General estimation results for tdVARMA array models

Guy Mélard 1 *

¹ECARES, Université libre de Bruxelles, and ITSE sprl, Belgium (gmelard@ulb.ac.be)

November 23-24, 2017 Lm^B laboratoire de mathématiques de Besançon Time Series Analysis

*Partly joint with Rajae Azrak [A] & with Abdelkamel Alj [At]> < => < => < => > == -> < <

Outline

- Introduction
 - Class of processes = tdVARMA⁽ⁿ⁾
 - Illustrations
 - Estimation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

- 1 Introduction
 - Class of processes = tdVARMA⁽ⁿ⁾
 - Illustrations
 - Estimation
 - 2 Asymptotic results
 - Main theorem
 - A fundamental theorem for the asymptotic theory
 - A theorem for reducing the assumption on moments
 - Convergence for the two covariance matrices V and W

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

- 1 Introduction
 - Class of processes = tdVARMA⁽ⁿ⁾
 - Illustrations
 - Estimation
 - 2 Asymptotic results
 - Main theorem
 - A fundamental theorem for the asymptotic theory
 - A theorem for reducing the assumption on moments
 - Convergence for the two covariance matrices V and W
- 3 Application to tdVARMA⁽ⁿ⁾ models
 - Proof of main theorem for tdVARMA⁽ⁿ⁾ models
 - Numerical and simulation strategies
 - Theoretical illustrations: tdVAR(1) and tdVMA(1)
 - Simulations

・ロト ・回 ト ・ヨト ・ヨト

Outline

- 1 Introduction
 - Class of processes = tdVARMA⁽ⁿ⁾
 - Illustrations
 - Estimation
 - 2 Asymptotic results
 - Main theorem
 - A fundamental theorem for the asymptotic theory
 - A theorem for reducing the assumption on moments
 - Convergence for the two covariance matrices V and W
- 3 Application to tdVARMA⁽ⁿ⁾ models
 - Proof of main theorem for tdVARMA⁽ⁿ⁾ models
 - Numerical and simulation strategies
 - Theoretical illustrations: tdVAR(1) and tdVMA(1)
 - Simulations

4 Conclusions and references

Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

Time-dependent VARMA processes [A/2012]

Definition of a *m*-dimensional tdVARMA⁽ⁿ⁾(*p*, *q*) (time dependent VARMA process) = triangular array of random vectors (r.v.) $(x_t^{(n)}, t \in \mathbb{N}), n$ = series length, solution of $x_t^{(n)} = \sum_{k=1}^p A_{tk}^{(n)} x_{t-k}^{(n)} + g_t^{(n)} \epsilon_t + \sum_{k=1}^q B_{tk}^{(n)} g_{t-k}^{(n)} \epsilon_{t-k}$, where

- {*ϵ_t*, *t* ∈ ℕ}: independent *m*-dimensional r.v., with 0 mean and covariance matrix Σ > 0 (nuisance parameter);
- the coefficients $A_{tk}^{(n)}$, $B_{tk}^{(n)}$, and $g_t^{(n)}$ are $m \times m$ matrices;
- their elements are deterministic functions of t (possibly n);
- $\Sigma_t^{(n)} = g_t^{(n)} \Sigma g_t^{(n)T}$: the error covariance matrix;
- Initial values $x_t^{(n)}, \epsilon_t^{(n)}, t < 1$, supposed to be equal to 0 ^(*).
- (*) Only for the asymptotic theory, not in practice

・ロット (母) ・ ヨ) ・ コ)

Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

tdVARMA⁽ⁿ⁾ parametric model

- The r × 1 vector θ contains all the parameters of interest to be estimated, those in the A⁽ⁿ⁾_{tk}(θ), B⁽ⁿ⁾_{tk}(θ), and g⁽ⁿ⁾_t(θ) (not Σ);
- Their elements are deterministic functions of these parameters, in addition to t (and possibly n);
- In the simple VARMA case, the elements are the parameters and $g_t^{(n)}(\theta)$ is absent;
- True value $\theta = \theta^0$, so $A_{tk}^{(n)}(\theta^0) = A_{tk}^{(n)}$, $B_{tk}^{(n)}(\theta^0) = B_{tk}^{(n)}$, and $g_t^{(n)}(\theta^0) = g_t^{(n)}$;
- Residuals:

$$e_t^{(n)}(\theta) = x_t^{(n)} - \sum_{k=1}^p A_{tk}^{(n)}(\theta) x_{t-k}^{(n)} - \sum_{k=1}^q B_{tk}^{(n)}(\theta) e_{t-k}^{(n)}(\theta)$$

• Hence $e_t^{(n)}(\theta^0) = g_t^{(n)}(\theta^0)\epsilon_t = g_t^{(n)}\epsilon_t$.

Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

tdARMA and tdVARMA evolution

- Start in 1973 ("FARIMAG" models) in M's thesis
- Starting general case in 1977
- A first talk in 1981 with computational results (WLS)
- Exact maximum likelihood (EML) [M1982]
- Azrak's thesis in 1991-1996: AR case with mixing condition
- Submission for ARMA in 1998 + EML algorithm [AM1998]
- Adding explicit dependency on *n* in 1999-2002
- Paper in SISP [AM2006] (without mixing)
- tdVARMA models in $A\ell$ j's thesis in 2008-2012
- Array CLT [A\ella AM2014] and tdVARMA EML [A\ella JM2016]
- Paper in SJS without ⁽ⁿ⁾ with Ley [AℓALM2017]
- Improvements for the ⁽ⁿ⁾ case 2011-2017 [AM20??a]
- Comparison with other approaches [AM20??b]

Introduction

Asymptotic results Application to tdVARMA⁽ⁿ⁾ models Conclusions and references Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

Example: univariate tdAR⁽ⁿ⁾(1) case

Example: $\theta = (A', A'', \eta)^T$ (with appropriate conditions)

$$\begin{aligned} \mathbf{x}_t^{(n)} &= \mathbf{A}_t^{(n)}(\theta) \mathbf{x}_{t-1}^{(n)} + \mathbf{g}_t^{(n)}(\theta) \epsilon_t \\ \mathbf{A}_t^{(n)}(\theta) &= \mathbf{A}' + \frac{1}{n-1} \left(t - \frac{n+1}{2} \right) \mathbf{A}'', \\ \mathbf{g}_t^{(n)}(\theta) &= \exp\left\{ \frac{\eta}{n-1} \left(t - \frac{n+1}{2} \right) \right\} \end{aligned}$$

Notes.

- Term (n+1)/2 to achieve orthogonality
- Factor 1/(n 1) or 1/n just for the asymptotics (to restrain the coefficient in a finite interval)
- Not a random sequence x_t but well random array $x_t^{(n)}$
- Similar parametrization for MA coefficients
- Alternative for $g_t(\theta)$: periodic 2-state function (g, 1/g)

Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

Figure: Artificial series (n = 128) produced using an tdAR⁽ⁿ⁾(1) process with $A'^0 = 0.15$, $A''^0 = 0.015$, $g_t(\theta^0) = \{6 * 2, 6 * 0.5, ...\}$

Guy Mélard

General estimation results for tdVARMA array models 7/41

Introduction

Asymptotic results Application to tdVARMA⁽ⁿ⁾ models Conclusions and references Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

Practical time series

- In [AM2006], series from Box & Jenkins (1970), [BJRL2015]
 - Series A (*n* = 197): tdARIMA^(*n*)(0,1,1)
 - Series B (n = 395): ARIMA(0,1,1) with td⁽ⁿ⁾ error variance
 - Series G airline series (n = 144): $\nabla \nabla_{12} \log x_t = (1 - \theta L)(1 - \Theta L^{12})e_t$, or 'airline model', where *L* is the lag operator.
- In [AℓJM2016]: monthly log returns of IBM stock prices and S&P 500 index (1926-1999) by tdVAR⁽ⁿ⁾(1) and tdVMA⁽ⁿ⁾(3) models
- In [AM20??c] we add:
 - dataset of indices for monthly added value of the Belgian industrial production by branches (26) of activity (1985-1994)

 dataset of 320 U.S. industrial production time series (January 1986- present)

Guy Mélard

General estimation results for tdVARMA array models 8/41

Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

Main results: Estimation method

• Quasi-maximum likelihood estimator (with $[\alpha_t^{(n)}(\theta)]$):

$$\hat{\theta}^{(n)} = \operatorname{argmin}_{\theta \in \mathbb{R}^{r}} \sum_{t=1}^{n} \left[\log |\Sigma_{t}^{(n)}(\theta)| + e_{t}^{(n)T}(\theta) \Sigma_{t}^{(n)-1}(\theta) e_{t}^{(n)}(\theta) \right]$$

- The quasi log-likelihood is computed by an algorithm due to [AℓJM2016], inspired by Jónasson & Ferrando (2008)
- In the univariate tdARMA case: [M1982] & [AM1998]
- The objective function is minimized by numerical optimization
- By-product of the optimization procedure: standard errors obtained by inverting the estimated information matrix (Hessian)

Introduction

Asymptotic results Application to tdVARMA^(*n*) models Conclusions and references Class of processes = tdVARMA⁽ⁿ⁾ Illustrations Estimation

