > 0. If 0 < σN < 2, then m(c) is achieved for every
c > 0. If 2 ≤ σN < 4 then there exists a critical mass c̃ ∈ [0,∞) such that

i) m(c) is not achieved if c < c̃;
ii) m(c) is achieved if c > c̃ and σ = 2/N ;

iii) m(c) is achieved if c ≥ c̃ and σ , 2/N .
Moreover if σ is an integer and m(c) is achieved, then there exists at least one radially symmetric minimizer.

Remark 1.1. Let us point out that, for β = 0, it follows that c̃ = 0 while, for β < 0, it holds that c̃ > 0. The
appearance of a critical mass when β < 0 and 2 ≤ σN < 4 is linked to the fact that each term of E behaves
differently with respect to scaling. Such a phenomenon was first observed in [16] and has now been revealed
in several distinct settings, see for instance [13, 17, 21] for related results.

In [6] the authors considered, still assuming β < 0, the mass critical case σN = 4 and the mass supercrit-
ical case 4 < σN < 4∗. In particular, it was shown in [6, Theorem 1.2] that standing waves do not exist if
σN = 4 and that, assuming c > 0 sufficiently small, they do exist when 4 < σN < 4∗, see [6, Theorem 1.3].
Note that in the mass supercritical case 4 < σN < 4∗ the functional E is not more bounded from below on
S(c). The critical points obtained in [6] are of saddle point type. In [6], some multiplicity results for radial
solutions were also derived.

Very recently, the case where β > 0 started to be considered in [26, 27]. The paper [26] is devoted to
the mass subcritical case 0 < σN < 4 and the mass critical case σN = 4 while [27] deals with the mass
supercritical case 4 < σN < 4∗ and the Sobolev critical case σN = 4∗. We shall come back later, in some
details, to these two papers.

In the present work we also deal with the case β > 0 and restrict ourselves to the mass subcritical case
0 < σN < 4, see however Section 7 for a result in the mass critical case σN = 4. Our first main result reads
as follows
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Theorem 1.2. Assume γ > 0, β > 0, α > 0 and 0 < σN < 4. For m(c) defined as in (1.7), there exists c0 ∈ [0,∞)
such that:

i) If c > c0, any minimizing sequence of m(c) is precompact in H2(RN ) up to translations. In particular,
m(c) is achieved.

ii) If 0 < σ <max
{

4
N+1 ,1

}
, then we have that c0 = 0.

In addition, if u ∈ S(c) is a minimizer of m(c), the associated Lagrange multiplier λ ∈R satisfy λ > β2

4γ .

Remark 1.2.
a) In the case where β < 0 and 2 ≤ σN < 4, see Theorem 1.1, there exists a critical mass c̃ > 0 such that
m(c) is not achieved if c < c̃. The situation is now different. In the case β > 0 considered in Theorem
1.2, we may find σ > 2

N such that, for every c > 0, m(c) is achieved.
b) It is known from [31], see also [4], that the Cauchy problem associated to (1.1) is locally well-posed

in H2(RN ) as soon as 0 < σN < 4∗. Also, in the mass subcritical case 0 < σN < 4 that we are
considering in Theorem 1.2, the global existence for the Cauchy problem holds, see [18, 31]. Thus,
having at hand the precompactness up to translations of any minimizing sequence, it is standard to
show the orbital stability of the set of global minima following the strategy laid down in [14].

c) When σ > 0 is an integer, using a very recent result of L. Bugiera, E. Lenzmann and J. Sok [12], it
is possible to obtain symmetry properties for the global minimizer of m(c). In view of Theorem 1.2,
we shall benefit from these results when N = 1,2. More details will be given in Section 7.

Let us now provide some elements of the proof of Theorem 1.2. First, assuming that 0 < σN < 4, it is
straightforward to show that the functional E is bounded from below on S(c) and coercive, see Lemma 2.2.
In particular, m(c) is well defined for any c > 0. Then, using a convenient version of the Concentration
Compactness principle of P.-L. Lions, we deduce that, for any c > 0, either the vanishing of a minimizing
sequence occurs or it is precompact up to translations, see Lemma 2.5. Namely, the ruling out of the
vanishing also exclude the possibility of dichotomy for the minimizing sequences. Then, in Lemma 4.1,
we show that a necessary and sufficient condition to avoid the vanishing is that

(1.8) m(c) < −
β2

8γ
c.

This condition is derived through the study of an associated minimization problem, see Section 3, which
has also an interest by itself. More precisely, for all c > 0, we consider

(1.9) mI (c) := inf
u∈S(c)

I(u),

where

I(u) :=
γ

2

∫
R
N
|∆u|2 dx −

β

2

∫
R
N
|∇u|2 dx,

and we show that mI (c) = − β
2

8γ c, that the infimum is never achieved and that any minimizing sequence is
vanishing. See Lemma 3.1.

When c > 0 is large, it is direct to show that (1.8) holds. However, when c > 0 is small, the situation is
surprisingly much more complex and the treatment of this case is a central part of this paper. Under the
assumption 0 < σ < max{4/(N + 1),1}, we manage to check (1.8) for all c > 0 through the construction of
suitable testing functions. We refer to Section 5 for more details. Our choice of testing functions is inspired
by the following result which provides a description of the behavior of the minima, when they exist, as
c→ 0.

Theorem 1.3. Assume γ > 0, β > 0, α > 0 and 0 < σN < 4. Let {(un, cn)} ⊂ S(cn) ×R be such that cn → 0 as
n→∞ and un ∈ S(cn) be a minimizer of m(cn) for each n ∈N. Then:

i) There exists {εn} ⊂R
+ with εn→ 0 such that

−
β2

8γ
(1 + εn)cn = (1 + εn)mI (cn) ≤m(cn) ≤mI (cn) = −

β2

8γ
cn, ∀ n ∈N.
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ii) Letting λn ∈R be the Lagrange multiplier associated to un, it follows that

λn→
( β2

4γ

)+
as n→∞.

iii) It holds that

‖∆un‖2
‖un‖2

→
β

2γ
and

‖∇un‖2
‖un‖2

→

√
β

2γ
as n→∞.

iv) Setting vn =
un
‖un‖2

we have that vn→ 0 in Lp(RN ) for any p ∈ (2,4∗). Also

(1.10)
∫
R
N

(
|ξ |2 −

β

2γ

)2
|v̂n(ξ)|2 dξ→ 0 as n→∞.

Remark 1.3.

a) From i) we see that the slope of m(c) at the origin is precisely − β
2

8γ . This clearly shows that to check
(1.8) for c > 0 small is not an easy task.

b) From (1.10) we see that the L2−norm of {v̂n} ⊂ S(1) concentrate near the sphere of radius
√
β/2γ

centered at the origin when n→∞. This was one of the keys to find the test functions that allow to
show that, under the assumption 0 < σ <max{4/(N + 1),1}, the strict inequality (1.8) holds for every
c > 0.

Let us now turn back to the works [26,27] and try to locate our results with respect to the ones presented
in these papers. In [26], in the mass subcritical case and mass critical cases, assuming that the non vanishing
holds it is shown that any minimizing sequence is precompact, up to translation (and thus that the set of
global minima is orbitally stable, see Remark 1.2 b)). Instead of using the approach laid down by P.-L. Lions,
the authors rely on a Profile Decomposition of bounded sequences inH2(RN ) which was established in [36].
In [26] is derived an explicit lower bound on c > 0 above which the non-vanishing holds (this corresponds
in [26] to the case µ < 0, |µ| small). There are not results in [26] when c > 0 is small. The work [27] is
devoted to the mass supercritical case 4 < σN < 4∗ and also the Sobolev critical case σN = 4∗. In both cases,
assuming that c > 0 is small enough, it is shown that E presents a so-called convex-concave geometry. Thus,
one can hope to find two critical points: one as a local minimizer and another one of mountain pass type.
Such geometry and corresponding multiplicity results had been observed recently in a series of papers.
In [1, 3], this geometry is created by the presence of an external potential. In [15, 32, 33] it results from the
presence of two non linearities having a different behavior under scaling. Such phenomena has also been
observed in the case of systems in [19] (see also [30] for results on bounded domains). The set of critical
points which are obtained as local minima is then clearly expected to be orbitally stable and that is what
is proved in [1, 3, 19, 30, 32, 33]. In [27], concerning the existence of a critical point as local minimizer, the
authors seem to have overlook the possibility that the expected local minima may not exists (because of the
possible vanishing of any minimizing sequence). This point requires clearly a special care since, to insure
the convex-concave geometry, it is necessary to assume that c > 0 is small.

