
Weighted Lp-theory for Poisson, biharmonic and Stokes problems
on periodic unbounded strips of Rn

Ulrich Razafison∗ Vuk Milišić†

Abstract

This paper establishes isomorphisms for Laplace, biharmonic and Stokes operators in weighted Sobolev
spaces (WSS). The W

m,p
α (Rn)-spaces are similar to standard Sobolev spaces W m,p (Rn), but they are en-

dowed with weights (1+|x|2)α/2 prescribing functions’ growth or decay at infinity. Although well estab-
lished in R

n [3], these weighted results do not apply in the specific hypothesis of periodicity. This kind of
problem appears when studying singularly perturbed domains (roughness, sieves, porous media, etc) :
when zooming on a single perturbation pattern, one often ends with a periodic problem set on an in-
finite strip. We present a unified framework that enables a systematic treatment of such problems. We
provide existence and uniqueness of solutions in our WSS. This gives a refined description of solution’s
behavior at infinity which is of importance in the mutli-scale context. The isomorphisms are valid for
any relative integer m, any p in (1,∞), and any real α out of a countable set of critical values.
Keywords: periodic infinite strip; weighted Sobolev spaces; Hardy inequality; isomorphisms; Laplace
operator; Stokes equations; Green function; boundary layers;
AMS Classification: 35Q92

1 Introduction

In [9, 24, 25], the first author studied blood-flow in stented arteries using homogenization techniques. Blood
flows were modeled through Laplace or Stokes equations (which is plausible since the Reynolds number in
arteries is relatively small) and the stent device was introduced as a thin singular perturbation between sep-
arated domains. Asymptotic expansions separate scales and lead to microscopic boundary layer problems.
These can be seen as a zoom on minimal periodic patches of the stent device, where the macroscopic ef-
fects are experienced as boundary condition at infinity. Thus the boundary layer problems are defined on
infinite periodic strips with obstacles. In a great number of articles [21, 20, 1, 23, 27], the analysis of such
problems is done in various ways, mostly in the Hilbertian context, out of a generic frame. The aim of this
paper is to provide an adequate framework for a systematic analysis of these problems. To that end, we fol-
low the ideas developed in [17, 3, 4] : since the operators we are investigating are linear, we first solve them
in periodic strips without obstacles in order to only focus on the behavior at infinity of the solutions. Then
using techniques from [4], we combine the latter results and solve the associated exterior problems. This
will be done in a forthcoming paper.

Thus in this paper we consider the Stokes problem
{
−∆u+∇π= f in R

n ,

divu = g in R
n ,

(1)

where the velocity field u : Rn 7→ R
n , the pressure π : Rn 7→ R and the data f : Rn 7→ R

n and g : Rn 7→ R are Lk

periodic with respect to the first n −1 directions, that is, for any y = (y ′, yn) ∈R
n ,

u(y ′
+L, yn) = u(y ), π(y ′

+L, yn) =π(y ), (2)
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and
f (y ′

+L, yn)= f (y ), g (y ′
+L, yn) = g (y ), (3)

where L = (L j ) j∈{1,...,n−1} is a vector of positive real numbers.
We shall also consider the biharmonic problem:

−∆
2u = f in R

n , (4)

where, for any y ∈R
n ,

u(y ′
+L, yn) =u(y ) and f (y ′

+L, yn) = f (y ). (5)

This problem is closely related to the Stokes problem.
In order to be able to define functional spaces on the strip Π

k=n−1
k=1 [0,Lk )×R, we follow the ideas devel-

oped in [22, 33]. We identify the strip Π
k=n−1
k=1 [0,Lk )×R with the set G :=Π

k=n−1
k=0 (R/LkZ)×R, which together

with addition as group operation and the canonical quotient topology inherited from R
n yields a locally

compact abelian group. The Haar measure associated to G is, modulo some normalization, the product of
Lebesgue’s measures associated to each direction. The Stokes problem (1)–(3) can be rephrased in G as:

{
−∆u+∇π= f in G ,

divu = g in G .
(6)

Similarly the biharmonic problem (4)–(5) can be rewritten as:

−∆
2u = f in G . (7)

Since the solutions of (6) and (7) correspond to the microscopic solutions of the boundary layer prob-
lems, their behavior at infinity in the yn-direction are of importance: they provide averaged feed-backs on
the macroscopic scale (see [12] and references therein). Therefore we choose to solve (6) and (7) in weighted
Sobolev spaces in order to describe this behavior of the solutions and of the data. Moreover, this approach
allows to consider a large type of behavior at infinity of the functions (polynomial growth or decay). The
weights, when adapted to our problem, are polynomial functions at infinity and regular bounded functions
in the neighborhood of the origin : they are powers of ρ(y ) := (1+ y2

n)1/2. The literature on the weighted
Sobolev spaces is wide [18, 4, 16, 15, 11, 10, 7, 30, 5, 6] and deals with various types of domains. To our
knowledge, this type of weights has not been applied to problems (6), (7) and (8) in the context of periodic
strips.

This paper combines various tools from several fields mixing Fourier analysis on local abelian groups
[22, 33], fonctionnal analysis with Muckenhoupt weights [34], weighted Sobolev spaces techniques for the
whole space [3, 2, 29]. We prove these results in the framework of W

m,p
α (G) spaces as defined in [3], for

p ∈ (1,∞) and α in R out of a discrete set of critical values. The core of the paper are the isomorphisms of
the Laplace operator for any relative integer m, any p ∈ (1,∞) any weight α : for a given data f we look for u
solving

−∆u = f in G . (8)

Firstly, these results are obtained on a starting interval of weights α ∈ (−1/p,1/p ′) for which we prove The-
orem 4.1. Then using induction arguments higher regularity is obtained combined with a natural weight
shift. Calderón-Zygmund-type results from [34] provide another set of regularity results, the weight index α

being kept in the initial interval. The combination of these latter steps extends then the first isomorphisms
to the general non critical case as stated in Theorem 4.3.

Composing isomorphisms of the Laplace operator, we provide similar results for the poly-harmonic
operator ∆m , m being any given positive integer. For sake of simplicity these results are shown in detail for
the bi-harmonic operator.

2



At this stage, one solves the Stokes problem (6) : eliminating the divergence equation, the pressure is
obtained using the isomorphisms of Laplace operator, then the velocity is obtained through another use of
these isomorphism, the gradient of the pressure becoming part of the right hand side in the first equation
of (6). The biharmonic operator is used in order to characterize the kernel of the Stokes operator.

The structure of the paper follows lines explained above. First in Section 2, we define the differentiable
structure on our locally compact abelian group. Then in Section 3, we set up the weighted function spaces
and establish their basic properties. In Section 4, we construct isomorphisms of the Laplace operator, in
Sections 5 and 6 we then use the latter results in order to provide isomorphisms for the biharmonic and the
Stokes operators. Finally, in the appendix, we provide some results on distributions with compact support
defined on the Pontryagin’s dual group Ĝ .