Preliminaries: AR and MA representations

(AR representation)
$$\mathbf{x}_{t}^{(n)} = \mathbf{e}_{t}^{(n)}(\theta) + \sum_{k=1}^{t-1} \pi_{tk}^{(n)}(\theta) \mathbf{x}_{t-k}^{(n)}$$
 (1)

(MA representation) $x_t^{(n)} = e_t^{(n)}(\theta) + \sum_{k=1}^{\infty} \psi_{tk}^{(n)}(\theta) e_{t-k}^{(n)}(\theta)$ (2) where the coefficients $\pi_{tk}^{(n)}(\theta)$ and $\psi_{tk}^{(n)}(\theta)$ are obtained by double recurrence (w.r.t. *k* and *t*) (see [M1985])

To compute derivatives of $e_t^{(n)}(\theta)$ w.r.t. θ_i we start from (1) and then replace $x_{t-k}^{(n)}$ using (2) for $\theta = \theta^0$:

$$\frac{\partial \boldsymbol{e}_{t}^{(n)}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i}} = \sum_{k=1}^{t-1} \psi_{tik}^{(n)}(\boldsymbol{\theta}, \boldsymbol{\theta}^{0}) \boldsymbol{e}_{t-k}^{(n)}(\boldsymbol{\theta}^{0}), \qquad (3)$$
with $\psi_{tik}^{(n)}(\boldsymbol{\theta}, \boldsymbol{\theta}^{0}) = \sum_{u=1}^{k} \frac{\partial \pi_{tu}^{(n)}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i}} \psi_{t-u,k-u}^{(n)}(\boldsymbol{\theta}^{0})$

Let $\psi_{tik}^{(n)} = \psi_{tik}^{(n)}(\theta^0, \theta^0)$, $\kappa_t = 4$ th order moment of ϵ_t , $\kappa_t = E((\epsilon_t \epsilon_t^T) \otimes (\epsilon_t \epsilon_t^T))$, and denote the Frobenius norm $\|.\|_F$

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices *V* and *W*

Sketch of the assumptions

- $\mathsf{i} \ A_{ii}^{(n)}(\theta), B_{ij}^{(n)}(\theta) \text{ and } g_t^{(n)}(\theta) \text{ are of class } \mathbb{C}^3 \text{ w.r.t. } \theta \in \text{compact set } \Theta \supset \{\theta^0\};$
- ii Upper bounds like $\sum_{k=\nu}^{t-1} \|\psi_{itk}^{(n)}\|_F^2 < N_1 P(\nu) \Phi^{\nu-1}, \sum_{k=\nu}^{t-1} \|\psi_{itk}^{(n)}\|_F^4 < N_2 P(\nu) \Phi^{\nu-1}$, ... with positive constants $N_1, N_2, 0 < \Phi < 1$, a polynomial $P(\nu)$ (only needed for VARMA), and $\nu = 1, ..., t-1$;
- iii Existence of moments of order $4 + 2\delta$ for ϵ_t 's, $\delta > 0$, + bounds on the Frobenius norm of κ_t , & of $\Sigma_t^{(n)}$ and $\Sigma_t^{(n)-1}$, and their derivatives with respect to θ at θ^0 ;
- iv Existence of a strictly positive definite matrix $V = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} V_t^{(n)}$, where $V_{t,ii}^{(n)}$, i, j = 1, ..., m, is given by

$$\mathsf{E}_{\theta^{0}}\left(\frac{\partial \mathbf{e}_{t}^{(n)T}(\theta)}{\partial \theta_{i}}\boldsymbol{\Sigma}_{t}^{(n)-1}(\theta)\frac{\partial \mathbf{e}_{t}^{(n)}(\theta)}{\partial \theta_{j}}\right) + \frac{1}{2}\operatorname{tr}\left[\boldsymbol{\Sigma}_{t}^{(n)-1}(\theta)\frac{\partial \boldsymbol{\Sigma}_{t}^{(n)}(\theta)}{\partial \theta_{i}}\boldsymbol{\Sigma}_{t}^{(n)-1}(\theta)\frac{\partial \boldsymbol{\Sigma}_{t}^{(n)}(\theta)}{\partial \theta_{j}}\right]_{\theta=\theta^{0}}$$

- v A similar existence condition for a positive definite matrix W (outer product of gradient), to be defined, which includes 4th order moment κ_t ;
- vi That for i = 1, ..., m

$$\frac{1}{n^2} \sum_{d=1}^{n-1} \sum_{k=1}^{n-d} \sum_{k=1}^{t-1} \|g_{t-k}^{(n)}\|_F^2 \|\psi_{tik}^{(n)}\|_F \|\psi_{t+d,i,k+d}^{(n)}\|_F = O\left(\frac{1}{n}\right)$$
 ULB

Guy Mélard

General estimation results for tdVARMA array models 11/41

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices *V* and *W*

Main theorem for tdVARMA⁽ⁿ⁾ models

Theorem (AℓAM20??)

