Hadamard matrices and Compact Quantum Groups

Uwe Franz

18 février 2014 3ème journée FEMTO-LMB

based in part on joint work with: Teodor Banica, Franz Lehner, Adam Skalski

UWE FRANZ (LMB)

Hadamard & CQG

Гемто-LMB 1 / 18

If we measure on a quantum system described by the Hilbert space \mathcal{H} and the state vector $\psi \in \mathcal{H}$ (with $||\psi|| = 1$) the observable corresponding to the self-adjoint operator X with spectral decomposition

$$X = \sum_{\lambda \in \sigma(X)} \lambda E_{\lambda},$$

then we observe λ with probability

$$P(``X = \lambda") = ||E_{\lambda}\psi||^2.$$

After the experiment, if we observed λ , the state vector is

 $\frac{E_{\lambda}\psi}{||E_{\lambda}\psi||}.$

Hadamard & CQG

Mutually Unbiased Bases (MUB)

Definition

A family $\{B_k = \{e_1^{(k)}, \dots, e_n^{(k)}\}; k = 1, \dots, r\}$ of orthonormal bases is called mutually unbiased, if

$$\langle e_i^{(k)}, e_j^{(\ell)} \rangle \big| = \frac{1}{\sqrt{n}}$$

for $k \neq \ell$, $i, j = 1, \ldots, n$.

If $n = p^k$ is a power of a prime number, then there exist n + 1 mutually unbiased bases for \mathbb{C}^n .

Open Problem

Determine the maximal number of mutually unbiased bases, if n is not a power of a prime number. Still open even for n = 6.

Hadamard matrices

Definition

A (complex) Hadamard matrix is a matrix $H = (h_{jk}) \in M_n(\mathbb{C})$ such that

(i)
$$|h_{jk}| = 1$$
 for all $1 \le j, k \le n$;
(ii) $\frac{1}{\sqrt{n}}H$ is unitary.

Hadamard matrices (the real ones) are defined as above, but with $h_{jk} \in \{-1, +1\}$. They exist only for n = 2 and n a multiple of 4.

Open Problem

Does there exists a Hadamard matrix (real!) of order n = 4k for all $k \in \mathbb{N}$?

Wikipedia: As of 2008, there are 13 multiples of 4 less than or equal to 2000 for which no Hadamard matrix of that order is known. They are: 668, 716, 892, 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964.

イロト イポト イヨト イヨト

Hadamard matrices

Example

For any integer $n \ge 1$, the Fourier matrix

$$F_n = \left(\omega_n^{(j-1)(k-1)}\right)$$

with $\omega_n = \exp\left(\frac{2\pi i}{n}\right)$, defines a Hadamard matrix,

Example

If $\{e_1,\ldots,e_n\}$ and $\{f_1,\ldots,f_n\}$ are two MUB, then

$$H = \sqrt{n} \begin{pmatrix} \langle e_1, f_1 \rangle & \langle e_1, f_2 \rangle & \cdots & \langle e_1, f_n \rangle \\ \langle e_2, f_1 \rangle & \langle e_2, f_2 \rangle & \cdots & \langle e_2, f_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle e_n, f_1 \rangle & \langle e_n, f_2 \rangle & \cdots & \langle e_n, f_n \rangle \end{pmatrix}$$

is a Hadamard matrix.

UWE FRANZ (LMB)

- Complex Hadamard matrices play an important role in quantum information, subfactor theory, and in connection to many other aspects in combinatorics, representation theory, and mathematical physics.
- Question by Jones (1999): Does there exist an "efficient" way to compute the "invariants" of a complex Hadamard matrix?
- Banica showed that one can associate a compact quantum group G to any Hadamard matrix (→ Hopf image), in such a way that Jones' "invariants" are equal to the moments of the trace of the fundamental corepresentation of G,

$$c_m = \int_{\mathbb{G}} \left(\mathrm{Tr} \rho(g) \right)^m \mathrm{d}g.$$

Classification for $n \leq 5$

Definition

Two Hadamard matrices H_1, H_2 are called equivalent, if one can be obtained from the other by

1. permuting rows or columns;

2. multiplying rows or columns by a complex number of modulus one. We write $H_1 \cong H_2$.