2 Fourier analysis on the LCA-group G

As in [34], we briefly define the structure inherent to periodic strips. We denote ΞG the canonical quotient
mapping

ΞG : Rn
→G , ΞG (y ) := ([y1], . . . , [yn−1], yn), (9)

where [y j ] ∈R/L jZ is the equivalence class of y j ∈R, for j ∈ {1, . . . ,n −1}.
Let λ ∈N

n , be a multi-index an n-uple of nonnegative integers λ j , we denote Dy j = ∂ j the partial deriva-

tive wrt j -coordinate, then Dλ := Π
n
j=1D

λ j

y
λ j
j

denotes the differential operator of order |λ| =
∑n

j=1λ j . For

m ∈N∪ {∞} let us define

C m(G) := {u : G →C, such that ∃ũ ∈C m(Rn) and ũ = u ◦ΞG }

the space of m-times differentiable functions on G . We define the derivatives via

Dλu = Dλũ|
Π

n−1
k=1 [0,Lk )×R,

where λ ∈ N
n with |λ| ≤ m and we identified G with Π

n−1
k=1[0,Lk )×R. We define C (G) the space of C 0(G)

functions that vanish when |yn |→∞ and D(G) := C∞
0 (G), the set of infinitely many differentiable functions

with compact support. The Schwartz-Bruhat space associated to G reads

S (G) := {u ∈C∞(G) such that n j (u)<∞, ∀ j ∈N
∗}

where we set the semi-norm n j (u) := supy∈G (1+|yn |
2) j /2|D j (u)| and D j u := (Dλu)|λ|≤ j (see [36]). The corre-

sponding dual is well defined with respect to the weak-* topology and denotes S
′(G), the space of tempered

distributions on G . This allows to define the derivatives of elements of S
′(G) via the primal space :

< DλT,u >= (−1)|λ|
< T,Dλu >, u ∈S (G), λ ∈N

n

and proves that they are also tempered distributions. The Pontryagin dual of G is identified with Ĝ :=
Π

k=n−1
k=1 (2π/LkZ)×R. It is also a locally compact abelian group see [32, Theorem 1.2.6]. By default Ĝ is

equipped with the compact-open topology which in this case coincides with the product of discrete topolo-
gies on each 2π/LkZ and the Euclidian topology on R. The Haar measure on Ĝ is simply the product of
counting measures on 2π/LkZ for each k ∈ {1, . . . ,n −1} and Lebesgue’s measure on R. The associated dif-
ferentiable structure similar to the group G is then

C∞(Ĝ) :=
{

u ∈ Ĝ →C such that u(k, ·) ∈C∞(R), ∀k ∈Π
ℓ=n−1
ℓ=1 (2πZ/Lℓ)

}
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where we define the derivatives Dλu(k,ζ)= Dλ
ζλ

u(k,ζ) together with the norms n̂ j (u) := supη∈Ĝ (1+|η|) j |D j u(η)|

where D j u := (Dλ
ξλ

u)λ≤ j . The Schwartz space on Ĝ then reads

S (Ĝ) := {Âău ∈C∞(Ĝ) s.t. n̂ j (u) <∞, ∀ j ∈N
∗}

and again this provides the correct setting in order to define the associated dual space. For more details see
[22, 34] and references therein. By the same arguments as in [19, Theorem 1.5.2], one can prove that E

′(Ĝ),
the set of tempered distributions with compact support in Ĝ is identical to the dual space of C∞(Ĝ) with the
topology defined by the semi norms m̂ j ,K (u) := supη∈K |D j u(η)| where K ranges over all compact sets of Ĝ ,
and j over all non-negative integers.

We are in the position to define the Fourier transform FG : L1(G) →C (Ĝ) as

FG (u)(k,ξ) :=
1

|Σ|

∫

Σ

∫

R

u(y ′, yn)exp(−i y ′
·k− i ynξ)d yndy ′

where we denote Σ :=Π
n−1
ℓ=1 (0,Lℓ) and |Σ| its Lebesgue measure. Several remarks are to be made, FG maps

L1(G) into C (Ĝ) by the Riemann-Lebesgue lemma. One proves [13] that FG : S (G) →S (Ĝ) is a homeomor-
phism. The corresponding inverse Fourier transform reads F

−1
G : L1(Ĝ) →C (G) where

F
−1
G (u)(y ′, yn) :=

∑

k∈Πk=n−1
k=1 (2π/LkZ)

∫

R

u(k,ξ)exp(i y ′
·k+ i ynξ)d yndy ′.

By the Pontryagin duality theorem, there exists also a Fourier transform FĜ : S (Ĝ) →S (G), which again has
an inverse denoted F

−1
Ĝ

: S (G) →S (Ĝ). We have the correspondence F
−1
G (FG ( f ))(y ) = f (y ) =FĜ (FG ( f ))(−y )

for all y ∈ G and every f ∈ S (G). One is able to define the Fourier and the inverse Fourier transforms of a
tempered distribution by duality FG : S ′(G) →S

′(Ĝ) and F
−1
G : S ′(Ĝ) →S

′(G) as

<FG (T ),ϕ>=< T,FĜ (ϕ) >, ∀ϕ ∈S (Ĝ)

and
<F

−1
G (T ),ϕ>=< T,F−1

Ĝ
(ϕ) >, ∀ϕ ∈S (G).

For all T ∈ S
′(G) there is a correspondence between derivation and multiplication in the frequency do-

main : FG (DλT )= i |λ|ηλ
FG (T ) for any λ ∈N

n and η= (k,ξ) ∈ Ĝ .

3 Properties of the weighted Sobolev spaces

We define the weight function with respect to the normal coordinate ρ(y ) :=
√

1+ y2
n .

The sequence (Uk )k∈Z defined as

Uk :=Π
j=n−1
j=1

([
0,rk , j

)
∪ (L j − rk , j ,L j )

)
×

(
−2k ,2k

)
, rk , j := min(2k ,L j ),

together with A = 2 and θ(k)= k +1, forms a local base of 0 ∈G i.e.

i) ∪k∈ZUk =G

ii) Uk ⊂Uk ′ if k < k ′

iii) there exist a positive constant A and a mapping θ : Z → Z such that for all k ∈ Z and all x ∈ G , k <

θ(k), Uk −Uk ∈Uθ(k), and µ(x +Uθ(k)) < Aµ(x +Uk ). The set difference stems for U −V := {z ∈ G ; ∃u ∈

U Âăand v ∈V , z = u −v}.
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This proposition shows that the structure of G is compatible with Assumptions 1.1 in [33]. Let p ∈ (1,∞).
A weight w ∈ L1

loc(G) belongs to the Muckenhoupt class Ap (G) iff

Ap (w ) := sup
U∈G

(
1

µ(U )

∫

U
wdµ

)(
1

µ(U )

∫

U
w−

p′

p dµ

) p
p′

<∞

where the supremum runs over all base sets U ∈G .
For any p ∈ (1,∞) and any real number α ∈ (−1/p,1/p ′), the weight ραp (y ) is of Muckenhoupt type

Ap (G).

Proof. As the weight ρ is constant wrt y ′, the Muckenhoupt criterion reduces to check whether ραp (yn) is
in Ap (R), i.e. :

Ap (ραp ) :=
1

R

∫

|yn |≤R
ρ(yn)αp d yn

(
1

R

∫

|yn |≤R
ρ(yn)−αp′

d yn

)p/p′

<∞

for R := 2k > 0 for any k ∈ Z. If α > −1/p then the first term of the product behaves as Rαp , whereas as
α < 1/p ′ the second term is equivalent to (R−αp′

)p/p′

. Thus the product of both terms is bounded for α ∈

(−1/p,1/p ′).

For α ∈R, we introduce the weighted space :

L
p
α(G) ≡W

0,p
α (G) := {u ∈ L

p
loc(G) s.t. ραu ∈ Lp (G)},

which is a Banach space equipped with its natural norm

‖u‖Lp
α(G) = ‖ραu‖Lp (G).

Proposition 3 allows to use [34, Lemma 3.1] and claim that D(G) is dense in L
p
α(G) for α ∈ (−1/p,1/p ′).

This yields the general density result stated below. For any real number α, D(G) is dense in Lp
α(G).

Proof. The proof is obvious considering that for any α, the mapping u ∈ L
p
α(G) 7→ ργu ∈ L

p
α−γ(G) is an iso-

morphism for any real γ. Then using the previous density result established in the range α ∈ (−1/p,1/p ′),
the claim is proved.

For any integer m > 0, any p ∈ (1,∞) and any real number α, we now define the weighted Sobolev space

W
m,p
α (G) :=

{
u ∈S

′(G); ∀λ ∈N
n : 0 ≤ |λ| ≤ m, ρα−m+|λ|Dλu ∈ Lp (G)

}
,

which is a Banach space endowed with its natural norm

‖u‖W m,p
α (G) =

(
∑

0≤|λ|≤m

‖ρα−m+|λ|Dλu‖
p
Lp(G)

)1/p

.

We define the semi-norm

|u|W
m,p
α (G) =

(
∑

|λ|=m

‖ραDλu‖
p
Lp(G)

)1/p

.

For detailed studies on this functional space defined in the whole R
n , the reader can refer to [3, 17, 18].