Under the (full) assumptions,

- there exists a sequence of estimators $\hat{\theta}^{(n)}$ such that plim $\hat{\theta}^{(n)} = \theta^0$ when $n \to \infty$,
- furthermore

$$n^{1/2}(\widehat{\theta}^{(n)} - \theta^0) \stackrel{L}{\rightarrow} \mathcal{N}(0, V^{-1}WV^{-1})$$
 when $n \to \infty$.

Remarks.

- 1. For a Gaussian process: V = W; otherwise the sandwich formula;
- 2. In the univariate ARMA case, see [AM2006];
- 3. If no $^{(n)}$, plim replaced by almost sure convergence, see [A ℓ ALM2017];
- 4. More on the proof later but parallel to [AℓALM2017] and its Technical Appendix (TA) is used.

Guy Mélard

General estimation results for tdVARMA array models 12/41

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

New theoretical results [AM20??a]

- No problem if the coefficients don't depend on n, see [AM2006] (tdARMA), [AℓALM2017] (tdVARMA)
- A fundamental theorem for the asymptotic theory in the array context, for the general case
- A theorem for reducing the assumption on moments from 8 to 4 + 2δ, δ > 0
- Two theorems to establish convergence for the two covariance matrices V and W involved in the sandwich formula
- Plus Th2.4 = Lemma 1' of [AM2016] = weak version of a result by Hamdoune (1995) - not detailed here

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

A fundamental theorem for the asymptotic theory

- Purpose: provide an alternative to Klimko-Nelson (1978) theorems for the case where the coefficients depend on n
- Indeed, almost sure convergence is to be replaced by convergence in probability
- We give a direct proof of Theorem 1' in [AM2006]
- This is also proved for vectors, not only scalar processes
- Even with a slight improvement by using an upper bound on $E_{\theta^0}(|\partial \alpha_t^{(n)}(\theta)/\partial \theta_i|^{2+\delta})$, where $\delta > 0$, θ^0 is the true value of the parameter θ and $\alpha_t^{(n)}(\theta)$ it the *t*-th term of the Gaussian log-likelihood
- This instead of an upper bound on a 4-th power
- The consistency theorem is as follows and there is a further theorem on asymptotic normality

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Theorem (AM20??a Th2.1)

Improvement on [AM2006,Theorem 1'] Suppose there exist $C_1 > 0$, $C_2 > 0$, $\delta > 0$, such that for all t = 1, ..., n, and uniformly in n:

$$\begin{split} \mathbf{H}_{1.1} & E_{\theta^0} \left(\left| \frac{\partial \alpha_t^{(n)}(\theta)}{\partial \theta_i} \right|^{2+\delta} \right) \leq C_1, i = 1, ..., m; \\ \mathbf{H}_{1.2} & E_{\theta^0} \left(\left| \frac{\partial^2 \alpha_t^{(n)}(\theta)}{\partial \theta_i \partial \theta_j} - E_{\theta} \left(\frac{\partial^2 \alpha_t^{(n)}(\theta)}{\partial \theta_i \partial \theta_j} \right| F_{t-1}^{(n)} \right) \right|^2 \right) \leq C_2, i, j = 1, ..., m. \end{split}$$

Suppose further that

 $\begin{aligned} \mathbf{H}_{1.3} \quad & \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} E_{\theta^0} \left\{ \left. \frac{\partial^2 \alpha_t^{(n)}(\theta)}{\partial \theta_i \partial \theta_j} \right| F_{t-1}^{(n)} \right\} = V_{ij} \text{ for } i, j = 1, ..., m, \text{ where} \\ V = (V_{ij})_{1 \le i, j \le m} \text{ is a strictly positive definite matrix of constants;} \\ \mathbf{H}_{1.4} \quad & \lim_{n \to \infty} \sup_{\Delta \downarrow 0} (n\Delta)^{-1} \left| \sum_{t=1}^{n} \left(\left\{ \frac{\partial^2 \alpha_t^{(n)}(\theta)}{\partial \theta_i \partial \theta_j} \right\}_{\theta = \theta_{ij}^*} - \left\{ \frac{\partial^2 \alpha_t^{(n)}(\theta)}{\partial \theta_i \partial \theta_j} \right\}_{\theta = \theta^0} \right) \right| < \\ \infty, \text{ for } i, j = 1, ..., m, \text{ where } \theta_{ij}^* \text{ is a point of the straight line joining } \theta^0 \text{ to} \\ every \, \theta, \text{ such that } \|\theta - \theta^0\| < \Delta, 0 < \Delta, \text{ where } \|.\| \text{ is the Euclidean norm.} \end{aligned}$

Then there exists a sequence of estimators $\hat{\theta}^{(n)}$ such that plim $\hat{\theta}^{(n)} = \theta^0$ when $n \to \infty$.