A Hadamard matrix is called dephased, if the first row and the first column consist of 1's.

Classification for $n \leq 5$

Theorem (Haagerup, 1997)

- (a) For n = 1, 2, 3, 5, all Hadamard matrices are equivalend to a Fourier matrix.
- (b) All 4 \times 4 Hadamard matrices are equivalent to a matrix of the form

$$H_4^q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & q & -q \\ 1 & -1 & -q & q \end{pmatrix}$$

with |q| = 1.

For $n \ge 6$, many inequivalent Hadamard matrices are known, but their classification is a hard open problem, even for n = 6 or n a prime number ≥ 7 .

Quantum permutation groups

Let A be a C^* -algebra over \mathbb{C} .

Definition

- (a) A square matrix $u \in M_n(A)$ is called magic, if all its entries are projections and each row or column sums up to 1.
- (b) The free permutation quantum group $C(S_n^+)$ is the universal C^* -algebra generated by the entries of a $n \times n$ magic square matrix $u = (u_{jk})$. It is a compact quantum group (or Woronowicz C^* -algebra) with the coproduct

$$\Delta: C(S_n^+) \to C(S_n^+) \otimes C(S_n^+)$$

determined by $\Delta(u_{jk}) = \sum_{\ell=1}^{n} u_{j\ell} \otimes u_{\ell k}$.

Quantum permutation groups

Definition

(c) A matrix compact quantum group (A, v) with fundamental unitary corepresentation $v = (v_{jk}) \in M_n(A)$ is called a quantum permutation group, if the map

$$\pi: C(S_n^+) \to A, \qquad \pi(u_{jk}) = v_{jk}$$

extends to a surjective C^* -Hopf algebra morphism (or morphism of compact quantum groups), i.e. (A, v) is a sub quantum group of $(C(S_n^+), u)$.

For n = 1, 2, 3, $C(S_n^+)$ is commutative and $C(S_n^+) \cong C(S_n)$, i.e. S_n^+ is isomorphic to the permutation group S_n .

For $n \ge 4$, $C(S_n^+)$ is noncommutative and dim $C(S_n^+) = \infty$, i.e. there exist (infinitely many!) genuine "quantum permutations".

If $H \in M_n(C)$ is a Hadamard matrix and

$$\xi_{jk} = \left(\frac{h_{j\ell}}{h_{k\ell}}\right) \in \mathbb{C}^n$$

then $\{\xi_{j1}, \ldots, \xi_{jn}\}$ and $\{\xi_{1j}, \ldots, \xi_{nj}\}$ are o.n.b.'s of \mathbb{C}^n for all $j = 1, \ldots, n$. Therefore the orthogonal projections P_{jk} onto $\mathbb{C}\xi_{jk}$ form a magic square

$$P = (P_{jk}) \in M_n(B(\mathbb{C})) \cong M_n \otimes M_n$$

and

$$\pi_H: C(S_n^+) \to M_n(\mathbb{C}), \qquad \pi_H(u_{jk}) = P_{jk},$$

defines a representation of $C(S_n^+)$

Definition

The quantum permutation group \mathbb{G}_H associated to a Hadamard matrix H is the smallest compact quantum group such that we have a factorization

where $\pi : C(S_n^+) \to C(\mathbb{G}_H)$ is a C^* -Hopf algebra morphism and $\rho : C(\mathbb{G}_H) \to M_n(\mathbb{C})$ a representation.