Among several properties, we have the following algebraic and topological inclusions :

W
m,p
α (G) ⊂W

m−1,p
α−1 (G) · · · ⊂ L

p
α−m(G). (10)

5



The mapping

u ∈W
m,p
α (G) 7→ Dλu ∈W

m−|λ|,p
α (G) (11)

is continuous for λ ∈N
n . Using the fact that for any λ,γ ∈R,

|Dλ

yλ
n
ργ

| ≤Cργ−λ, (12)

the mapping
u ∈W

m,p
α (G) 7→ ργu ∈W

m,p
α−γ (G) (13)

is an isomorphism for any α,γ ∈R.
For any (m, p,α) ∈N× (1,∞)×R, D(G) is dense in W

m,p
α (G).

Proof. The ideas of the proof come from [3] and [28]. Let u be in W
m,p
α (G).

(i) We first approximate u by functions with compact support in the yn-direction. As this is a standard
procedure, we refer to [18] p. 230–231 for further details.

(ii) We define ω, the y ′-periodic transform of a test function ϕ ∈D(Rn )

ωϕ(y ) :=
∑

k∈Πn−1
ℓ=1 LℓZ

ϕ(y1 −k1, . . . , yn−1 −kn−1, yn), ∀y ∈G .

A simple computation shows that for any ϕ ∈D(Rn ),
∥∥ωϕ

∥∥
L

p
α(G) ≤ c(|supp ϕ|)

∥∥ϕ
∥∥

L
p
α(Rn ). (14)

There exists a function θ ∈ D(Rn−1) such that ωθ = 1. Indeed, for any non-negative function ϕ ∈

D(Rn−1) whose support contains at least one period Σ, one can chose θ := ϕ/(ωϕ). Such a function
is called a y ′-periodic partition of unity. Let (α j ) j∈N be a sequence such that α j ∈ D(Rn ), α j ≥ 0,∫
Rn α j (x )dx = 1 and the support of α j is included in the closed ball of radius r j > 0 and centered

at 0 where r j → 0 as j → ∞. It is well known that as j → ∞, α j converges in the distributional
sense to the Dirac measure. We set w (y ) = θ(y ′)ũ(y ), where ũ denotes the periodic extension of u
in R

n . Then w belongs to W m,p
α (Rn) and has a compact support. Moreover, since ωθ = 1, we have

ωw = ω(θũ) = (ωθ)u = u. We define ϕ j = w ∗α j . Then ϕ j belongs to D(Rn) and converges to w in
W m,p

α (Rn) as j tends to ∞. Let ψ j :=ωϕ j , then ψ j belongs to D(G) and thanks to (14), ψ j converges to
ωw = u in W m,p

α (G) as j tends to ∞.

If j ∈Z then we denote by P j the set of polynomials of degree less or equal to j that only depend on the
yn-direction, with the convention that if j < 0 then P j = {0}. For any integer m ≥ 1, we denote by P

∆
m

j the

set of polyharmonic polynomials of order m of P j . In particular, P
∆

j is the space of harmonic polynomials
of P j .

Observe that since the polynomials of P j only depend on the yn direction, then the degree of the poly-
nomials of P

∆
m

j can not exceed 2m −1. In other words, for any integer m ≥ 1, we have

P
∆

m

j =Pmin( j ,2m−1).

Let m ≥ 0 be an integer, p ∈ (1,∞) and α be real numbers. We introduce the integer

q(m, p,α) =

{
⌊m −1/p −α⌋ if 1/p +α ∉Z,

m −1/p −α−1 otherwise,

where ⌊·⌋ denotes the floor part of its argument. Then Pq(m,p,α) is the biggest set of polynomials included
in W

m,p
α (G),
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For any α ∈R and p ∈ (1,∞), one has the continuous embedding

S (G) ,→ Lp
α(G) ,→S

′(G).

Moreover we identify the distribution with its pointwise L
p
α(G) associated function in order to define its

action on Schwartz test functions.

Proof. If α<−1/p then a simple application of Hölder inequalities leads to

∥∥ϕ
∥∥

L
p
α(G) ≤ c sup

y∈G
|ϕ(y )| ≤ c n0(ϕ)

which proves continuous injection in these cases. Otherwise, if α ≥ −1/p , then for any ϕ ∈ S (G), we can
write ∥∥ϕ

∥∥p

L
p
α(G)

=

∫

G
|ϕ(y )|pραp (y )dy ≤ sup

y∈G
(1+ρ(y )) j p

|ϕ(y )|p
∫

G
ραp− j p (y )dy

≤ c n j (ϕ)p
∫

G
ραp− j p (y )dy

the latter integral is finite as soon as j := ⌊α+1/p⌋+1 >α+1/p , which ends the proof of the first continuous
injections for all α ∈R. Then using these injections one has directly that

∣∣∣∣
∫

G
u(y )ϕ(y )dy

∣∣∣∣≤ ‖u‖Lp
α(G)

∥∥ϕ
∥∥

Lp′
−α(G)

≤ c‖u‖Lp
α(G)n j (ϕ)

for a certain j to be chosen accordingly. Thus u is a linear continuous form on S (G) and the latter contin-
uous injection is proved.

Corollary .1. Let (m, p,α) ∈N× (1,∞)×R then

S (G) ,→W m,p
α (G) ,→S

′(G).

Let α ∈R, m be a negative integer, and p ∈ (1,∞), then the Sobolev space W
m,p
α (G) is defined as the dual

space of W −m,p′

−α (G), where p ′ is the conjugate of p .

Corollary .2. Let α ∈R, m be a negative integer, and p ∈ (1,∞), then elements of Sobolev spaces W m,p
α (G) are

tempered distributions.

Theorem 3.1. Let m ≥ 1 be an integer, p ∈ (1,∞) and α be real numbers such that 1/p +α ∉ {1, . . . ,m}. Then
there exists a constant C > 0, depending only on m, p and n such that

∀u ∈W
m,p
α (G), ‖u‖W m,p

α (G)/Pq′(m,p,α)
≤C |u|W m,p

α (G)

where q ′(m, p,α) = min(q(m, p,α),m−1). In other words, the semi-norm |·|W m,p
α (G) defines a norm on W m,p

α (G)/
Pq ′(m,p,α) that is equivalent to the quotient norm.

The proof follows the same lines as in [3, Theorem 8.3 p 598]. As a direct consequence of Theorem 3.1,
we can prove isomorphism results on the gradient and the divergence operator. To that end, let us define
the spaces

V := {ϕ ∈D(G)n , divϕ= 0} and Hp,α := {v ∈ Lp
α(G)n , div v = 0}.

Given a Banach space B and a closed subspace X of B , we denote by B ′⊥X (or more simply X ⊥, if there is
no ambiguity as to the duality product), the subspace of B ′ orthogonal to X , i.e.

B ′
⊥X = X ⊥

= { f ∈ B ′ : ∀v ∈ X ,< f , v >= 0} = (B/X )′,
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the space X ⊥ being also called the polar space of X in B ′ and possibly denoted X 0. Let p ∈ (1,∞) and α be
real numbers such that 1/p +α 6= 1. Then the operators defined by

∇ : W
1,p
α (G)/Pq ′ (1,p,α) → L

p
α(G)n

⊥Hp′ ,−α (15)

and
div : L

p
α(G)n /Hp,α →W

−1,p
α (G)⊥Pq ′(1,p′ ,−α) (16)

are isomorphisms.

Proof. The gradient operator defined by (15) is linear, continuous and its kernel is reduced to Pq ′(1,p,α).
Actually, thanks to Proposition 3, this means that if α < 1/p ′ then q ′(1, p,α) = 0 otherwise q(1, p,α) < 0
which implies that Pq ′(1,p,α) = {0}. Since 1/p +α 6= 1, then thanks to Theorem 3.1, the semi-norm | · |W

1,p
α (G)

is a norm on the quotient space W
1,p
α (G)/Pq ′ (1,p,α). Thus the gradient is an isomorphism from W

1,p
α (G)/

Pq ′(1,p,α) onto its range Rg and Rg is a closed subspace of L
p
α(G). Hence by the Closed Range Theorem

Rg = (ker(div ))0, where div is the operator defined by

div : Lp′

(G) → (W 1,p
α (G)/Pq ′ (1,p,α))′.