LB

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Theorem (AM20??a Th2.2)

Improvement on Theorem 1'. of AM2006

If the assumptions $H_{1.1} - H_{1.4}$ of Theorem 1' are satisfied, as well as $H_{1.5}$ and $H_{1.6}$,

$$\begin{array}{l} \mathbf{H}_{1.5} \quad \text{for } i, j = 1, ..., m \\ \underset{n \to \infty}{\text{plim}} \frac{1}{n} \sum_{t=1}^{n} \left\{ E_{\theta^{0}} \left(\left. \frac{\partial \alpha_{t}^{(n)}(\theta)}{\partial \theta_{i}} \frac{\partial \alpha_{t}^{(n)}(\theta)}{\partial \theta_{j}} \right| F_{t-1} \right) - E_{\theta^{0}} \left(\frac{\partial \alpha_{t}^{(n)}(\theta)}{\partial \theta_{i}} \frac{\partial \alpha_{t}^{(n)}(\theta)}{\partial \theta_{j}} \right) \right\} = 0, \end{array}$$

 $H_{1.6}$ there exists a positive definite matrix $W = (W_{ij})_{1 \le i,j \le m}$ defined by

$$W_{ij} = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \mathcal{E}_{\theta^0} \left(\frac{\partial \alpha_t^{(n)}(\theta)}{\partial \theta_i} \frac{\partial \alpha_t^{(n)}(\theta)}{\partial \theta_j} \right),$$

then

$$n^{1/2}(\widehat{\theta}^{(n)} - \theta^0) \xrightarrow{L} \mathcal{N}(0, V^{-1}WV^{-1}) \text{ when } n \to \infty.$$

N.B. W is defined here

Sketch of proof of Th2.1 and Th2.2.

It is adapted from the Lehmann and Casella (1998, Section 6.5) proof in the i.i.d. case + weak law of large numbers for martingale arrays

+ central limit theorem theorem for martingale arrays with a Lyapunov condition $[A\ell AM2014]$

+ Cramér-Wold device

LB

Main theorem A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

A theorem for reducing the assumption on moments

- In [AM2006] we have assumed existence of 8-th moments for the errors
- We have kept that assumption in [A/ALM2017]
- In [A\ella ALM2017] we make use of a Technical Appendix Lemma 4.11 where that assumption is essential
- However, we are now able to reduce the moment assumption from 8 to $4 + 2\delta$, $\delta > 0$
- This is expressed here in a vector context, e.g. a matrix $\Sigma_t^{(n)}$ instead of $\sigma_t^{(n)2}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main theorem

A fundamental theorem for the asymptotic theory

A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Theorem (AM20??a Th2.3)

Assume that $\alpha_t^{(n)}(\theta)$ has the form $\alpha_t^{(n)}(\theta) = \{x_t^{(n)} - E_{\theta}(x^{(n)}|F_{t-1}^{(n)})\}^T \Sigma_t^{(n)-1}(\theta) \{x_t^{(n)} - E_{\theta}(x^{(n)}|F_{t-1}^{(n)})\}, \text{ for some invertible}$ matrix $\Sigma_t^{(n)}(\theta)$. Denote $e_t^{(n)} = x_t^{(n)} - E_{\theta}(x^{(n)}|F_{t-1}^{(n)})$ and $\|.\|_F$, the Frobenius norm of a matrix. Suppose that for some $\delta > 0$ we have for all t and n $\left\| \frac{\partial \Sigma_t^{(n)-1}(\theta)}{\partial \theta_i} \right\|_{\theta=\theta^0} \right\|_F^2 \le K_4, \qquad \left\| \Sigma_t^{(n)-1}(\theta^0) \right\|_F^2 \le m_2,$ $E_{\theta^0}\left(\left| e_t^{(n)T}(\theta) e_t^{(n)}(\theta) \right|^{2+\delta} \right) \le P_1, \qquad E_{\theta^0}\left(\left| \frac{\partial e_t^{(n)T}(\theta)}{\partial \theta_i} \frac{\partial e_t^{(n)}(\theta)}{\partial \theta_i} \right|^{1+\delta/2} \right) \le P_2,$

i = 1, ..., m, for some constants K_4 , m_2 , P_1 , and P_2 , and that $e_t^{(n)}(\theta^0)$ and $\partial e_t^{(n)}(\theta) / \partial \theta_i|_{\theta=\theta^0}$ are independent. Then, the assumption $\mathbf{H}_{1,1}$ is satisfied for that δ , which means that there exists a positive constant C_1 such that for all t and all n, and i = 1, ..., m

$$\mathbf{E}_{\theta^0}\left\{\left|\frac{\partial \alpha_t^{(n)}(heta)}{\partial heta_i}
ight|^{2+\delta}
ight\} \leq C_1.$$