What is known

Theorem (Banica, Bichon, Schlenker, 2009)

The following are equivalent:

- (i) $C(\mathbb{G}_H)$ is commutative;
- (*ii*) $C(\mathbb{G}_H)$ is cocommutative;
- *(iii)* $\mathbb{G}_H \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ for some n_1, \ldots, n_k ;

(iv) $H \cong F_{n_1} \otimes \cdots \otimes F_{n_k}$ for some n_1, \ldots, n_k .

Theorem (Banica, F, Skalski)

Let

$$\varphi = \operatorname{tr} \circ \pi_H$$
 and $\tilde{\varphi} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} \varphi^{\star m}.$

Then $\tilde{\varphi}$ is equal to the "Haar" idempotent state on $C(S_n^+)$ induced by the Haar state of $C(\mathbb{G}_H)$ and we can construct $C(\mathbb{G}_H)$ as the quotient of $C(S_n^+)$ by the null space of $\tilde{\varphi}$,

$$C(\mathbb{G}_H) \cong C(S_n^+)/N_{\tilde{\varphi}}, \quad N_{\tilde{\varphi}} = \{a \in C(S_n^+) : \tilde{\varphi}(a^*a) = 0\}.$$

Computing the invariants

Corollary (Banica, F, Skalski)

Let

$$\begin{aligned} \overline{f}_m &= \left(\varphi(u_{j_1k_1}\cdots u_{j_mk_m})\right) \\ &= \operatorname{tr}(P_{j_1k_1}\cdots P_{j_mk_m}) \\ &= \langle\xi_{j_1k_1},\xi_{j_2k_2}\rangle\langle\xi_{j_2k_2},\xi_{j_3k_3}\rangle\cdots\langle\xi_{j_mk_m},\xi_{j_1k_1}\rangle\in M_{n^m}, \end{aligned}$$

then we have

$$c_m = \dim(\ker(T_m - \mathrm{id}))$$

Franz Lehner wrote a program that computes these dimensions (for "small" m).

Hadamard & CQG

Classification for n = 4

Consider

$$\mathcal{H}^{q}_{4}=\left(egin{array}{ccccc} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ 1 & -1 & q & -q \ 1 & -1 & -q & q \end{array}
ight)$$

with |q| = 1.

Theorem (Banica \mathcal{E} Bichon, F)

The quantum permutation group \mathbb{G}_q of H_q is

1

•
$$O_{-1}(2)\cong \mathbb{Z}_2\wr_*\mathbb{Z}_2$$
, if $\operatorname{ord}(q)=\infty$;

• a "Zakrzewski twist" of the dihedral group D_{2n} , if $\operatorname{ord}(q^4) = n$

Classification for n = 4

Examples

- if $q = \pm 1$: $\mathbb{G}_q = \mathbb{Z}_2 \times \mathbb{Z}_2$;
- if $q = \pm i$; $\mathbb{G}_q = \mathbb{Z}_4$;
- if $q \notin \{\pm 1, \pm i\}$, then \mathbb{G}_q is non-commutive, non-cocommutative,
 - if $\operatorname{ord}(q) = 4n$, then $\mathbb{G}_q \cong DC_n^{-1}$,
 - if $\operatorname{ord}(q) = n$ or 2n, then $\mathbb{G}_q \cong D_{2n}^{-1}$.

 DC_n^{-1} and D_{2n}^{-1} are twists of the dicyclic and dihedral groups, they were constructed by Nikshych in 1998.

Hadamard & CQG

References

- Teodor Banica and Julien Bichon, Quantum groups acting on 4 points, Journal für die reine und angewandte Mathematik (Crelle's Journal) 626, 75-114, 2009.
- Teodor Banica, Quantum permutations, Hadamard matrices, and the search for matrix models, arXiv:1109.4888, 2011.
- Teodor Banica, Uwe Franz, Adam Skalski, Idempotent States and the Inner Linearity Property, Bull. Polish Acad. Sci. Math. 60, 123-132, 2012.
- Teodor Banica and Julien Bichon, Quantum invariants of deformed Fourier matrices, arXiv:1310.6278, 2013.