We deduce that Rg = (Hp′−α)0, so that the gradient operator defined by (15) is an isomorphism and through
duality and transposition the divergence operator defined by (16) is also an isomorphism.

In the remaining part of this section, our aim is to characterize tempered distributions by means of their
gradients.

Let p ∈ [1,∞) and α ∈R. If f ∈ L
p
loc(G)n such that

〈f,v〉 = 0 ∀v ∈ V ,

then there exists p ∈ Lp
loc(G) such that f =∇p .

Proof. For every y in R
n we associate the periodic extension of f reading :

f̃(y ) := f(ΞG (y )), Âăa.e. y ∈R
n .

where the restriction operator ΞG was introduced in (9). As f ∈ L
p
loc(G)n , then for any K ⊂ R

n compact set,
one can write: ∫

K
|f̃(y )|p dy =

∑

k∈Πn−1
ℓ=1 LℓZ

∫

(G+
∑n−1

ℓ=1 kℓeℓ)∩K
|f̃(y )|p dy ≤C (|K |)

∫

K ′

|f(y )|p dy

where K ′ ⊂G is a compact set. Then f̃ belongs to L
p
loc(Rn)n and as a consequence f̃ also belongs to L1

loc(Rn)n .
Let now ϕ̃ be in D(Rn )n and satisfy divϕ̃= 0 in R

n . Recalling that ω is the y ′-periodic transform defined in
Lemma 3, then ωϕ̃ ∈ V and is a y ′-periodic function. Moreover one has

∫

Rn
f̃(y )ϕ̃(y )dy =

∑

k∈Πn−1
ℓ=1 LℓZ

∫

G+
∑n−1

ℓ=1 kℓeℓ

f̃(y )ϕ̃(y )dy =

∫

G
f(y )ωϕ̃(y )dy = 0.

Thanks to [14, Lemma III.1.1. p. 144] : there exists p̃ ∈W 1,1
loc (Rn ) s.t. ∇p̃ = f̃ almost everywhere in R

n .

Thanks to [14, Lemma II.6.1. p. 81], p̃ ∈W 1,p
loc (Rn ). Then defining p := p̃|

Π
n−1
ℓ=1 (0,Lℓ)×R proves that p belongs to

L
p
loc(G).

Hereafter we adapt to our case arguments from [26]. We define Xp,α the closure of V for the Lp
α(G)

norm. We also define Ap,α := X ⊥
p′ ,−α, the annihilator of Xp′ ,−α. For any p ∈ [1,∞), and α ∈ R, Ap,α ≡ {∇p ∈

L
p
α(G)n , p ∈ L

p
loc(G)}
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Proof. Since f ∈ L
p
α(G)n , integrations by part are well defined so that if f =∇p , then we can write

〈f,u〉 = 〈∇p,u〉 =−〈p,divu〉 = 0, ∀u ∈ V .

this proves the inclusion of the gradients in the annihilator set. Thanks to the previous Lemma one has the
converse claim.

The tempered distribution u ∈S
′(G) satisfies ∆u = 0 in G if and only if u ∈P

∆

1 .

Proof. It is clear that if u ∈P
∆

1 , then ∆u = 0. Conversely, let u ∈S
′(G) satisfy ∆u = 0. Applying the Fourier

transform, one has ∣∣η
∣∣2

FG (u)(η) = 0, ∀η ∈ Ĝ ,

which implies that the transform is compactly supported in {0} ⊂ Ĝ . Then by Theorem A.2 (see Appendix)
there exists q ∈N such that

<FG (u),ψ>
E ′(Ĝ)×E (Ĝ)=

q∑
r=0

cr Dr
ξr ψ(0), ∀ψ ∈ E (Ĝ).

Now we prove that F
−1
G (FG (u)) is a polynomial. Indeed

〈F
−1
G (FG (u)) ,ϕ〉

S ′(G)×S (G) = 〈FG (u),F−1
Ĝ

(ϕ)〉
S ′(Ĝ)×S (Ĝ)

=

p∑
r=0

cr

(
Dr

ξr

(
FG (ϕ)(−η)

))∣∣∣
η=0

=
1

|Σ|

p∑
r=0

cr

(
Dr

ξr

∫

G
ϕ(y )exp(iη ·y )dy

)∣∣∣∣
η=0

=
1

|Σ|

p∑
r=0

cr

∫

G
ϕ(y )(i yn)r exp(iη ·y )dy

∣∣∣∣
η=0

=

∫

G

{
Âă

1

|Σ|

p∑
r=0

cr (i yn)r
}
ϕ(y )dy .

Since the polynomial should be harmonic and in S
′(G) it might belong by definition to P

∆

1 .

Let p ∈ (1,∞) and α ∈ (−1/p,1/p ′) be real numbers. Moreover, assume that q ∈ L
p
loc(G) is such that

∆q = 0 and ∇q ∈ Lp
α(G)n . Then ∇q = 0.

Proof. Since ∇q ∈ Lp
α(G) then ∇q ∈ S

′(G). As q is harmonic, ∇q is harmonic thus by Prop. 3, ∇q is either
constant or proportional to yn . Since neither yn nor constants belong to Lp

α(G)n , the gradient is zero.

Corollary .3. If p ∈ (1,∞) and α ∈ (−1/p,1/p ′), then Hp,α∩ Ap,α = {0}.

If p ∈ (1,∞) and α ∈ (−1/p,1/p ′), there exists a bounded operator Θp,α from Lp
α(G)n onto Hp,α such that

Θp,αu =u for all u ∈ Hp,α.

Proof. In a first step we give a formal picture of the rigorous proof below : inspired by Proposition 1.5 [26],
we aim at solving, in the sense of distributions −∆q = div u, so that we use the Fourier transform and write
that FG (q)=−iη ·FG (u)/|η|2. Formally, the Fourier transform of ∇q can be computed as :

FG (∇q) = m(η)FG (u), Âăwith m(η) :=
η⊗ηÂă

|η|2

where ⊗ denotes the tensorial product. But as we want to avoid circular arguments about the resolution
of the Laplace problem and since we are interested, for Helmholtz decomposition issues, into the gradient
of q , in what follows, g will denote a rigorous computation of the formal quantity ∇q . As m is a bounded
function but is not continuous near the origin, the transference principle applies [34, 8], but after a suitable
regularization.
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We define the matrix :

m† : Ĝ →Mn(C), m† := (1−mP (η))(η⊗η)/|η|2,

where mP (η) :=1{0}(k) for all η := (k,ξ)∈ Ĝ and we define the corresponding continuous equivalent to m†:

M† : Rn−1
×R→Mn(C), M†(ζ) = M†(κ,ξ) := (1−ϕ(|κ|))(ζ⊗ζ)/|ζ|2

where ϕ ∈ C∞
0 (R) and ϕ(0) = 1 and suppϕ ∈ (−1

2 , 1
2 ). The symbol M† vanishes in a neighborhood of κ = 0,

and since it is bounded and continuous, it is a Mikhlin multiplier. We define P , the mean value operator wrt
y ′ and its complement :

(Pψ)(yn ) :=
1

|Σ|

∫

Σ

ψ(y ′, yn)dy ′, P†ψ=ψ−Pψ, ∀ψ ∈D(G).

