Hadamard matrices and Compact Quantum Groups

Uwe Franz

18 février 2014
3ème journée FEMTO-LMB
based in part on joint work with:
Teodor Banica, Franz Lehner, Adam Skalski

Quantum mechanics

If we measure on a quantum system described by the Hilbert space \mathcal{H} and the state vector $\psi \in \mathcal{H}$ (with $\|\psi\|=1$) the observable corresponding to the self-adjoint operator X with spectral decomposition

$$
X=\sum_{\lambda \in \sigma(X)} \lambda E_{\lambda},
$$

then we observe λ with probability

$$
P(" X=\lambda ")=\left\|E_{\lambda} \psi\right\|^{2} .
$$

After the experiment, if we observed λ, the state vector is

$$
\frac{E_{\lambda} \psi}{\left\|E_{\lambda} \psi\right\|}
$$

Mutually Unbiased Bases (MUB)

Definition

A family $\left\{B_{k}=\left\{e_{1}^{(k)}, \ldots, e_{n}^{(k)}\right\} ; k=1, \ldots, r\right\}$ of orthonormal bases is called mutually unbiased, if

$$
\left|\left\langle e_{i}^{(k)}, e_{j}^{(\ell)}\right\rangle\right|=\frac{1}{\sqrt{n}}
$$

for $k \neq \ell, i, j=1, \ldots, n$.
If $n=p^{k}$ is a power of a prime number, then there exist $n+1$ mutually unbiased bases for \mathbb{C}^{n}.

Open Problem

Determine the maximal number of mutually unbiased bases, if n is not a power of a prime number. Still open even for $n=6$.

Hadamard matrices

Definition

A (complex) Hadamard matrix is a matrix $H=\left(h_{j k}\right) \in M_{n}(\mathbb{C})$ such that (i) $\left|h_{j k}\right|=1$ for all $1 \leq j, k \leq n$;
(ii) $\frac{1}{\sqrt{n}} H$ is unitary.

Hadamard matrices (the real ones) are defined as above, but with $h_{j k} \in\{-1,+1\}$. They exist only for $n=2$ and n a multiple of 4 .

Open Problem

Does there exists a Hadamard matrix (real!) of order $n=4 k$ for all $k \in \mathbb{N}$?
Wikipedia: As of 2008, there are 13 multiples of 4 less than or equal to 2000 for which no Hadamard matrix of that order is known. They are: $668,716,892,1004,1132,1244,1388,1436,1676,1772,1916,1948$, and 1964.

Hadamard matrices

Example

For any integer $n \geq 1$, the Fourier matrix

$$
F_{n}=\left(\omega_{n}^{(j-1)(k-1)}\right)
$$

with $\omega_{n}=\exp \left(\frac{2 \pi i}{n}\right)$, defines a Hadamard matrix,

Example

If $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{f_{1}, \ldots, f_{n}\right\}$ are two MUB, then

$$
H=\sqrt{n}\left(\begin{array}{cccc}
\left\langle e_{1}, f_{1}\right\rangle & \left\langle e_{1}, f_{2}\right\rangle & \cdots & \left\langle e_{1}, f_{n}\right\rangle \\
\left\langle e_{2}, f_{1}\right\rangle & \left\langle e_{2}, f_{2}\right\rangle & \cdots & \left\langle e_{2}, f_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle e_{n}, f_{1}\right\rangle & \left\langle e_{n}, f_{2}\right\rangle & \cdots & \left\langle e_{n}, f_{n}\right\rangle
\end{array}\right)
$$

is a Hadamard matrix.

Hadamard matrices

- Complex Hadamard matrices play an important role in quantum information, subfactor theory, and in connection to many other aspects in combinatorics, representation theory, and mathematical physics.
- Question by Jones (1999): Does there exist an "efficient" way to compute the "invariants" of a complex Hadamard matrix?
- Banica showed that one can associate a compact quantum group \mathbb{G} to any Hadamard matrix (\rightarrow Hopf image), in such a way that Jones' "invariants" are equal to the moments of the trace of the fundamental corepresentation of \mathbb{G},

$$
c_{m}=\int_{\mathbb{G}}(\operatorname{Tr} \rho(g))^{m} \mathrm{~d} g .
$$

Classification for $n \leq 5$

Definition

Two Hadamard matrices H_{1}, H_{2} are called equivalent, if one can be obtained from the other by

1. permuting rows or columns;
2. multiplying rows or columns by a complex number of modulus one.