We end this paper, in Section 7, with some remarks and open problems. First we show, when σ ∈N, that
properties of the minima of m(c) can be obtained exploiting a result from [12]. Also, it should be clear that
the condition 0 < σ <max {4/(N + 1),1} is the consequence of two particular trials of test functions. Nothing
guarantees that we have obtained, in Theorem 1.2, the sharpest conditions for the existence of a minimizer
for c > 0 and deriving necessary and sufficient conditions to insure that it is the case is worth of study.
In addition, we indicate how our test functions also prove useful in the cases where the problem is mass
critical or mass supercritical. Finally, we note that the existence of a minimizer of m(c) for any c > 0 small
can be interpreted as a bifurcation result, in the H2(RN ) norm, from the bottom of the essential spectrum
of the operator u 7→ γ∆2u + β∆u defined on H2(RN ). It would be interesting to see if such phenomena is
also present for the ground states solutions obtained from the functional E in [5, 9].

We now describe the organization of the paper. In Section 2, we present some preliminary results. In
particular, we present the proof of Lemma 2.5 which shows that, if the vanishing do not occurs, then m(c) is
reached. In Section 3, we study in details the associated minimization problem (1.9). In Section 4, we derive
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the sufficient and necessary condition (1.8) which guarantees that the vanishing does not occur. Section 5 is
devoted to the construction of our two families of testing functions which permit to rule out the vanishing
under the conditions on σ > 0 given in Theorem 1.2. At this point the proof of Theorem 1.2 is completed.
In Section 6, we give the proof of Theorem 1.3, which deals with the behaviour of the minima as c → 0.
Finally, in Section 7, we present some additional results and state some open problems.

In the rest of the paper, unless it is stated the contrary, we assume that N ≥ 1, γ > 0, β > 0, α > 0 and
0 < σN < 4.

Notation. For 1 ≤ p <∞, we denote by Lp(RN ) the usual Lebesgue space with norm

‖u‖pp :=
∫
R
N
|u|p dx.

The Sobolev space H2(RN ) is endowed with its standard norm

‖u‖2 :=
∫
R
N
|∆u|2 + |∇u|2 + |u|2 dx.

We denote by ′→′ , respectively by ′⇀′ , the strong convergence, respectively the weak convergence in corresponding
space and denote by BR(x) the ball in R

N of center x and radius R > 0. We use the notation on(1) for any quantity
which tends to zero as n→∞. Finally, we shall denote by C > 0 a constant which may vary from line to line but
is not essential to the problem.

2. Preliminary results

We shall make use of some inequalities that we now present. First, we recall (see [29, Theorem in Lecture
II]) that, for all 0 ≤ σ < 4/(N − 4)+, i.e. 0 ≤ σ if N ≤ 4 and 0 ≤ σ < 4/(N − 4) if N ≥ 5, there exists a constant
BN (σ ) > 0 such that

(2.1) ‖u‖2σ+2
2σ+2 ≤ BN (σ )‖∆u‖

σN
2

2 ‖u‖
2+2σ− σN2
2 , ∀ u ∈H2(RN ).

This is precisely the so-called Gagliardo-Nirenberg inequality. Having at hand (2.1), by interpolation and
using the Sobolev inequality, one may infer (see [29, Theorem in Lecture II]) that, for all 0 ≤ σ < 2/(N − 2)+,
namely 0 ≤ σ if N ≤ 2 and 0 ≤ σ < 2/(N − 2) if N ≥ 3, there exists a constant CN (σ ) > 0 such that

(2.2) ‖u‖2σ+2
2σ+2 ≤ CN (σ )‖∇u‖σN2 ‖u‖

2+σ (2−N )
2 , ∀ u ∈H2(RN ).

We also use the following interpolation inequality that can be easily proved using the Fourier transform

(2.3)
∫
R
N
|∇u|2dx ≤

(∫
R
N
|∆u|2dx

) 1
2
(∫

R
N
|u|2dx

) 1
2

, ∀ u ∈H2(RN ).

Lemma 2.1. For any γ > 0, β ∈R and u ∈H2(RN ), it follows that

γ‖∆u‖22 − β‖∇u‖
2
2 +

β2

4γ
‖u‖22 ≥ 0.

Thus

(2.4) inf
u∈H2(RN )

(
γ‖∆u‖22 − β‖∇u‖

2
2

‖u‖22

)
≥ −

β2

4γ
.

Proof. It directly follows from (2.3) that

γ‖∆u‖22 − β‖∇u‖
2
2 +

β2

4γ
‖u‖22 ≥ γ‖∆u‖

2
2 − β‖∆u‖2‖u‖2 +

β2

4γ
‖u‖22 =

(√
γ‖∆u‖2 −

β

2
√
γ
‖u‖2

)2
≥ 0

ending the proof. �

Lemma 2.2. The functional E is coercive on S(c) and in particular m(c) > −∞ for any c > 0.

Proof. The claim follows directly using (2.1) and arguing as in Lemma 2.1. �
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Let us now introduce a scaling that will be useful for the rest of the work. For any u ∈ S(c) and any s > 0,
we define

(2.5) us(x) := s
N
4 u(
√
sx).

This definition is clearly motivated by the fact that ‖us‖2 = ‖u‖2 for all s > 0. One then easily obtain that

(2.6) E(us) =
γs2

2

∫
R
N
|∆u|2 dx −

βs

2

∫
R
N
|∇u|2 dx − αs

σN/2

2σ + 2

∫
R
N
|u|2σ+2 dx, ∀ s > 0.

Having at hand this suitable rescaling, we prove several properties of m(c) that will be needed to rule out
the possibility of dichotomy for the minimizing sequences.

Lemma 2.3.

i) m(c) < 0, ∀ c > 0;
ii) m(τc) ≤ τm(c), ∀ τ > 1, ∀ c > 0;

iii) Assume that there exists a global minimizer u ∈ S(c) of m(c) for some c > 0. Then m(τc) < τm(c) ∀ τ > 1;
iv) m(c1 + c2) ≤m(c1) +m(c2), ∀ c1, c2 > 0;
v) Assume that there exists a global minimizer u ∈ S(c1) with respect to m(c1) for some c1 > 0 and let c2 > 0.

Then m(c1 + c2) < m(c1) +m(c2).

Proof. i) Taking an arbitrary u ∈ S(c) and considering us as defined in (2.5), we see from (2.6) that E(us)→ 0−

as s→ 0 and i) follows.

ii) For any ε > 0, there exists u ∈ S(c) such that E(u) ≤m(c) + ε. Defining ũ(x) = τ
1
2u(x) we observe that

‖ũ‖22 = τ‖u‖22 = τc; ‖∆ũ‖22 = τ‖∆u‖22; ‖∇ũ‖22 = τ‖∇u‖22 and ‖ũ‖2σ+2
2σ+2 = τσ+1‖u‖2σ+2

2σ+2.