Then we set
g =Punen +F

−1
G

(
m†FG (P†u)

)
=: g+g†

one has trivially that
∥∥g

∥∥
L

p
α(G) ≤ ‖u‖Lp

α(G), and since m† and M † are well defined, Proposition 5.3 [34] shall be
used giving : ∥∥g†

∥∥
L

p
α(G) ≤ c

∥∥P†u
∥∥

L
p
α(G) ≤ c ′‖u‖L

p
α(G),

where we used the decomposition of Lp
α(G) provided in Lemma 5.6 [34]. At this stage, using the Fourier

transform, it is easy to check that divg = div u in S
′(G) . Indeed, one has :

< divg,ψ>=−< g,∇ψ>=−< g+g†,∇ψ>

=−< Pun ,∂nψ>−< m†FG (P†u),F−1
Ĝ

(∇ψ) >

=< ∂nPun ,ψ>+< m†FG (P†u), i ηF
−1
G (ψ) >

Now since m† ∈ C∞(Ĝ), it is trivial to prove that < m†FG (P†u), iηF
−1
G (ψ) >=< FG (P†u), i m†ηF

−1
G (ψ)) >

and whence as m†η= (1−mP )η, which gives in turn

< divg,ψ>=< ∂nPun ,ψ>+< (1−mP )FG (P†u), iηF
−1
G (ψ) >

=< ∂nPun ,ψ>−< (1−mP )FG (P†u),F−1
Ĝ

(∇ψ) >

=< ∂nPun ,ψ>−<FG (P†u),F−1
Ĝ

(∇ψ) >=< ∂nPun ,ψ>−<P†u,∇ψ>,

where the brackets are intended in the S
′(G) or the S

′(Ĝ) senses, and we have used that (1−mP )FG (P†u)=
FG (P†u) since FG (P†u)(k = 0,ξ) = 0, which is indeed the case since FG (P†u) = FG (u) −FG (Pu) = (1 −

mP )FG (u) (see (19) p.14 [34]). Now one defines Θp,αu = u−g and the claim follows.

Theorem 3.2. If p ∈ (1,∞) and α ∈ (−1/p,1/p ′) then

i) there is a Helmholtz decomposition of Lp
α(G)n = Hp,α⊕ Ap,α

ii) the space V is dense in Hp,α.

Proof. i) By our construction of Θp,α, one has that D(G)n ⊂ Hp,α⊕Ap,α ⊂ Lp
α(G)n , which proves that Hp,α⊕

Ap,α is dense in Lp
α(G)n . As the projector Θp,α : Lp

α(G)n → Hp,α(G) is a bounded linear operator and
Hp,α, Ap,α are closed, Hp,α⊕ Ap,α is closed. Thus i) holds.
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ii) By i), Hp,α = L
p
α(G)n /Ap,α. Hence

H ′
p,α =

(
L

p
α(G)n/Ap,α

)′
= A⊥

p,α ⊂ Hp′ ,−α.

The latter inclusion holds. Indeed, suppose that u ∈ A⊥
p,α then it belongs to L

p′

−α(G) and one writes :

< div u,ϕ>S ′(G)×S (G)=−< u,∇ϕ>
Lp′
−α(G)×Lp

α(G)
= 0, ∀ϕ ∈S (G),

since ϕ ∈ ÂăS (G), ∇ϕ ∈ L
p
α(G) and thus ∇ϕ ∈ Ap,α by Lemma 3. Thus div u = 0 and since u ∈ L

p′

−α(G) one
concludes that u ∈ Hp′,−α.

The subset Xp′ ,−α is total in Hp′,−α if and only if the only continuous linear functional that vanishes on
Xp′ ,−α is the 0 functional. Thus suppose that there exists w ∈ (Hp′ ,−α)′ s.t. for any v ∈ Xp′ ,−α, < w,v >= 0

(where the brackets are understood in the L
p
α(G),L

p′

−α(G) duality), this means that w ∈ X ⊥
p′ ,−α = Ap,α, but

since (Hp′ ,−α)′ ⊂ Hp,α then w ∈ Hp,α∩ Ap,α = {0}, which ends the proof.

Assume that p ∈ (1,∞) and α ∈ (−1/p,1/p ′) are real numbers. Let u ∈ S
′(G) be such that ∇u ∈ L

p
α(G)n .

Then u ∈W
1,p
α (G) and there exists c > 0 independent on u such that

‖u‖W 1,p
α (G)/R ≤ c‖∇u‖Lp

α(G)n .

Proof. If u ∈S
′(G) and ∇u ∈ Lp

α(G)n , then for all ϕ ∈ V one has

<∇u,ϕ>=−< u,divϕ>= 0

where the brackets are to be understood in the S
′(G),S (G)-duality. The left hand side of the previous

equality is nevertheless an integral as well since ∇u is in L
p
α(G). Since α ∈ (−1/p,1/p ′), then thanks to The-

orem 3.2, V is dense in Hp′ ,−α and we see that ∇u ∈ L
p
α(G)⊥Hp′ ,−α. Moreover, under the assumptions on α,

we have q ′(1, p,α) = 0. Thus by Prop. 3, there exists w ∈ W 1,p
α (G)/R such that ∇w = ∇u. Since these func-

tions differ at most by a constant ([35], Theorem VI, Chap. 2) and, under the assumptions on α, constants
are in W 1,p

α (G), the u belongs to the latter space and the quotient norm provides the estimates.

4 The Laplace operator

In this section, we solve the Laplace problem

−∆u = f in G .

We begin by characterizing the kernel.
Let m ≥ 0 be an integer, α be a real number. A function u ∈ W

m,p
α (G) satisfies ∆u = 0 in G if and only if

u ∈P
∆

q(m,p,α) .

Proof. In view of Remark 3, it is clear that if u ∈ P
∆

q(m,p,α) , then ∆u = 0. Conversely, if u ∈ W
m,p
α (G), by

Corollary .1, u ∈S
′(G). Proposition 3 implies then that u is a polynomial in P

∆

1 , as it is also in W
m,p
α (G), it

is necessarily in P
∆

q(m,p,α) .
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In order to establish the first isomorphism result for the Laplace operator, we compute the fundamental
solution of the Laplace equation in G .

The fundamental solution of the Laplace equation in G reads:

Φ(y )=
∑

k∈Πn−1
ℓ=1

2π
Lℓ

Z

exp(−|k||yn |+ i (k,y ′))

2|k|
−

1

2

∣∣yn
∣∣ ,

Proof. The Fourier transform of the fundamental solution is: FĜ (Φ)(η) = 1/|η|2 for all η ∈ Ĝ . Inverting this
expression yields formally:

Φ(y ) =
∑

k∈Πn−1
ℓ=1

2π
Lℓ

Z,

∫

R

exp(iξyn)

(|k|2 +ξ2)
dξexp(i (k,y ′)).

Then separating the case k ≡ 0 from the rest provides the result using residue calculus as in [31, example 1,
Chap. IX, p. 58].

The fundamental solution Φ is in S
′(G).

Proof. A simple computation gives that |yn | ∈ L1
loc(G) is a tempered distribution since for any ϕ ∈S (G), one

has ∣∣< |yn|,ϕ>
∣∣≤ c1

∫

G

|yn|

(1+|yn |
2) j /2

dyn j (ϕ)

the integral being bounded for j ≥ 3. We define Φk̃(y ) := exp(−|k̃|yn + i (k̃,y ′)))/ (2|k̃|) for any k̃ ∈Π
n−1
ℓ=1

2π
Lℓ
Z :

it is a tempered distribution. Moreover, one has that

Φ̂k̃(η) :=FG (Φk̃)(k,ξ) =
1{k=k̃}(k)Âă

|k|2 +ξ2
.

A simple computation shows that Φ̂k̃ is indeed in L1(Ĝ), and thus, below, the duality bracket in (S ′(Ĝ),S (Ĝ))

becomes an integral with respect to the Haar measure associated to Ĝ . Let now M be a positive real number
large enough, define ZM := {k̃ ∈Π

n−1
ℓ=1

2π
Lℓ
Z s.t. k̃ 6= 0 and |k̃| < M } and

Φ
M (y ) :=

∑

k̃∈ZM

Φk̃(y ).

Then applying the Fourier transform,

Φ̂M (η) :=FG (ΦM )(η) =
∑

k̃∈ZM

1{k=k̃}(k)Âă

|k|2 +ξ2
.

The previous arguments show that Φ̂M ∈ L1(Ĝ), but the bound is not uniform with respect to M , since it
behaves as

∑
k∈ZM

|k|−1. Nevertheless for any ϕ̃ ∈S (Ĝ), we have

〈Φ̂M ,ϕ̃〉
S ′(Ĝ),S (Ĝ) =

∑

k∈ZM

∫

R+

ϕ̃(k,ξ)Âă

|k|2 +ξ2
dξ

≤ n̂ j (ϕ̃)
∑

k∈ZM

(1+|k|)− j
∫

R+

1Âă

|k|2 +ξ2
dξ≤ c2n̂ j (ϕ̃).