LΒ

Main theorem A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Convergence for the two covariance matrices V & W

• We can write:

$$V = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} V_t^{(n)}, \quad W = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} W_t^{(n)}$$

- We can compute numerically $V_t^{(n)}$ and $W_t^{(n)}$ (depending on κ_t) for simple models
- Proving existence of the limits V and W is not that easy
- One way is to use the Cesàro theorem (that if a sequence u_n converges to U, then the Cesàro means $U_n = \frac{1}{n} \sum_{i=1}^n u_i$ converges to U)
- This is not always possible, even in some simple examples of [AM2006]
- The following two theorems can thus help us

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Theorem (AM20??a Th2.5)

Let $\{u_t^{(n)}, t = 1, ..., n\}$ and $\{v_t^{(n)}, t = 1, ..., n\}$ be two triangular arrays of real numbers such that

• $(1/n) \sum_{t=1}^{n} v_t^{(n)}$ absolutely converges when $n \to \infty$ and $\lim_{n \to \infty} (1/n) \sum_{t=1}^{n} v_t^{(n)} = L$, and that

•
$$\{u_t^{(n)}\} \rightarrow \mathbb{C} > 0$$
 when $t \rightarrow \infty$, hence $n \rightarrow \infty$.

Then $(1/n) \sum_{t=1}^{n} u_t^{(n)} v_t^{(n)}$ converges when $n \to \infty$ and its limit is LC.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Main theorem A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Example (AM2006, Example 3)

tdAR⁽ⁿ⁾(1) model defined by $x_t^{(n)} = A_t^{(n)}(\theta)x_{t-1}^{(n)} + g_t^{(n)}\epsilon_t$, with independent ϵ_t 's with 0 mean and finite variance σ^2 , and $g_t^{(n)} > 0$, assumed not to depend on the parameters θ , for simplicity. We have to show existence of

$$V_t = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n V_t^{(n)} \text{ where } V_t^{(n)} = \left\{ \frac{\partial A_t^{(n)}(\theta)}{\partial \theta_i} \frac{\partial A_t^{(n)}(\theta)}{\partial \theta_j} \right\}_{\theta = \theta^0} E(x_{t-1}^{(n)2}),$$

i, *j* = 1, ..., *m*, see [AℓALM2017]. Assume $A_t^{(n)}(\theta^0) = A^0$ with $|A^0| < 1$. Then (see [AM2006]) $u_t^n = E(x_{t-1}^{(n)2})$ is convergent with limit say C > 0. This is true in particular if $g_t^{(n)} = \exp\{\frac{t-(n+1)/2}{n-1}\}$. Therefore, if $\frac{1}{n}\sum_{t=1}^n \left\{\frac{\partial A_t^{(n)}(\theta)}{\partial \theta_i}\frac{\partial A_t^{(n)}(\theta)}{\partial \theta_j}\right\}_{\theta=\theta^0}$ is absolutely convergent, *i*, *j* = 1, ..., *m*, and converges to a limit L_{ij} , then *V* does exists by application of [AM20??a Theorem 2.5], and its element V_{ij} is equal to CL_{ij} . This is the case, in particular, if (see [AM2006]), $A_t^{(n)}(\theta) = \theta_1 + \theta_2 \frac{t-(n+1)/2}{n-1}$ at least when $\theta_1^0 = A^0$ and $\theta_2^0 = 0$.

・ロト ・ 日 ・ ・ ヨ ・ ・

LB

Main theorem

A fundamental theorem for the asymptotic theory A theorem for reducing the assumption on moments Convergence for the two covariance matrices V and W

Theorem (AM20??a Th2.6)

Consider $\lim_{n\to\infty} (1/n) \sum_{t=1}^{n} v_t^{(n)}$. Assume that there exists a Riemann-integrable function V(x) defined on [0, 1] such that $V(t/n) = v_t^{(n)}$. Then $\lim_{n\to\infty} (1/n) \sum_{t=1}^{n} v_t^{(n)} = \int_0^1 V(x) dx$

Example (AM2006, Examples 2, 3, 4)