Hence, we have that

m(τc) ≤ E(ũ) = τ
[γ

2
‖∆u‖22 −

β

2
‖∇u‖22 −

ατσ

2σ + 2
‖u‖2σ+2

2σ+2

]
< τ

[γ
2
‖∆u‖22 −

β

2
‖∇u‖22 −

α
2σ + 2

‖u‖2σ+2
2σ+2

]
(2.7)

= τE(u) ≤ τ(m(c) + ε).

Since ε > 0 is arbitrary, we see that ii) holds.

iii) If m(c) is achieved, for example, at some u ∈ S(c), then we can let ε = 0 in (2.7) and thus the strict
inequality follows.

iv) Assume first that 0 < c2 ≤ c1. Then, by ii), we have that

m(c1 + c2) ≤ c1 + c2

c1
m(c1) =m(c1) +

c2

c1
m(c1) =m(c1) +

c2

c1
m(
c1

c2
c2)

≤m(c1) +
c2

c1

c1

c2
m(c2) =m(c1) +m(c2).

The case 0 < c1 < c2 can be treated reversing the role of c1 and c2.

v) Assume first that 0 < c2 ≤ c1. Then, using iii), observe that, if m(c1) is reached, we can write

m(c1 + c2) <
c1 + c2

c1
m(c1) =m(c1) +

c2

c1
m(c1) =m(c1) +

c2

c1
m(
c1

c2
c2)

≤m(c1) +
c2

c1

c1

c2
m(c2) =m(c1) +m(c2).

As in iv), the case 0 < c1 < c2 can be treated reversing the role of c1 and c2. �

Lemma 2.4. Let {un} ⊂H2(RN ) be a bounded sequence such that ‖un‖22→ c > 0 and let ũn = c
1
2
un
‖un‖2

. Then

i) ũn ∈ S(c), ∀n ∈N.
ii) limn→∞ |E(un)−E(ũn)| = 0.
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Proof. Point i) is obvious. Hence, we concentrate on point ii). We directly observe that

‖∆ũn‖22 =
c

‖un‖22
‖∆un‖22; ‖∇ũn‖22 =

c

‖un‖22
‖∇un‖22 and ‖ũn‖2σ+2

2σ+2 =
( c

‖un‖22

)σ+1
‖un‖2σ+2

2σ+2.

Hence, we have that

|E(un)−E(ũn)| =
∣∣∣∣∣∣γ2 (

1− c

‖un‖22

)
‖∆un‖22 −

β

2

(
1− c

‖un‖22

)
‖∇un‖22 −

1
2σ + 2

(
1−

( c

‖un‖22

)σ+1)
‖un‖2σ+2

2σ+2

∣∣∣∣∣∣
≤
γ

2

∣∣∣∣∣∣1− c

‖un‖22

∣∣∣∣∣∣ ‖∆un‖22 +
β

2

∣∣∣∣∣∣1− c

‖un‖22

∣∣∣∣∣∣ ‖∇un‖22 +
1

2σ + 2

∣∣∣∣∣∣1− ( c

‖un‖22

)σ+1
∣∣∣∣∣∣ ‖un‖2σ+2

2σ+2.

Since limn→∞
c
‖un‖22

= 1 and {un} ⊂H2(RN ) is bounded, the result follows. �

Our next result shows that either a minimizing sequence is vanishing or it is precompact up to transla-
tions. In other words, the non-vanishing rules out the possibility of dichotomy.

Lemma 2.5. Let c > 0. If {un} ⊂ S(c) is a minimizing sequence with respect to m(c) then one of the following
alternative holds:

i) For all R > 0,

lim
n→∞

sup
y∈RN

∫
BR(y)
|un|2dx = 0.

ii) Taking a subsequence if necessary, there exists u ∈ S(c) and a family {yn} ⊂R
N such that un(·−yn)→ u in

H2(RN ). In particular u is a global minimizer.

Proof. Suppose that {un} ⊂ S(c) is a minimizing sequence with respect to m(c) that do not satisfy i). Then,
there exists R0 > 0 such that

0 < lim
n→∞

sup
y∈RN

∫
BR0 (y)

|un|2dx ≤ c,

and so, up to a subsequence, there exists a family {yn} ⊂R
N such that

(2.8) 0 < lim
n→∞

∫
BR0 (yn)

|un(x − yn)|2dx ≤ c.

Since {un} is a minimizing sequence, by Lemma 2.2, we deduce that {un} is bounded in H2(RN ) and so, up
to a subsequence, that there exists u ∈H2(RN ) such that

(2.9) un(· − yn)⇀u in H2(RN ) and un(· − yn)→ u in Lploc(R
N ), for 1 ≤ p < 2N

(N − 4)+ .

Observe that (2.8) implies that u . 0. Now, we define vn := un(· − yn)− u and, by (2.9), we have that vn⇀ 0
in H2(RN ) and so, that

‖∆un‖22 = ‖∆(u + vn)‖22 = ‖∆u‖22 + ‖∆vn‖22 + on(1),

‖∇un‖22 = ‖∇(u + vn)‖22 = ‖∇u‖22 + ‖∇vn‖22 + on(1),

and

(2.10) ‖un‖22 = ‖u + vn‖22 = ‖u‖22 + ‖vn‖22 + on(1).

On the other hand, by the Brezis-Lieb lemma [11, Theorem 1],

‖un‖2σ+2
2σ+2 = ‖u + vn‖2σ+2

2σ+2 = ‖u‖2σ+2
2σ+2 + ‖vn‖2σ+2

2σ+2 + on(1).

Hence, we have that

(2.11) E(un) = E(un(· − yn)) = E(u + vn) = E(u) +E(vn) + on(1).
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Claim: ‖vn‖22→ 0 as n→∞.

In order to prove this, let us denote c1 = ‖u‖22 > 0. By (2.10), if we show that c1 = c, the claim follows. We
assume by contradiction that c1 < c and we define

ṽn =
(c − c1)

1
2

‖vn‖2
vn.

By Lemma 2.4 and (2.11), it follows that

E(un) = E(u) +E(vn) + on(1) = E(u) +E(ṽn) + on(1) ≥ E(u) +m(c − c1) + on(1).

Hence, by Lemma 2.3, iv), we have that

(2.12) m(c) ≥ E(u) +m(c − c1) ≥m(c1) +m(c − c1) ≥m(c),

and so, E(u) =m(c1), namely u is global minimizer with respect to c1. Thus, by Lemma 2.3, v), we have that

m(c) < m(c1) +m(c − c1),

which contradicts (2.12). Hence, the claim follows and ‖u‖22 = c.

At this point, since {vn} is a bounded sequence inH2(RN ), it follows from (2.1) and (2.3) respectively that
‖vn‖2σ+2

2σ+2→ 0 and ‖∇vn‖22→ 0 as n→∞. Thus, we obtain that

(2.13) liminf
n→∞

E(vn) = liminf
n→∞

γ

2
‖∆vn‖22 ≥ 0.

On the other hand, since ‖u‖22 = c, we deduce from (2.11) that

E(un) = E(u) +E(vn) + on(1) ≥m(c) +E(vn) + on(1),

and so, that

(2.14) limsup
n→∞

E(vn) ≤ 0.

From (2.13) and (2.14) we deduce that ‖∆vn‖22→ 0 as n→∞ and so, that un(· − yn)→ u in H2(RN ). �

3. An associated minimization problem

In this section we present a result that we shall use in the proofs of Theorems 1.2 and 1.3 but that we
believe is also interesting by itself. Moreover, it enlightens the difficulty of the minimization problem for
m(c). Let us introduce

I(u) :=
γ

2

∫
R
N
|∆u|2 dx −

β

2

∫
R
N
|∇u|2 dx,

and consider the constrained minimization problem

mI (c) := inf
u∈S(c)

I(u).

Lemma 3.1. For all c > 0, it follows that:

i) mI (c) = − β
2

8γ c.

ii) The infimum is never achieved.
iii) All minimizing sequences present vanishing.