For j sufficiently large with respect to n, the constant c2 does not depend on M . This ends the proof since
the Fourier transform is an homeomorphism between S

′(G) and S
′(Ĝ).
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If f ∈S (G), then Φ∗ f ∈S
′(G). Moreover if f ∈D(G) then

<Φ∗ f ,ϕ>S ′(G)×S (G)=< f ,Φ∗ϕ>E ′(G)×E (G), ∀ϕ ∈S (G).

Proof. The proof of the first part is obvious and relies on the Fourier transform: indeed �Φ∗ f = Φ̂ f̂ and as
the product Φ̂ f̂ is again in S

′(Ĝ), then so it is for the inverse transform giving the result. Moreover, one has
:

<Φ∗ f ,ϕ>=<Φ∗ϕ, f >, ∀ϕ ∈S (G), ∀ f ∈S (G).

Indeed, ΦM , since it belongs to L1(G), this allows to convert the brackets into sums and integrals and use
Fubbini : one obtains the second result for any fixed M . Then passing to the limit necessitates the same ar-
guments as in the previous Lemma. Then since f and ϕ are both in E (G) so are the respective convolutions
with Φ. If now we suppose moreover that f ∈ D(G) then it is also in E

′(G) and thanks to these two latter
arguments, the result follows, and the bracket can be transformed :

<Φ∗ϕ, f >S ′(G)×S (G)=< f ,Φ∗ϕ>E ′(G)×E (G) .

We can now state the first isomorphism result.

Theorem 4.1. Let p ∈ (1,∞) and α ∈
(
−1/p,1/p ′

)
be real numbers. Then the Laplace operator defined by

W
1,p
α (G)/R

∆
7→W

−1,p
α (G)⊥R

is an isomorphism.

Proof. We adapt the ideas from [3, Theorem 5.1, p. 586–587]. The operator is clearly linear and continuous,
thanks to Proposition 4, it is also injective. Hereafter we prove surjectivity. Given f ∈ W

−1,p
α (G)⊥R an obvi-

ous candidate could be Φ∗ f , the problem is that neither Φ nor f are not compactly supported : the latter
convolution does not make sense a priori.

i) Thanks to Prop. 3, there exists v ∈ L
p
α(G) s.t. div v = f and

‖v‖L
p
α(G) ≤ c

∥∥ f
∥∥

W
−1,p
α (Z )

where the constant is independent on v. Now since D(G) is dense in L
p
α(G), there exists a sequence

v j ∈D(G) s.t. v j → v in L
p
α(G).

ii) Set f j = div v j , and ψ j =Φ∗ f j , for all i = 1, . . . ,n and ϕ ∈D(G) we have :

< ∂iψ j ,ϕ>S ′(G)×S (G)=−<Φ∗ f j ,∂iϕ>S ′(G)×S (G)

=−< f j ,∂i (Φ∗ϕ) >E ′(G)×E (G)=< v j ,∇∂i (Φ∗ϕ) >E ′(G)×E (G),

the change in the sense of duality brackets is justified by Lemma 4. Then thanks to Prop. 3, ρ−p′α(y2) is a
Muckenhoupt weight, we apply the weighted Calderon-Zygmund inequality from the proof of Theorem
1.1 p. 15-16 [34], and one has

∣∣< ∂iψ j ,ϕ>
∣∣≤

∥∥v j
∥∥

Lp
α(G)

∥∥∇∂i (Φ∗ϕ)
∥∥

Lp′
−α(G)

≤ c
∥∥v j

∥∥
L

p
α(G)

∥∥∆(Φ∗ϕ)
∥∥

L
p′
−α(G)

≤ c ′
∥∥ f

∥∥
W −1,p

α (G)

∥∥ϕ
∥∥

L
p′
−α(G)

So that ∇ψ j is uniformly bounded wrt j in L
p
α(G).
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iii) We can apply Proposition 3, so there exists constants (c j (ψ j )) j∈N and c > 0 s.t.

ψ j +c j ∈W
1,p
α (G),

∥∥ψ j +p j
∥∥

W
1,p
α (G) ≤ c

∥∥ f
∥∥

W
−1,p
α (G).

From this it follows that ψ j +p j converges weakly to some function u in W 1,p
α (G) and it solves (8) so

that the mapping is indeed surjective.

In order to extend Theorem 4.1 to other values of α, we first prove a regularity result.
Let ℓ be a non-negative integer, p ∈ (1,∞) and α ∈ (−1/p,1/p ′) be real numbers. Then the Laplace

operator defined by

W
1+ℓ,p
α+ℓ

(G)/R
∆
7→W

−1+ℓ,p
α+ℓ

(G)⊥R (17)

is an isomorphism.

Proof. Owing to Theorem 4.1, the claim is true for ℓ = 0. Assume that it is true for ℓ = k and let us prove
that it is still true for ℓ = k +1. The Laplace operator defined by (17) is clearly linear and continuous. It is

also injective : if u ∈ W 2+k ,p
α+k+1(G) and ∆u = 0 then u ∈P

∆

⌊1−1/p−α⌋ ≡ R since α ∈ (−1/p,1/p ′). To prove that it

is onto, let f be given in W k ,p
α+k+1(G)⊥R. According to (10), f belongs to W −1+k ,p

α+k (G)⊥R. Then the induction

assumption implies that there exists u ∈W
1+k ,p
α+k (G) such that ∆u = f . Next, we have

∆(ρ∂i u)=ρ∂i f +∂i u∆ρ+2∇ρ ·∇(∂i u). (18)

Using , (10), (11), (12), and (13), all the terms of the right-hand side belong to W −1+k ,p
α+k (G). This implies that

∆(ρ∂i u) also belongs to W
−1+k ,p
α+k (G). In order to apply again the induction argument, it remains to prove

that∆(ρ∂i u) is orthogonal to constants. Let us first note that∆(ρ∂i u) also belongs to W −2+k ,p
α+k−1 (G). Moreover,

since u belongs to W
1+k ,p
α+k (G) implies that ρ∂i u belongs W

k ,p
α+k−1(G), then, for any ϕ ∈ W

2−k ,p′

−α−k+1(G), we can
write

〈∆(ρ∂i u),ϕ〉
W −2+k,p

α+k−1 (G)×W 2−k,p′

−α−k+1(G)
= 〈ρ∂i u,∆ϕ〉

W k,p
α+k−1(G)×W −k,p′

−α−k+1(G)
.

Since R ⊂ W
2−k ,p′

−α−k+1(G), we can take ϕ ∈ R which implies that ∆ϕ = 0. It follows that ∆(ρ∂i u) is indeed

orthogonal to constants. Thanks to the induction assumption, there exists v in W
1+k ,p
α+k (G) such that

∆v =∆(ρ∂i u).

Hence, the difference v −ρ∂i u is a constant. Since the constants are in W
1+k ,p
α+k (G), we deduce that ρ∂i u

belongs to W
1+k ,p
α+k (G) which in turn implies that u belongs to W

2+k ,p
α+k+1(G).

We continue by establishing a new family of isomorphism using Calderón-Zygmund’s inequality and
Theorem 3.1.

Let p ∈ (1,∞), α ∈ (−1/p,1/p ′) be real numbers and m ≥ 2 be an integer. Then the Laplace operator
defined by

W
m,p
α (G)/Pm−1

∆
7→W

m−2,p
α (G)/Pm−3

is an isomorphism.
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Proof. The mapping defined in the claim is bounded linear and injective. Again as in the proof of Theorem
4.1, as α ∈ (−1/p,1/p ′), the weights are of Muckenhoupt type and one can apply the weighted Calderón-
Zygmund estimates giving :

∀u ∈W
m,p
α (G), ∀λ ∈N

n : |λ| =m −2, ∀i , j = 1, . . . ,n
∥∥∥∂i∂ j Dλu

∥∥∥
L

p
α(G)

≤ c
∥∥∥∆Dλu

∥∥∥
L

p
α(G)

≤ c‖∆u‖W
m−2,p
α (G)/Pm−3

.