We write $H_{1} \cong H_{2}$.
A Hadamard matrix is called dephased, if the first row and the first column consist of 1's.

Classification for $n \leq 5$

Theorem (Haagerup, 1997)

(a) For $n=1,2,3,5$, all Hadamard matrices are equivalend to a Fourier matrix.
(b) All 4×4 Hadamard matrices are equivalent to a matrix of the form

$$
H_{4}^{q}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & q & -q \\
1 & -1 & -q & q
\end{array}\right)
$$

with $|q|=1$.
For $n \geq 6$, many inequivalent Hadamard matrices are known, but their classification is a hard open problem, even for $n=6$ or n a prime number ≥ 7.

Quantum permutation groups

Let A be a C^{*}-algebra over \mathbb{C}.

Definition

(a) A square matrix $u \in M_{n}(A)$ is called magic, if all its entries are projections and each row or column sums up to 1 .
(b) The free permutation quantum group $C\left(S_{n}^{+}\right)$is the universal C^{*}-algebra generated by the entries of a $n \times n$ magic square matrix $u=\left(u_{j k}\right)$. It is a compact quantum group (or Woronowicz C^{*}-algebra) with the coproduct

$$
\Delta: C\left(S_{n}^{+}\right) \rightarrow C\left(S_{n}^{+}\right) \otimes C\left(S_{n}^{+}\right)
$$

determined by $\Delta\left(u_{j k}\right)=\sum_{\ell=1}^{n} u_{j \ell} \otimes u_{\ell k}$.

Quantum permutation groups

Definition

(c) A matrix compact quantum group (A, v) with fundamental unitary corepresentation $v=\left(v_{j k}\right) \in M_{n}(A)$ is called a quantum permutation group, if the map

$$
\pi: C\left(S_{n}^{+}\right) \rightarrow A, \quad \pi\left(u_{j k}\right)=v_{j k}
$$

extends to a surjective C^{*}-Hopf algebra morphism (or morphism of compact quantum groups), i.e. (A, v) is a sub quantum group of $\left(C\left(S_{n}^{+}\right), u\right)$.

For $n=1,2,3, C\left(S_{n}^{+}\right)$is commutative and $C\left(S_{n}^{+}\right) \cong C\left(S_{n}\right)$, i.e. S_{n}^{+}is isomorphic to the permutation group S_{n}.

For $n \geq 4, C\left(S_{n}^{+}\right)$is noncommutative and $\operatorname{dim} C\left(S_{n}^{+}\right)=\infty$, i.e. there exist (infinitely many!) genuine "quantum permutations".

The quantum permutation group of a Hadamard matrix

If $H \in M_{n}(C)$ is a Hadamard matrix and

$$
\xi_{j k}=\left(\frac{h_{j \ell}}{h_{k \ell}}\right) \in \mathbb{C}^{n}
$$

then $\left\{\xi_{j 1}, \ldots, \xi_{j n}\right\}$ and $\left\{\xi_{1 j}, \ldots, \xi_{n j}\right\}$ are o.n.b.'s of \mathbb{C}^{n} for all $j=1, \ldots, n$.
Therefore the orthogonal projections $P_{j k}$ onto $\mathbb{C} \xi_{j k}$ form a magic square

$$
P=\left(P_{j k}\right) \in M_{n}(B(\mathbb{C})) \cong M_{n} \otimes M_{n}
$$

and

$$
\pi_{H}: C\left(S_{n}^{+}\right) \rightarrow M_{n}(\mathbb{C}), \quad \pi_{H}\left(u_{j k}\right)=P_{j k},
$$

defines a representation of $C\left(S_{n}^{+}\right)$

The quantum permutation group of a Hadamard matrix

Definition

The quantum permutation group \mathbb{G}_{H} associated to a Hadamard matrix H is the smallest compact quantum group such that we have a factorization

$$
\begin{aligned}
& C\left(S_{n}^{+}\right) \xrightarrow{\pi_{H}} M_{n}(\mathbb{C}) \\
& \pi \\
& \checkmark\left(\mathbb{G}_{H}\right)
\end{aligned}
$$

where $\pi: C\left(S_{n}^{+}\right) \rightarrow C\left(\mathbb{G}_{H}\right)$ is a C^{*}-Hopf algebra morphism and $\rho: C\left(\mathbb{G}_{H}\right) \rightarrow M_{n}(\mathbb{C})$ a representation.