Let $g_{t,\theta}^{(n)} = \exp\{\theta(t - (n+1)/2)/(n-1)\}$ for $\theta \ge 0$, t = 1, ..., n (see [AM2006, Examples 2, 3 and 4]). Suppose that, for $\xi \ge 0$ and $\eta > 0$: $v_t^{(n)} = g_{t,\xi}^{(n)}/(1 + g_{t,\eta}^{(n)})^2$. Using a variation of Th2.6 (where (t - (n+1)/2)/(n-1) is replaced by x), we have: $\lim_{n\to\infty} (1/n) \sum_{t=1}^n v_t^{(n)} = \lim_{n\to\infty} \frac{n-1}{n} \int_{-0.5}^{0.5} \frac{e^{\xi x}}{(1+e^{\eta x})^2} dx$, and a simple primitive for $\xi = 0$ is

$$\mathbf{x} + \frac{1}{\eta} \left\{ \frac{1}{1 + e^{\eta \mathbf{x}}} - \log(1 + e^{\eta \mathbf{x}}) \right\} + C.$$

For $\xi > 0$, it is based on the hypergeometric function, see Abramowitz and Stegun (1965, Chapter 15) or Erdélyi (1953)

LB

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Proof of main theorem, tdVARMA⁽ⁿ⁾ [AℓAM20??]

- We use most lemmas in [A\langle ALM2017]'s Technical Appendix = TA, easily generalized in an array context, except TA Lemma 4.11 replaced by [AM20??a, Th2.3]
- Like in [A\ell(ALM2017]], we have to use the (full) assumptions to check the conditions of [AM20??a, Th2.1 and 2.2] for all *t* and uniformly in *n* (except H_{1.6} which is assumed)
- **H**_{1.1} = bound of $E_{\theta^0}(|\partial \alpha_t^{(n)}(\theta) / \partial \theta_i|^{2+\delta})$: consequence of [AM20??a, Th2.3]
- **H**_{1.2} like in [AℓALM2017]
- H_{1.3} (existence of V as plim): based on [AM20??a, Th2.4]
- H_{1.4} (3rd order terms): weak law of large numbers for martingale arrays + weak law of large numbers for L₂-mixingale arrays of Meng & Lin (2009)
- H_{1.5} (expectation vs conditional exp.): [AM20??a, Th2.4]

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Numerical and simulation strategies (1)

- Like Jónasson (2008) VARMA estimation Matlab program, AJM in [AℓJM] makes use of Optimization Toolbox fminunc
- Penalties are applied for each evaluation of the log-likelihood where the conditions are not fulfilled
- AJM used by [A ℓ ALM2017], only in the Gaussian case
- It allows computation of the Hessian *V* at the optimum, not the outer product of gradient *W*
- Done by numerical divided differences \Rightarrow limited accuracy
- AJM2 is a new version in development, aimed at, in particular but not only, adding the evaluation of *W*, in addition to the Hessian *V*

• Hence standard errors based on either $\frac{1}{n}V^{-1}$ or sandwich ULB formula $\frac{1}{n}V^{-1}WV^{-1}$

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Numerical and simulation strategies (2)

New program AJM2 aimed at

- adding the evaluation of *W*, in addition to the Hessian *V*, hence also the sandwich formula
- *W* evaluated using estimates of $\partial \alpha_t^{(n)}(\theta) / \partial \theta_i$, for each *t*, also with limited accuracy
- adding (improved) DERIVEST to provide better accuracy
- simulation procedure changed to permit verification (now inverse of residual computation), plus support of other laws than normal
 - Laplace: normal deviate \times Exp(1) deviate
 - Student with ν df: normal deviate / deviate of sqrt of χ^2_ν/ν

Note. **DERIVEST**: Found in Aït-Sahalia (2015) Matlab library implementing closed-form MLE for diffusions, due to D'Errico: hessian for V, jacobianest for W but hessian & jacobianest had to be modified (either bug, or code unsuited in the case of penalties)

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Theoretical illustrations

- Everything is based on MA representations
- Bivariate (r = 2) tdVAR(1) and tdVMA(1) are more or less easily handled with linear or exponential functions of time for the coefficients, and $g_t^{(n)}$ exponential
- Cascade of specifications in order to illustrate the assumptions using analytical expressions with a small number of parameters
- Here we go straight to m = 3 (1 parameter of each type)
- First compute $\psi_{tik}^{(n)}$ in order to check the bound $\sum_{k=\nu}^{t-1} \|\psi_{tik}^{(n)}\|_F^2 < N_1 P(\nu) \Phi^{\nu-1}$, with $\Phi < 1$ and $P(\nu)$, a polynomial
- Then, investigate the existence of V (2 types of terms)
- Finally, prove the $O(\frac{1}{n})$ triple sum property