Moreover, using again the assumption on α, we have m−1 <m−1/p −α<m. Then thanks to Theorem 3.1,
the semi-norm | · |W

m,p
α (G) is a norm on the quotient space W m,p

α (G)/Pm−1. This yields

‖u‖W
m,p
α (G)/Pm−1

≤ c‖∆u‖W
m−2,p
α (G)/Pm−3

which shows that the range of the operator is a closed subspace of the target quotient space. The Closed
Range Theorem and the injectivity of the adjoint operator imply that the range is the whole target space.

A direct consequence of this result is the Let p ∈ (1,∞), α ∈ (−1/p,1/p ′) be real numbers and m ≥ 2 be
an integer. Then the Laplace operator defined by

W
m,p
α (G)/P1

∆
7→W

m−2,p
α (G)

is an isomorphism.
We can now extend Theorem 4.1 to other values of α.

Theorem 4.2. Let p ∈ (1,∞), α ∈ (−1/p,1/p ′) be real numbers and ℓ ≥ 1 be an integer. Then the Laplace
operators defined by

W 1,p
α−ℓ

(G)/P1
∆
7→W −1,p

α−ℓ
(G) (19)

and
W 1,p′

−α+ℓ
(G)

∆
7→W −1,p′

−α+ℓ
(G)⊥P1 (20)

are isomorphisms.

Proof. Let us recall that due to Proposition 4, the mapping

W
m,p
α (G)/P1

∆
7→W

m−2,p
α (G)

is an isomorphism. Now through duality and transposition, the mapping

W
−m+2,p′

−α (G)
∆
7→W

−m,p′

−α (G)⊥P1

is an isomorphism. Next, using the same arguments as in the proof of Proposition 4, we are able to show
that for any integer ℓ≥ 1, the mapping

W
−m+2+ℓ,p′

−α+ℓ
(G)

∆
7→W

−m+ℓ,p′

−α+ℓ
(G)⊥P1

is an isomorphism. Choosing ℓ=m−1 yields the isomorphism result defined by (20) which through duality
and transposition also enables to obtain the one defined by (19).

Summarizing Theorems 4.1 and 4.2, we deduce

15



Theorem 4.3. For p ∈ (1,∞) and any α ∈R satisfying

α+1/p ∉Z and α−1/p ′
∉Z, (21)

the mapping

W 1,p
α (G)/P ∆

⌊1−1/p−α⌋
∆
7→W −1,p

α (G)⊥P
∆

⌊1−1/p′+α⌋ (22)

is an isomorphism. As a consequence, for any m ∈Z and for any α ∈R satisfying (21), the mapping

W
m+2,p
α (G)/P ∆

⌊m+2−1/p−α⌋
∆
7→W

m,p
α (G)⊥P

∆

⌊−m−1/p′+α⌋ (23)

is an isomorphism.

5 The biharmonic operator

Here we consider the polyharmonic problem: given f , we look for u solution of

∆
2u = f in G .

Proceeding as in Proposition 4, we can prove the following characterization of the kernel of the bihar-
monic operator.

Let α a real number. A function u ∈W
m,p
α (G) satisfies ∆2u = 0 in G if and only if u ∈P

∆
2

⌊m−1/p−α⌋.
We first have the following isomorphism result.

Theorem 5.1. Let p ∈ (1,∞) and α ∈ (−1/p,1/p ′) be real numbers. Then the biharmonic operator defined by

∆
2 : W 2,p

α (G)/P1 7→W −2,p
α (G)⊥P1

is an isomorphism.

Proof. Since α ∈ (−1/p,1/p ′), applying Proposition 4 for m = 2, we see that the Laplace operator defined by

W
2,p
α (G)/P1 → L

p
α(G) (24)

is an isomorphism. Then using duality and transposition we also see that

Lp′

−α(G) →W −2,p′

−α (G)⊥P1

is an isomorphism. Since α ∈ (−1/p,1/p ′) implies that −α ∈ (−1/p ′,1/p), it follows that the Laplace operator
defined by

L
p
α(G) →W

−2,p
α (G)⊥P1 (25)

is also an isomorphism. Composing (24) and (25) proves the statement.

Let p ∈ (1,∞) and α be real numbers satisfying (21). Then the biharmonic operator defined by

∆
2 : W 2,p

α (G)/P ∆
2

⌊2−1/p−α⌋ 7→W −2,p
α (G)⊥P

∆
2

⌊2−1/p′+α⌋ (26)

is an isomorphim.
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Proof. Thanks to Theorem 5.1, the statement is already proved for α ∈ (−1/p,1/p ′).
Assume now that α<−1/p .
The biharmonic operator defined above is clearly linear and continuous. Its injectivity follows from

Proposition 5.
Let us prove that the compatibility condition is necessary. For any u ∈ W 2,p

α (G) and ϕ ∈ S (G), we can
write

|〈∆
2u,ϕ〉S ′(G)×S (G)| ≤

∫

G
|∆u||∆ϕ|dy

≤ ‖∆u‖Lp
α(G)‖∆ϕ‖Lp′

−α(G)

≤ ‖∆u‖L
p
α(G)|ϕ|W 2,p′

−α (G)
.

But if α<−1/p , then the semi-norm | · |
W

2,p′
−α (G)

is a norm on W
2,p′

−α (G)/P⌊2−1/p′+α⌋. Moreover if α<−1/p the

spaces P⌊2−1/p′+α⌋, P
∆

⌊2−1/p′+α⌋
and P

∆
2

⌊2−1/p′+α⌋
coincide. Hence ∆

2 belongs to W −2,p
α (G)⊥P

∆
2

⌊2−1/p′+α⌋
.

Let now prove that the operator is onto. Take f in W
−2,p
α (G)⊥P [2−1/p′+α]. Then thanks to the isomor-

phism result of the Laplace operator defined by (23), there exists v ∈ L
p
α(G) such that ∆v = f in G . Since

α<−1/p , there are no polynomials in the space P [−1/p′+α], then using again (23), there exists u ∈ W 2,p
α (G)

such that ∆u = v in G which implies that ∆2u = f in G . As a consequence the operator defined by (26) is an
isomorphism if α < −1/p . Then using duality and transposition it is also an ismorphism if α > 1/p ′ which
ends the proof.

As a consequence we have the below general result.

Theorem 5.2. Let p ∈ (1,∞) and α be real numbers satisfying (21) and ℓ ∈Z. Then the biharmonic operator
defined by

∆
2 : W

2+ℓ,p
α (G)/P ∆

2

⌊2+ℓ−1/p−α⌋ 7→W
−2+ℓ,p
α (G)⊥P

∆
2

⌊2−ℓ−1/p′+α⌋

is an isomorphim.

6 The Stokes equation

This section is devoted to the Stokes problem: given f and g , we look for a pair (u,π) satisfying

{
−∆u+∇π= f in G ,

divu = g in G .
(27)

For any integer k , we introduce the space of polynomials

Nk = {(θ,λ) ∈P
∆

2

k ×P
∆

k−1, divθ= 0, −∆θ+∇λ= 0}.

Let m ≥ 0 be an integer and α a real number. A pair (u,π)∈W m+1,p
α (G)×W m,p

α (G) satisfies

−∆u+∇π= 0 and divu = 0 in G , (28)

if and only if (u,π) ∈N⌊m+1−1/p−α⌋.

Proof. Let (u,π) ∈ W
m+1,p
α (G) ×W

m,p
α (G) satisfies (28). Then taking the divergence of the first equation

of (28) implies that ∆π = 0 and therefore π is a polynomial of P
∆

⌊m−1/p−α⌋. As a consequence, we have

∆
2u =∆(∇π) = 0 which implies that u belongs to P

∆
2

⌊m+1−1/p−α⌋.
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We first look for solutions in W
1,p
α (G)×L

p
α(G).