Proof. First observe that if, for some c > 0, u is a minimizer of mI (c), then, for any c1 > 0,
(
c1
c

)1/2
u is a

minimizer of mI (c1). Hence, if a minimizer exists for some c0 > 0, it exists for any c > 0.
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Let c > 0 arbitrary but fixed, for u ∈ S(c) arbitrary, let us first minimize I along the ray defined by us.
From the definition (2.5) we see that the restriction of I is given by

I(us) =
γs2

2

∫
R
N
|∆u|2 dx −

βs

2

∫
R
N
|∇u|2 dx.(3.1)

Then, computing the minimum of the function on s, one easily gets that

inf
s>0
I(us) = −

β2

8γ
‖∇u‖42
‖∆u‖22

Thus, we deduce that

(3.2) mI (c) = inf
u∈S(c)

[
−
β2

8γ
‖∇u‖42
‖∆u‖22

]
,

or equivalently

mI (c) = inf
u∈S(c)

[
−
β2

8γ
c
‖∇u‖42
‖∆u‖22‖u‖

2
2

]
= inf
u∈H2(RN )\{0}

[
−
β2

8γ
c
‖∇u‖42
‖∆u‖22‖u‖

2
2

]
= −

β2

8γ
c sup
u∈H2(RN )\{0}

R(u),

where we have set

R(u) :=
‖∇u‖42
‖∆u‖22‖u‖

2
2

=

(∫
R
N |∇u|2 dx

)2(∫
R
N |∆u|2 dx

)(∫
R
N |u|2dx

) .
At this point we deduce that u is a minimizer of mI (c) if and only if it is a maximizer of

sup
u∈H2(RN )\{0}

R(u).

Let us then show that this supremum is equal to 1 and never achieved. Using the Fourier’s transform we get

R(u) =

(∫
R
N |ξ |2|û(ξ)|2 dξ

)2(∫
R
N |ξ |4|û(ξ)|2 dx

)(∫
R
N |û(ξ)|2 dx

) .
Because of the Cauchy-Schwartz inequality

(3.3)
(∫

R
N
|f g |dξ

)2

≤
(∫

R
N
|f |2 dξ

)(∫
R
N
|g |2 dξ

)
it follows that R(u) ≤ 1 (note that this information is precisely (2.4)). Let us now construct a sequence
{un} ⊂H2(RN ) such that R(un)→ 1. This will prove that

mI (c) = −
β2

8γ
c.

For φ ∈ C∞0 (RN )\{0} we define the sequence φn(x) = n
N
2 φ(n(x − 1)) and we note that ‖φn‖22 = ‖φ‖22, for all

n ∈N. Now, we define {un} as ûn(ξ) = φn(ξ), namely

un(x) = F −1[φn](x) =
1

(2π)N

∫
R
N
eiξxφn(ξ)dξ,

and we get that

R(un) =

(∫
R
N |1 + y

n |
2φ2(y)dy

)2(∫
R
N |1 + y

n |4φ2(y)dy
)
‖φ‖22

.

It is then clear that R(un)→ 1 as n→∞. Hence, {un} is the desired sequence and i) follows.
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Next, let us show that R(u) = 1 never holds. If we assume by contradiction that there exists a u ∈H2(RN )
such that R(u) = 1, this corresponds to the equality case in (3.3) and thus

|ξ |4 |û(ξ)|2 =ω |û(ξ)|2 a. e. for some ω > 0.

This may only happen if the support of û is contained into a sphere {|ξ | = const} but then, we have a
contradiction with the fact that û ∈ L2(RN )\{0}.

At this point, i) and ii) have been established. To conclude the proof it remains to show that any minimiz-
ing sequence of mI (c) is vanishing. Indeed, if for some c > 0, we assume that there exists a non-vanishing
minimizing sequence, then, following the proof of Lemma 2.5, we get that there exists a 0 < c1 ≤ c such that
mI (c1) is reached. By ii) we know this cannot happen. Hence, the vanishing always holds. �

Remark 3.1.
a) Let us consider the operator S = γ∆2 + β∆ defined in H2(RN ). As a consequence of Lemma 3.1, see

also Lemma 2.1, we deduce that the infimum of the spectrum of S is given by −β2/4γ and that it
belongs to the essential spectrum.

b) The proof of i) and ii) of the previous lemma relies on the fact that there does not exist a maximizer
for the interpolation inequality (2.3). This fact was already observed in [2, Example 2.1].

4. A Necessary and sufficient condition for the existence of a minimizer

The aim of this section is to give a necessary and sufficient condition for the existence of a minimizer
of m(c). In particular, this condition will show that a minimizer always exists if c > 0 is sufficiently large.
Defining

(4.1) c0 := inf
{
c > 0 :m(c) < −

β2

8γ
c

}
,

we have the following result.

Lemma 4.1.
i) c0 < +∞.

ii) If c0 = 0, then m(c) < − β
2

8γ c and it is reached for any c > 0.
iii) If c0 > 0, then:

a) m(c) = − β
2

8γ c and it is not reached for any c ∈ (0, c0].

b) m(c) < − β
2

8γ c and it is reached for any c > c0.

Proof. Let us first prove that c0 < ∞. We fix an arbitrary u ∈ S(1) and we define uτ = τ
1
2u(x) with τ > 0.

Then, we have that uτ ∈ S(τ) and

E(uτ ) = τ
[γ

2
‖∆u‖22 −

β

2
‖∇u‖22

]
− ατ

σ+1

2σ + 2
‖u‖2σ+2

2σ+2.

Since σ + 1 > 1, we easily deduce that

m(τ) ≤ E(uτ ) < −
β2

8γ
τ

for τ > 0 large enough and so, that c0 <∞.

Now observe that, if for some c > 0 the vanishing occurs for a minimizing sequence {un} ⊂ S(c), then,
by [25, Lemma I.1], we have that ‖un‖2σ+2

2σ+2 → 0 as n → ∞ and so, that m(c) ≥ mI (c). Hence, the strict

inequality m(c) < mI (c) = − β
2

8γ c guarantees that the vanishing does not happen. Applying then Lemma 2.5,
we deduce that m(c) < mI (c) implies the existence of a global minimizer.

To end the proof just observe that Lemma 2.3, ii) guarantees that m(c) < − β
2

8γ c for any c > c0. On the other
hand, if c ∈ [0, c0], then m(c) = mI (c) and so, any minimizing sequence of m(c) is a minimizing sequence of
mI (c). Thus, by Lemma 3.1, it must be vanishing and m(c) is not reached. �
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5. Some classes of testing functions

This section is devoted to find sufficient conditions on σ > 0 ensuring that c0 = 0 in Lemma 4.1, i.e.
guaranteeing that a minimizer exists for any c > 0.

We start with an observation which, although not essential in our proofs, simplifies some computations.
To that end, let us introduce the constrained minimization problem

mΦ (c) := inf
u∈S(c)

Φ(u),

where
Φ(u) = ‖(∆+ 1)u‖22 −

α
2σ + 2

‖u‖2σ+2
2σ+2,

and S(c) is given in (1.6).

Proposition 5.1. Let c0 ∈ [0,+∞) given in (4.1). We have that c0 = 0 if and only if mΦ (c) < 0 for all c > 0.

Proof. Let us introduce

(5.1) Ẽ(u) := ‖∆u‖22 − 2‖∇u‖22 −
α

2σ + 2
‖u‖2σ+2

2σ+2 and τ =
(8γ
β2

) 1
σ
( β

2γ

)N
2
.