What is known

Theorem (Banica, Bichon, Schlenker, 2009)

The following are equivalent:
(i) $C\left(\mathbb{G}_{H}\right)$ is commutative;
(ii) $C\left(\mathbb{G}_{H}\right)$ is cocommutative;
(iii) $\mathbb{G}_{H} \cong \mathbb{Z}_{n_{1}} \times \cdots \mathbb{Z}_{n_{k}}$ for some n_{1}, \ldots, n_{k};
(iv) $H \cong F_{n_{1}} \otimes \cdots \otimes F_{n_{k}}$ for some n_{1}, \ldots, n_{k}.

Computing the invariants

Theorem (Banica, F, Skalski)

Let

$$
\varphi=\operatorname{tr} \circ \pi_{H} \quad \text { and } \quad \tilde{\varphi}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} \varphi^{\star m}
$$

Then $\tilde{\varphi}$ is equal to the "Haar" idempotent state on $C\left(S_{n}^{+}\right)$induced by the Haar state of $C\left(\mathbb{G}_{H}\right)$ and we can construct $C\left(\mathbb{G}_{H}\right)$ as the quotient of $C\left(S_{n}^{+}\right)$by the null space of $\tilde{\varphi}$,

$$
C\left(\mathbb{G}_{H}\right) \cong C\left(S_{n}^{+}\right) / N_{\tilde{\varphi}}, \quad N_{\tilde{\varphi}}=\left\{a \in C\left(S_{n}^{+}\right): \tilde{\varphi}\left(a^{*} a\right)=0\right\}
$$

Computing the invariants

Corollary (Banica, F, Skalski)

Let

$$
\begin{aligned}
T_{m} & =\left(\varphi\left(u_{j_{1} k_{1}} \cdots u_{j_{m} k_{m}}\right)\right) \\
& =\operatorname{tr}\left(P_{j_{1} k_{1}} \cdots P_{j_{m} k_{m}}\right) \\
& =\left\langle\xi_{j_{1} k_{1}}, \xi_{j_{2} k_{2}}\right\rangle\left\langle\xi_{j_{2} k_{2}}, \xi_{j_{3} k_{3}}\right\rangle \cdots\left\langle\xi_{j_{m} k_{m}}, \xi_{j_{1} k_{1}}\right\rangle \in M_{n^{m}},
\end{aligned}
$$

then we have

$$
c_{m}=\operatorname{dim}\left(\operatorname{ker}\left(T_{m}-\mathrm{id}\right)\right)
$$

Franz Lehner wrote a program that computes these dimensions (for "small" m).

Classification for $n=4$

Consider

$$
H_{4}^{q}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & q & -q \\
1 & -1 & -q & q
\end{array}\right)
$$

with $|q|=1$.
Theorem (Banica\& Bichon, F)
The quantum permutation group \mathbb{G}_{q} of H_{q} is

- $O_{-1}(2) \cong \mathbb{Z}_{2} 2_{*} \mathbb{Z}_{2}$, if ord $(q)=\infty$;
- a "Zakrzewski twist" of the dihedral group $D_{2 n}$, if $\operatorname{ord}\left(q^{4}\right)=n$

Classification for $n=4$

Examples

- if $q= \pm 1: \mathbb{G}_{q}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$;
- if $q= \pm i ; \mathbb{G}_{q}=\mathbb{Z}_{4}$;
- if $q \notin\{ \pm 1, \pm i\}$, then \mathbb{G}_{q} is non-commutive, non-cocommutative,
- if ord $(q)=4 n$, then $\mathbb{G}_{q} \cong D C_{n}^{-1}$,
- if $\operatorname{ord}(q)=n$ or $2 n$, then $\mathbb{G}_{q} \cong D_{2 n}^{-1}$.
$D C_{n}^{-1}$ and $D_{2 n}^{-1}$ are twists of the dicyclic and dihedral groups, they were constructed by Nikshych in 1998.

References

- Teodor Banica and Julien Bichon, Quantum groups acting on 4 points, Journal für die reine und angewandte Mathematik (Crelle's Journal) 626, 75-114, 2009.
- Teodor Banica, Quantum permutations, Hadamard matrices, and the search for matrix models, arXiv:1109.4888, 2011.
- Teodor Banica, Uwe Franz, Adam Skalski, Idempotent States and the Inner Linearity Property, Bull. Polish Acad. Sci. Math. 60, 123-132, 2012.
- Teodor Banica and Julien Bichon, Quantum invariants of deformed Fourier matrices, arXiv:1310.6278, 2013.