Theorem 6.1. Let α be a real number satisfying (21). Let f ∈ W −1,p
α (G), g ∈ Lp

α(G) satisfy the compatibility
condition

∀(θ,λ) ∈N⌊1−1/p′+α⌋, 〈f,θ〉
W

−1,p
α (G)×W

1,p′
−α (G)

+〈g ,λ〉
L

p
α(G)×L

p′
−α(G)

= 0. (29)

Then the Stokes equations (27) has a unique solution (u,π) ∈ (W
1,p
α (G)×L

p
α(G))/N⌊1−1/p−α⌋.

Proof. Let us introduce the Stokes operator

T : (u,π) 7→ (−∆u+∇π,−div u).

Then the statement amounts to prove that the operator

T : (W 1,p
α (G)×Lp

α(G))/N⌊1−1/p−α⌋ 7→ (W −1,p
α (G)×Lp

α(G))⊥N⌊1−1/p′+α⌋.

is an isomorphism.
We assume first α< 1/p ′.

The operator T defined above is clearly linear and continuous. Its injectivity follows from Proposition 6.
Let us show that the compatibility condition is necessary. Note that under the assumtion α< 1/p ′, there

are no polynomials in L
p′

−α(G) and the polynomials of W
1,p′

−α (G) are at most constants. Then (29) is reduced
to show that f ∈W −1,p

α (G)⊥P⌊1−1/p′+α⌋. Consider now (u,π) ∈W 1,p
α (G)×Lp

α(G). Then −∆u+∇π ∈W −1,p
α (G)

and for any θ ∈P⌊1−1/p′+α⌋, we have

〈−∆u+∇π,θ〉
W −1,p

α (G)×W 1,p′
−α (G)

= 〈u,−∆θ〉
W

1,p
α (G)×W

−1,p′
−α (G)

−〈π,divθ〉
L

p
α(G)×L

p′
−α(G)

= 0

since θ is at most a constant vector. This shows that the compatibility condition is necessary.
Let us now show that the operator T is onto. Let f ∈ W

−1,p
α (G) and g ∈ L

p
α(G). Then this implies that

div f +∆g belongs to W
−2,p
α (G). Since α < 1/p ′, the degree of the polynomials of P⌊2−1/p′+α⌋ is at most

one. Hence ∆g belongs to W −2,p
α (G)⊥P⌊2−1/p′+α⌋. Then since f ∈ W −1,p

α (G)⊥P⌊1−1/p′+α⌋, it follows that

div f+∆g ∈ W
−2,p
α (G)⊥P⌊2−1/p′+α⌋. Thanks to the isomorphism result (23) of the Laplace operator, there

exists π ∈ L
p
α(G) such that

∆π=div f+∆g in G .

It follows that f−∇π ∈W
−1,p
α (G)⊥P⌊1−1/p′+α⌋. Thanks again to (23), there exists u ∈W

1,p
α (G) such that

−∆u+∇π= f in G .

As a consequence divu− g ∈ L
p
α(G) and satisfies

∆(divu− g ) = 0 in G .

Therefore divu− g =λ ∈P
∆

[−1/p−α]. Let γ(yn) =
∫yn

0 λ(s)d s, then γ belongs to Pmin(2,⌊1−1/p−α⌋) ⊂P
∆

2

⌊1−1/p−α⌋.

Let now θ be a polynomial such that θ j = 0 for any j = 1, . . . ,n −1 and θn = γ. Then θ belongs to P
∆

2

⌊1−1/p−α⌋
and satisfies divθ =λ. Thus (u−θ,π) satisfies (27) and as a consequence, the operator T is onto.

Through duality the operaor T is also an isomorphism if α>−1/p and this ends the proof.

Using again regularity and duality arguments, we have the following statement.

Theorem 6.2. Let α be a real number satisfying (21) and m be an integer. Let f ∈ W
m,p
α (G), g ∈ W

m+1,p
α (G)

satisfy the compatibility condition

∀(θ,λ) ∈N⌊−m−1/p′+α⌋, 〈f,θ〉
W m,p

α (G)×W −m,p′
−α (G)

+〈g ,λ〉
W m+1,p

α (G))×W −m−1,p′
−α (G)

= 0.

Then the Stokes equations (27) has a unique solution (u,π) ∈ (W m+2,p
α (G)×W m+1,p

α (G))/N⌊m+2−1/p−α⌋.

18



A Compactly supported distributions, E
′(Ĝ)

Theorem A.1. If u ∈ E
′(Ĝ) of order p, then for any test function ψ ∈ E (Ĝ) s.t. D j

ξ j ψ(η) = 0 for all points η in the

support of u and all j ∈ {0, . . . , p}, one has < u,ψ>= 0, where the brackets denote the duality in E
′(Ĝ),E (Ĝ).

Proof. As the support of u is compact in Ĝ there exists a finite collection of integers J ⊂N and finite sequence
of compact intervals (K ( j )) j∈J s.t. suppu ∈ {(k j ,K ( j )) j∈J }, we denote the set of all S := {(k j ) j∈J }, a finite
subset of Πn−1

ℓ=1 (2π Z/Lℓ). Let Kǫ( j ) := {ζ ∈R s.t. d (ζ,K ( j )) ≤ ǫ}. We define the smooth cut-off function

χǫ(k,ξ) :=
1

ǫ

{∫
K2ǫ( j )ϕ(ξ−ζ)dζ Âăif k ∈ S

0 otherwise

where ϕ ∈ C∞
0 (R) s.t. ϕ ≥ 0,

∫
R
ϕ(ξ)dξ = 1 and suppϕ ⊂ B (0,1). Then it is clear that χǫ(k j , ·) = 1 in Kǫ( j )

and that suppχǫ(k j , ·) ⊂ K3ǫ( j ). One has then < u,ψ>=< u,ψχǫ > since ψ(1−χǫ) = 0 in a neighborhood of
suppu. Hence

| < u,ψ> |≤C sup
η∈Ĝ , j≤p

∣∣∣D j
ξ j (ψχǫ)

∣∣∣

which by arguments similar to Theorem 1.5.4 [19] is bounded uniformly by ǫ, and thus tends to 0, as ǫ→ 0.
Indeed, for any fixed k j using

∣∣ψ(k j ,ξ′)
∣∣≤ 1

(p +1)!
sup

t∈(0,1)

∣∣∣Dp+1
ξp+1ψ(k j ,ξ+ t (ξ′−ξ))Âă

∣∣∣ |ξ′−ξ|(p+1)

for all ξ ∈ R and similar estimates for all derivatives of higher order, it implies that supξ′∈K3ǫ
|Dqψ(k j ,ξ′)| ≤

c j ,qǫ
p+1−q . On the other hand supξ∈K3ǫ( j ) |D

q ′

χǫ(k j ,ξ)| ≤ c ′j ,q ′ǫ
−q ′

, which together with the Leibnitz formula
gives that

| <u,ψ> | ≤ c sup
j∈J

sup
ξ∈K3ǫ( j )

(
p
q

)
c j ,qǫ

p+1−q c ′j ,p−qǫ
−(p−q)

≤ cǫ.

Theorem A.2. If u ∈ E
′(Ĝ) s.t. suppu ⊂ {0} then for any ϕ ∈ E (Ĝ), there exists a p ∈ N s.t. < u,ϕ >=∑p

r=0 cr∂
r
ξr ϕ(0).

Proof. Let p be the order of u. Set ψ(k,ξ)=ϕ(k,ξ)−
∑p

r=0∂
r
ξr ϕ(k,0)ξ

r

r ! it is a smooth function s.t. any deriva-
tive in direction ξ vanishes up to order p . Since u is compactly supported, one defines χ(k,ξ) = 1k=0 which
is in C∞(Ĝ). Applying the previous result it comes < u,ψ>=< u,χψ >= 0. Then using that u is linear, one
recovers :

< u,ϕ>=< u,χk=0

p∑
r=0

∂r
ξr ϕ(k,0)

ξr

r !
>=

p∑
r=0

< u,χk=0
ξr

r !
> ∂r

ξr ϕ(0),

which gives the definition of the constants (cr )r∈{0,...,p}.
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