As a first step we prove that, for a given c > 0, the problem of minimizing E on S(c) is equivalent to minimize
Ẽ on S(τc). Indeed, letting v(x) := bu(ax) with

a =
(

2γ
β

) 1
2

and b =
(

8γ
β2

) 1
2σ

,

we obtain that
E(u) = b−2−2σaN

[
‖∆v‖22 − 2‖∇v‖22 −

α
2σ + 2

‖v‖2σ+2
2σ+2

]
= b−2−2σaN Ẽ(v),

and
τ‖u‖22 = b2a−N ‖u‖22 = ‖v‖22.

Hence, the mentioned equivalence follows. This being proved, we can assume without loss of generality
that γ = 2 and β = 4, namely that

E(u) = ‖∆u‖22 − 2‖∇u‖22 −
α

2σ + 2
‖u‖2σ+2

2σ+2.

Accordingly, the conditionm(c) < − β
2

8γ c derived in Lemma 4.1 now corresponds tom(c) < −c. The result then

follows recognizing that Φ(u) = E(u) + ‖u‖22. �

Now, we give sufficient conditions on σ > 0 ensuring that mΦ (c) < 0 for all c > 0. Then, as a consequence
of the previous proposition, these conditions guarantee that c0 = 0 in Lemma 4.1.

Proposition 5.2. Assume that 0 < σ <max
{

4
N+1 ,1

}
. Then mΦ (c) < 0 for all c > 0.

Let us split the proof into two lemmas. The proof of both lemmas consists in finding a suitable test
function u ∈ S(c) such that Φ(u) < 0. As mentioned in Remark 1.3, we will look for functions such that
the L2−norm of their Fourier transform concentrates around the unit sphere. In our first construction, we
consider a function whose Fourier transform is a perturbed Gaussian centered at e1 = (1,0, . . . ,0).

Lemma 5.3. Assume that 0 < σ < 4
N+1 . Then mΦ (c) < 0 for all c > 0.

Proof. We fix an arbitrary c > 0 and, for any τ > 0, we define

uτ (x) = π−
N
4 c

1
2 τ

N+1
2 eix1e−

τ4x2
1+τ2x2

2+···τ2x2
N

2 .

It is clear that uτ ∈ S(RN ) and an easy computation gives

‖uτ‖22 = π−
N
2 cτN+1

∫
R
N
e−

τ4x2
1+τ2x2

2+···τ2x2
N

2 dx = π−
N
2 c

∫
R
N
e−|y|

2
dy = c.
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Also, we have that

(5.2)
‖uτ‖2σ+2

2σ+2 = π−
N (σ+1)

2 cσ+1τ (N+1)(σ+1)
∫
R
N
e−

τ4x2
1+τ2x2

2+···τ2x2
N

2 dx

= π−
N (σ+1)

2 (σ + 1)−
N
2 cσ+1τ (N+1)σ

∫
R
N
e−|y|

2
dy = π−

σN
2 (σ + 1)−

N
2 cσ+1τ (N+1)σ .

It is well-known that the Fourier transform of f (x) = e−α
2 |x|2 is given by

f̂ (ξ) =
( π
α2

)N
2
e
− |ξ |

2

4α2 .

Using this fact and the basic properties of the Fourier’s transform we get

ûτ (ξ) = 2
N
2 π

N
4 c

1
2 τ−

N+1
2 e
−

(
ξ1−1
τ

)2
+ξ2

2 +···+ξ2
N

2τ2 .

Hence, by Plancherel’s formula, it follows that

‖∆uτ‖22 − 2‖∇uτ‖22 + ‖uτ‖22 =
1

(2π)N

∫
R
N

(
|ξ |4 − 2|ξ |2 + 1

)
|ûτ (ξ)|2 dξ

= π−
N
2 cτ−(N+1)

∫
R
N

(|ξ |2 − 1)2e
−

(
ξ1−1
τ

)2
+ξ2

2 +···+ξ2
N

τ2 dξ.

Now, using the changes of variables

ξ1 = 1 + τ2η1, ξj = τηj , j = 2, . . . ,N ,

we obtain that

(5.3)

‖∆uτ‖22 − 2‖∇uτ‖22 + ‖uτ‖22 = π−
N
2 c

∫
R
N

(τ4η2
1 + 2τ2η1 + τ2η2

2 + · · ·+ τ2η2
N )2e−|η|

2
dη

= π−
N
2 cτ4

∫
R
N

(τ2η2
1 + 2η1 + η2

2 + · · ·+ η2
N )2e−|η|

2
dη

≤ Aτ4, ∀ τ ∈ (0,1],

for some constant A > 0 (independent of τ). Then, by (5.2) and (5.3), it follows that

Φ(uτ ) ≤ Aτ4 − α
2σ + 2

π−
σN
2 (σ + 1)−

N
2 cσ+1τσ (N+1) =: Aτ4 −Bτσ (N+1),

withA and B positive constants independent of τ . Since 0 < σ (N+1) < 4, we may choose τ ∈ (0,1] sufficiently
small so that Aτ4 −Bτ (N+1)σ < 0 and then mΦ (c) ≤ Φ(uτ ) ≤ Aτ4 −Bτ (N+1)σ < 0. �

Now, using a different construction based on the fact that

(5.4) ψ(x) = |x|−
N−2

2 JN−2
2

(|x|),

satisfies

(5.5) (∆+ 1)ψ = 0, in R
N ,

we enlarge the range on σ > 0 obtained in Lemma 5.3. Here Jν denotes the Bessel function of the first kind
and order ν and we refer for instance to [20, Appendix B.4] for a proof of (5.5).

Since the asymptotic behavior of ψ will play an important role in our construction, we describe it in the
following lemma.

Lemma 5.4. Assume that N ≥ 2 and let ψ as defined in (5.4). Then:

i) ψ(x) ∼
(1

2

)N−2
2 1

Γ (N2 )
as |x| → 0.
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ii) ψ(x) ∼ |x|−
N−1

2 cos
(
|x| − (N − 1)π

4

)
as |x| → +∞.

Proof. The result immediately follows from the asymptotic behavior of Jν(t) for ν ≥ 0 and t ≥ 0. We refer
for instance to [24, Formula (5.16.1) page 134]. �

Lemma 5.5. Assume that N ≥ 4 and 0 < σ < 1. Then mΦ (c) < 0 for all c > 0.

Remark 5.1.
a) The construction we do here may also be used for N ≤ 3. Nevertheless, since, for N ≤ 3, the results

we are able to obtain do not improve the ones contained in Lemma 5.3, we focus on N ≥ 4.
b) Note that, for N ≥ 4, we cover the full mass subcritical range 0 < σN < 4.

Proof. First of all observe that, for N ≥ 4, 1
N−1 <

4
N+1 . Hence, having at hand Lemma 5.3, we can assume

without loss of generality that σ > 1
N−1 . Then, for all m ∈N, we define

(5.6) ψm(x) = ψ(x)φ
( x
m

)
where ψ is given in (5.4) and φ ∈ C∞(RN ) is such that φ(x) = 1 if |x| ≤ 1, φ(x) = 0 if |x| ≥ 2 and 0 ≤ φ(x) ≤ 1,
for all x ∈ RN . Note that, in this proof, for any δ > 0, Bδ denotes the ball Bδ(0). We now split the rest of the
proof into several steps.

Step 1: There exist m1 ∈N and D1 > 0 such that, for all m ≥m1, it follows that ‖ψm‖22 ≤D1m.

First observe that, by Lemma 5.4, ii), there exists R ∈N such that, for all x ∈RN with |x| ≥ R,

|ψ(x)| ≤ C |x|−
N−1

2 ,

and so, that, for all m ≥ R,

‖ψm‖22 =
∫
R
N

∣∣∣ψ(x)φ
( x
m

) ∣∣∣2dx ≤ ∫
B2m

|ψ(x)|2dx =
∫
BR

|ψ(x)|2dx+
∫
B2m\BR

|ψ(x)|2dx ≤ C1 +C2(2m−R).

Hence, there exist m1 ≥ R and D1 > 0 such that, for all m ≥m1,

‖ψm‖22 ≤D1m.

Step 2: There exists m2 ∈N and D2 > 0 such that, for all m ≥m2, it follows that ‖(∆+ 1)ψm‖22 ≤D2m
−1.

First of all, using (5.5), one can easily check that

(∆+ 1)ψm(x) =
1
m2∆φ

( x
m

)
ψ(x) +

2
m
∇φ

( x
m

)
· ∇ψ(x),

and so, that

(5.7)

‖(∆+ 1)ψm‖22 =
1
m4

∫
R
N

∣∣∣∣∣∆φ( x
m

)
ψ(x)

∣∣∣∣∣2 dx+
4
m2

∫
R
N

∣∣∣∣∣∇φ( x
m

)
· ∇ψ(x)

∣∣∣∣∣2 dx
+

4
m3

∫
R
N

∣∣∣∣∣∆φ( x
m

)
ψ(x)

∣∣∣∣∣ ∣∣∣∣∣∇φ( x
m

)
· ∇ψ(x)

∣∣∣∣∣dx
≤ 1
m4

∫
R
N

∣∣∣∣∣∆φ( x
m

)
ψ(x)

∣∣∣∣∣2 dx+
4
m2

∫
R
N

∣∣∣∣∣∇φ( x
m

)
· ∇ψ(x)

∣∣∣∣∣2 dx
+

4
m3

(∫
R
N

∣∣∣∣∣∆φ( x
m

)
ψ(x)

∣∣∣∣∣2 dx)
1
2
(∫

R
N

∣∣∣∣∣∇φ( x
m

)
· ∇ψ(x)

∣∣∣∣∣2 dx)
1
2

=:
1
m4 I1 +

4
m2 I2 +

4
m3 (I1)

1
2 (I2)

1
2 .

Then, arguing as in Step 1, we obtain that, for all m ≥ R,

(5.8) I1 ≤ ‖∆φ‖2∞
∫
B2m\Bm

|ψ(x)|2dx ≤ C1m.
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Now, since
J ′ν(t) = −Jν+1(t) +

ν
t
Jν(t),

for all ν ≥ 0 and all t ≥ 0, see for instance [35, (4) page 45], we obtain that

∇ψ(x) = −N − 2
2
|x|−

N+2
2 x JN−2

2
(|x|) + |x|−

N−2
2
x
|x|

(
−JN

2
(|x|) +

N − 2
2
|x|−1JN−2

2
(|x|)

)
, ∀ x ∈RN \ {0},

and so, similarly as in Lemma 5.4, there exists R2 ∈N such that, for all x ∈RN with |x| ≥ R2,

|∇ψ(x)| ≤ C(N − 2)|x|−
N−1

2 .

Hence, we deduce that, for all m ≥ R2,

(5.9) I2 ≤ ‖∇ψ‖2∞
∫
B2m\Bm

|∇ψ(x)|2dx ≤ C(N − 2)‖∇ψ‖2∞
∫
B2m\Bm

|x|−(N−1)dx ≤ C2m.

Gathering (5.7)-(5.9), we obtain that

‖(∆+ 1)ψm‖22 ≤ C1m
−3 + 4C2m

−1 + 4C1/2
1 C1/2

2 m−2,

and so, that there exist m2 ≥max{R,R2} and D2 > 0 such that, for all m ≥m2,

‖(∆+ 1)ψm‖22 ≤D2m
−1.

Step 3: There exists D3 > 0 such that, for all m ∈N, it follows that ‖ψm‖2σ+2
2σ+2 ≥D3.

Directly observe that, for all m ∈N,

‖ψm‖2σ+2
2σ+2 =

∫
R
N

∣∣∣∣∣ψ(x)φ
( x
m

)∣∣∣∣∣2σ+2
dx ≥

∫
B1

|ψ(x)|2σ+2dx.

The claim then follows directly from Lemma 5.4, i).

Step 4: Conclusion.

We fix an arbitrary c > 0 and, for any m ∈ N, we define ψ̃m = c
1
2

ψm
‖ψm‖2

. It is clear that ψ̃m ∈ S(c) for all
m ∈N. Then, by Steps 1, 2 and 3, we deduce that there exists m3 ≥max{m1,m2} such that, for all m ≥m3,

Φ(ψ̃m) =
c

‖ψm‖22
‖(∆+ 1)ψm‖22 −

α
2σ + 2

cσ+1

‖ψm‖2σ+2
2

‖ψm‖2σ+2
2σ+2

≤ c

‖ψm‖22
D2m

−1 − α
2σ + 2

cσ+1

‖ψm‖2σ+2
2

D3

=
1

‖ψm‖22

[
cD2m

−1 − αD3c
σ+1

2σ + 2
1

‖ψm‖2σ2

]
≤ 1

‖ψm‖22

[
cD2m

−1 − αD3c
σ+1

(2σ + 2)Dσ1
m−σ

]
=:

1

‖ψm‖22

[
Am−1 −Bm−σ

]
,

with A and B positive constants independent of m. Arguing as in Step 3, one can easily see that ‖ψm‖22 ≥
D4 > 0 for all m ∈N. Thus, since 0 < σ < 1, we may choose m ≥m3 sufficiently large so that Am−1−Bm−σ < 0
and then mΦ (c) ≤ Φ(ψ̃m) ≤ Am−1 −Bm−σ < 0. �

Proof of Proposition 5.2. It follows directly from Lemmas 5.3 and 5.5. �

At this point we can give the proof of our first main result.

Proof of Theorem 1.2. The existence part of Theorem 1.2 is a direct consequence of Lemma 4.1 and Propo-
sitions 5.1 and 5.2. Hence, to conclude we just need to obtain the lower bound on the Lagrange multiplier.
We recall that if u ∈ S(c) is a global minimizer of m(c) (or more generally a constrained critical point), there
exists a λ ∈R such that E′(u) = −λu, namely a λ ∈R such that

(5.10) γ∆2u + β∆u −α|u|2σu = −λu.



SOME REMARKS ON A MINIMIZATION PROBLEM ASSOCIATED TO A 4NLS 15

Multiplying (5.10) by u and integrating it follows that

(5.11) −λc = γ‖∆u‖22 − β‖∇u‖
2
2 −α‖u‖

2σ+2
2σ+2.

Then, from (5.11) and Lemma 3.1, we deduce that

−λc = 2E(u)− 2ασ
2σ + 2

‖u‖2σ+2
2σ+2

= 2m(c)− 2ασ
2σ + 2

‖u‖2σ+2
2σ+2 < 2m(c) ≤ 2mI (c) = −

β2

4γ
c,

and thus λ >
β2

4γ
. �

6. Behavior of the minimizers as c→ 0, proof of Theorem 1.3

In the section we give the proof of Theorem 1.3. Recall that {(un, cn)} ⊂ S(cn)×R is such that cn→ 0 and,
for each n ∈N, un ∈ S(cn) is a minimizer of m(cn) and λn ∈ R is the associated Lagrange multiplier. Hence,
without loss of generality we may assume that cn ≤ 1.

Proof of Theorem 1.3. Let us start with some preliminary observations.

Claim 1:
{
‖∆un‖2
‖un‖2

}
remains bounded.

Indeed, using (2.1), (2.3) and Lemma 2.3, i), we have that

(6.1) 0 ≥ 2E(un) ≥ γ‖∆un‖22 − β‖∆un‖2‖un‖2 −
α

σ + 1
BN (σ )‖∆un‖

σN
2 ‖un‖

2+2σ− σN2
2 ,

and so,

(6.2) ‖∆un‖22 ≤
β

γ
‖∆un‖2‖un‖2 +C‖∆un‖

σN
2 ‖un‖

2+2σ− σN2
2 .

Dividing (6.2) by ‖un‖22, it follows that

(6.3)
(
‖∆un‖2
‖un‖2

)2

≤
β

γ
‖∆un‖2
‖un‖2

+C
(
‖∆un‖2
‖un‖2

) σN
2

‖un‖2σ2 ≤
β

γ
‖∆un‖2
‖un‖2

+C
(
‖∆un‖2
‖un‖2

) σN
2

Since 0 < σN < 4, from (6.3), the boundedness of the left hand side follows and thus the claim is proved.

Claim 2:
‖un‖2σ+2

2σ+2

‖un‖22
→ 0 as n→∞.

By (2.1) we know that

‖un‖2σ+2
2σ+2 ≤ BN (σ )‖∆un‖

σN
2

2 ‖un‖
2+2σ− σN2
2 .

Then, dividing by ‖un‖22 one gets

‖un‖2σ+2
2σ+2

‖un‖22
≤ BN (σ )

(
‖∆un‖2
‖un‖2

) σN
2

‖un‖2σ2 = BN (σ )
(
‖∆un‖2
‖un‖2

) σN
2

cσn

From Claim 1 and the fact that cn→ 0 as n→∞, the claim follows. Now, we split the rest of the proof into
several steps:

Step 1: Proof of i).

It just remains to prove the first inequality. The other statements have already been established, see
Section 4. Directly observe that

m(cn) = E(un) = I(un)− α
2σ + 2

‖un‖2σ+2
2σ+2 ≥mI (cn)− α

2σ + 2
‖un‖2σ+2

2σ+2 =mI (cn)− α
2σ + 2

‖un‖2σ+2
2σ+2

‖un‖22
cn.

The desired inequality then follows from Claim 2.
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Step 2: Proof of ii).

By Theorem 1.2 we know that λn >
β2

4γ . Now, recording that

(6.4) −λncn = γ‖∆un‖22 − β‖∇un‖
2
2 −α‖un‖

2σ+2
2σ+2,

and using Lemma 3.1 and Claim 2, one can write

−λncn ≥ 2mI (cn)−α‖un‖2σ+2
2σ+2 = −

β2

4γ
cn −
‖un‖2σ+2

2σ+2

‖un‖22
cn = −

β2

4γ
cn −µncn

for a sequence µn→ 0 as n→∞. Thus, we have that

β2

4γ
< λn ≤

β2

4γ
+µn

for a sequence µn→ 0 and ii) follows.

Step 3: Proof of iii)

By [7, Lemma 2.1], we know that un ∈ S(cn) satisfies the Pohozaev type identity

(6.5) γ‖∆un‖22 −
β

2
‖∇un‖22 −

σN
2(2σ + 2)

‖un‖2σ+2
2σ+2 = 0.

Dividing (6.5) by ‖un‖22 and using Claim 2 we get that

(6.6) γ
‖∆un‖22
‖un‖22

−
β

2
‖∇un‖22
‖un‖22

→ 0.

Also, by i), we know there exists µn→ 0 as n→∞ such that

E(un) =
γ

2
‖∆un‖22 −

β

2
‖∇un‖22 −

α
2σ + 2

‖un‖2σ+2
2σ+2 = −

β2

8γ
‖un‖22 +µn‖un‖22 −

α
2σ + 2

‖un‖2σ+2
2σ+2.

Then, using again Claim 2, we deduce that

(6.7)
γ

2
‖∆un‖22
‖un‖22

−
β

2
‖∇un‖22
‖un‖22

→−
β2

8γ
.

Having at hand (6.6) and (6.7) one easily deduce iii).

Step 4: Proof of iv).

Let us define vn = un
‖un‖2

for all n ∈N. Since un ∈ S(cn) satisfies (6.4) and by ii) we know that λn→
β2

4γ , as
n→∞, we get

(6.8) γ‖∆vn‖22 − β‖∇vn‖
2
2 +

β2

4γ
‖vn‖22 = α

‖un‖2σ+2
2σ+2

‖un‖22
+µn‖vn‖22

for some µn→ 0. On the other hand, by Plancherel’s formula, it follows that

(6.9) γ‖∆vn‖22 − β‖∇vn‖
2
2 +

β2

4γ
‖vn‖22 =

1
(2π)N

∫
R
N

(
γ |ξ |4 − β|ξ |2 +

β2

4γ

)
|v̂n(ξ)|2 dξ.

Gathering (6.8) and (6.9) we have that,

(6.10)
1

(2π)N

∫
R
N

(√
γ |ξ |2 −

β

2
√
γ

)2
|v̂n(ξ)|2 dξ = α

‖un‖2σ+2
2σ+2

‖un‖22
+µn

where µn→ 0 as n→∞. Using Claim 2 we see that the right hand side goes to 0 as n→∞. This proves that
(1.10) holds. Now, from (1.10) and (6.9), we deduce that

I(vn) =
γ

2
‖∆vn‖22 −

β

2
‖∇vn‖22→−

β2

8γ
.
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In view of Lemma 3.1, 1), we have that {vn} ⊂ S(1) is a minimizing sequence for mI (1). Then, by Lemma 3.1,
iii), it follows that {vn} is a vanishing sequence. Applying then [25, Lemma I.1], we deduce that vn → 0 in
Lp(RN ) for all p ∈ (2,4∗). This completes the proof of the theorem. �

7. Some extensions and related problems.

In this last section we make some additional remarks and discuss possible extensions of our results.

7.1. Symmetry of the minimizers in Theorem 1.2.

As a consequence of the arguments developed in the very recent preprint [12], when σ ∈N, we can obtain
the following description of the minima obtained in Theorem 1.2.

Proposition 7.1. Let σ ∈N and, for any arbitrary c > 0 such that m(c) is reached, let Q be a minima for m(c).
Then, it follows that

Q(x) = eiτQ•(x+ x0),

with some constants τ ∈R and x0 ∈RN . Here, Q• : RN → C is a smooth bounded and positive definitive function
in the sense of Bochner. As a consequence, it holds that

Q•(−x) =Q•(x) and Q•(0) ≥ |Q•(x)| for all x ∈RN .

Remark 7.1. Our proof is a essentially a consequence of [12, Theorem 2]. We provide some details for the
benefit of the reader in trying to keep the notation introduced by the authors in [12].

Proof. First note that our operator u 7→ γ∆2u + β∆u falls within the class of pseudo-differential operators
considered in [12]. Indeed, our symbol, which is given by p(ξ) = γ |ξ |4 − β|ξ |2, satisfies the Assumption 2
of [12] with s = 2.

Now, let Q be a minima for m(c) and let λ ∈R be the associated Lagrange multiplier. By Theorem 1.2, we
know that λ > β2/4γ . Hence, by [5, Theorem 3.10], we have that ea | · |Q ∈ L2(RN ) for some a > 0. Note that
such decay may be also obtained as in [12, Theorem 3]. Now, defining

Q• := F 1(|F Q|),

we observe, from [12, Lemma 2.1], that

‖∆Q•‖2 = ‖∆Q‖2, ‖∇Q•‖2 = ‖∇Q‖2, ‖Q•‖2 = ‖Q‖2 and ‖Q•‖2σ+2 ≥ ‖Q‖2σ+2.

Thus, we easily deduce that Q• is also a minima for m(c). Having at hand the suitable exponential decay of
Q and the fact that Q• is also a minima for m(c), the rest of the proof follows repeating almost verbatim the
proofs of [12, Lemma 4.1] and the first part of [12, Theorem 2]. �

Remark 7.2. The conclusions of Proposition 7.1 hold for any c > 0, if N = 1 or N = 2 and σ = 1. In particular,
we cover the physical relevant case N = 2 for the Kerr nonlinearity.

7.2. Optimal range of σσσ .

The condition 0 < σ < max {4/(N + 1),1} is the consequence of two particular trials of test functions. It
would be nice to put in light an optimal upper bound on σ > 0, which permits a minimizer to exists for
every c > 0. See Figure 1.

More generally, the question to consider seems to be the following : Let 0 < σN < 4∗ and define

A(1) := {u ∈ S(c) : ‖∆u‖22 ≤ 1}.

Which condition on σ > 0 guarantees that, for any c > 0,

inf
u∈S(c)∩A(1)

I(u) < inf
u∈S(c)∩A(1)

E(u) ?

We conjecture that the optimal bound is σ < 2.
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N

σ

4/N

max
{

4
N+1 ,1

}

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

1

2

3

4

Figure 1. The existence of a global minimizer on S(c) for c > 0 small is open in the smaller region.

7.3. The mass critical and mass supercritical cases.

As already mentioned, the results we have derived in the mass subcritical case are also useful in the mass
critical and mass supercritical cases. First, concerning the mass critical case, we note the following

Lemma 7.2. Assume γ > 0, β > 0, α > 0, σN = 4 and N ≥ 1. There exists c∗N > 0 such that m(c) ∈ (−∞,0) if
c ∈ (0, c∗N ) and m(c) = −∞ if c ≥ c∗N . Actually

c∗N =
(γ
α
C(N )

)N
4

where C(N ) :=
N + 4

NBN ( 4
N )
,(7.1)

and BN (σ ) is the smallest constant satisfying (2.1). In addition, E is coercive on S(c) if c ∈ (0, c∗N ).

Proof. First note that, when σN = 4, one has

(7.2)
αN
N + 4

‖u‖2+ 8
N

2+ 8
N
≤

(
c
c∗N

) 4
N

γ‖∆u‖22, ∀ u ∈ S(c).

Indeed, (7.2) follows from the Gagliardo-Nirenberg inequality (2.1) using the definition of c∗N given in (7.1).
Now, using (2.3) and (7.2), we have that

E(u) ≥
γ

2
‖∆u‖22 −

β

2
‖∆u‖2‖u‖2 −

αN
2N + 8

‖u‖2+ 8
N

2+ 8
N

≥
γ

2

1−
(
c
c∗N

) 4
N
‖∆u‖22 − β2 c 1

2 ‖∆u‖2, ∀ u ∈ S(c).

Therefore, we deduce that E is coercive if c < c∗N and then, in particular, that m(c) > −∞. The fact that
m(c) < 0 when c ∈ (0, c∗N ) follows directly from (2.6) letting, for an arbitrary u ∈ S(c), s→ 0.

Now, let us prove that m(c) = −∞ for c ≥ c∗N . It follows from [10], see also [2], that the best constant
BN ( 4

N ) in (2.1) is achieved, i.e. there exists U ∈H2(RN ) satisfying

‖U‖2+ 8
N

2+ 8
N

= BN
( 4
N

)
‖U‖

8
N
2 ‖∆U‖

2
2.(7.3)

Choosing

w := c
1
2
U
‖U‖2

∈ S(c),
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and taking (2.6) and (7.3) into account, we get

(7.4)

E(ws) =
c

2‖U‖22
s2γ‖∆U‖22 −

c

2‖U‖22
sβ‖∇U‖22 −

N
2N + 8

 c
1
2

‖U‖2

2+ 8
N

s2α‖U‖2+ 8
N

2+ 8
N

=
c

2‖U‖22
γ

1−
(
c
c∗N

) 4
N
s2‖∆U‖22 − c

2‖U‖22
sβ‖∇U‖22

≤ − c

2‖U‖22
sβ‖∇U‖22

which implies that E(ws)→−∞ as s→∞ for any c ≥ c∗N . �

In view of Lemma 7.2 we obtain the following result on the line of Theorem 1.2.

Theorem 7.3. Assume γ > 0, β > 0, α > 0, σN = 4 and N ≥ 5. Then for any c ∈ (0, c∗N ), any minimizing sequence
of m(c) is precompact in H2(RN ) up to translations. In particular, m(c) is achieved. In addition, if u ∈ S(c) is a

minimizer of m(c), the associated Lagrange multiplier λ ∈R satisfy λ > β2

4γ .

Proof. We know, from Lemma 7.2, that E is coercive on S(c) for any c ∈ (0, c∗N ). Thus, the arguments devel-
oped in the proof of Theorem 1.2 remain valid. Note also that, when N ≥ 5, we have σ < 1 and it guarantees
that the minimizing sequences do not vanish. �

Remark 7.3. It should be possible, whenN ≤ 4, to derive a lower bound c̃N > 0 such that, for any c ∈ (c̃N , c∗N ),
the conclusions of Theorem 7.3 holds. We refer to [26] for elements in that direction.

Turning now to the mass supercritical case σN > 4, one see directly by considering (2.6), for an arbitrary
u ∈ S(c), and letting s→ +∞, that m(c) = −∞ for any c > 0. However, by taking c > 0 sufficiently small, it is
possible to explicit a local minima structure, More precisely, setting

A(R) := {u ∈ S(c) : ‖∆u‖22 ≤ R}
one can prove, for a R > 0 suitably chosen, that

inf
u∈S(c)∩A(R)

E(u) < inf
u∈S(c)∩∂A(R)

E(u).

See [27] in that direction. The presence of such geometry opens the possibility to search for a critical point
as a local minima. Following the arguments developed in the proof of Theorem 1.2 it should be the case if
σ ∈ ( 4

N ,1).

7.4. Bifurcation from the infimum of the essential spectrum.

First observe that, by Theorem 1.3, iii), we know that, when the minimizers form(c) exist, they converge to
0 in the H2(RN ) norm as c→ 0. Also, by Theorem 1.3, ii), we know that the associated Lagrange multipliers
converge to β2/4γ . Hence, in view of Lemma 3.1 and Remark 3.1, we can speak of a bifurcation phenomenon
from the bottom of the essential spectrum of the operator u 7→ γ∆2u + β∆u.

In [5, Theorem 1.2], see also [9], the authors show that when 0 < σN < 4∗ the equation

(7.5) γ∆2u + β∆u +λu = |u|2σu,

admits a ground state solution uλ ∈ H2(RN ) whenever β < 2
√
γλ, namely if λ > β2

4γ . By a ground state it is
intend here a least energy solution for the free functional

E(u) =
γ

2
‖∆u‖22 −

β

2
‖∇u‖22 +

λ
2
‖u‖22 −

1
2σ + 2

‖u‖2σ+2
2σ+2.

Note also that, when λ < β2

4γ , it is expected that (7.5) has no solutions in H2(RN ), see [8] in that direction.
Worth of interest, in our opinion, would be to investigate if, and under which conditions on σ ∈ (0,4∗/N ), the
ground states solutions uλ to (7.5) satisfy uλ→ 0 in H2(RN ) as λ→ β2/4γ from the right, thus presenting a
bifurcation phenomenon.
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This kind of questions were first addressed in the 80’s by C. A. Stuart [34] for equations whose model is
given by

(7.6) −∆u −λu = |u|2σu, u ∈H1(RN ) .

Here the bottom of the essential spectrum is λ = 0. For (7.6), the existence of a sequence of solutions
(un,λn) ⊂ H1(RN ) × (0,+∞) with un → 0 in H1(RN ) and λn → 0 was established under the condition that
0 < σN < 2. Note that this condition is somehow optimal since, for (7.6), it corresponds to the range for
which the associated functional is coercive and no local minima structure is present if σN > 2. C. A. Stuart
analysis relies on the control of the ground state level by the use of suitable testing functions. We conjecture
that such bifurcation phenomenon will take place for (7.5) not only when σN < 4, under the the conditions
that guarantee the existence of a global minimizer for m(c) when c > 0 is small, but also when σN > 4 at
least when σ ∈ ( 4

N ,1). In this second case our conjecture is supported by what has been observed in [1].
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