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a tdVAR⁽ⁿ⁾(1) model (1)

Bivariate tdVAR⁽ⁿ⁾(1) model [AℓAM20??]:

$$\begin{aligned} \mathbf{x}_{t}^{(n)} &= \begin{pmatrix} \mathbf{A}_{11}' & \mathbf{A}_{12}'^{0} \\ \mathbf{0} & \mathbf{A}_{22}'' \mathbf{L}(t, n) \end{pmatrix} \mathbf{x}_{t-1}^{(n)} + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{e}^{\eta_{22} \mathbf{L}(t, n)} \end{pmatrix} \epsilon_{t}, \\ &= \mathbf{A}_{t}^{(n)}(\theta) &= \mathbf{g}_{t}^{(n)}(\theta) \end{aligned}$$

- where $L(t, n) = \frac{t \frac{n+1}{2}}{n-1}$, and A'_{12}^{0} is fixed
- $E(e_t^{(n)}(\theta^0)e_t^{(n)T}(\theta^0)) = g_t^{(n)}\Sigma g_t^{(n)T} =_{def} \Sigma_t$

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a $tdVAR^{(n)}(1)$ model (2)

Checking (ii). tdAR coefficient:

$$A_t^{(n)}(heta) = \left(egin{array}{cc} A'_{11} & A'_{12}' \ 0 & A''_{22} L(t,n) \end{array}
ight).$$

Let us define $A_t^{(n)(k-1)} = \prod_{l=1}^{k-1} A_{t-l}^{(n)}, k > 1$, and $A_t^{(n)(0)} = I_r$. It can be shown that $\|\psi_{t2k}^{(n)}\|_F^2 = [L(t, n)A_{t,22}^{(n)(k-1)}]^2$. But $L(t, n) \le \frac{1}{2}$ and $A_{t,22}^{(n)(k-1)} = (A_{22}^{''0})^{k-1} \prod_{l=1}^{k-1} L(t-l, n)$. Assume $|A_{11}^{(n)}| < 1$, $|A_{22}^{''0}| < 2$. Let $\sqrt{\Phi} = \max\{|A_{11}^{'0}|, \frac{1}{2}|A_{22}^{''0}|\} < 1$. Hence $\sum_{k=\nu}^{t-1} \|\psi_{t2k}^{(n)}\|_F^2 \le \sum_{k=\nu}^{t-1} \Phi^{k-1} < N_1 \Phi^{\nu-1}$, with $N_1 = \frac{1}{1-\Phi}$. More delicate for $\|\psi_{t1k}^{(n)}\|_F^2 = [(A_{t,11}^{(n)(k-1)})^2 + (A_{t,12}^{(n)(k-1)})^2]$. $\sum_{k=\nu}^{t-1} \|\psi_{t1k}^{(n)}\|_F^2 < N_1' \Phi^{\nu-1} P_2(\nu), P_2(\nu)$: polynomial of degree 2.

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a $tdVAR^{(n)}(1)$ model (3)

Checking (iv). Now existence of $V_{ij} = \lim_{n\to\infty} \frac{1}{n} \sum_{t=1}^{n} V_{t,ij}^{(n)}$ 2 types of terms. For i, j = 1, 2, only term 1 equal to

$$V_{t,ij}^{(n)} = \left\{ \frac{\partial A_t^{(n)}(\theta)}{\partial \theta_j} \frac{\partial A_t^{(n)}(\theta)}{\partial \theta_j} \right\}_{\theta = \theta^0} \Sigma_t^{(n)-1} E(x_{t-1}^{(n)} x_{t-1}^{(n)T}).$$
(1)

Difficult case i = j = 2. Suppose $\eta_{22}^0 > 0$. Product of factors 1 & 2 of (1) has element (2,2) $v_t^{(n)} = L^2(t, n) \exp(-2\eta_{22}^0 L(t, n))$ such that $(1/n) \sum_{t=1}^n v_t^{(n)}$ converges to a limit when $n \to \infty$. Last factor of (1) $u_t^{(n)}$ can be shown to converge to a limit > 0. Hence application of Th2.5 of [AM20??a] implies existence of V_{22} . Similar for other elements. Introduction Asymptotic results Application to tdVARMA⁽ⁿ⁾ models

Conclusions and references

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a $tdVAR^{(n)}(1)$ model (4)

$$V_{t,33}^{(n)} = \frac{1}{2} \operatorname{tr} \left[\Sigma_t^{(n)-1}(\theta) \frac{\partial \Sigma_t^{(n)}(\theta)}{\partial \eta_{22}} \Sigma_t^{(n)-1}(\theta) \frac{\partial \Sigma_t^{(n)}(\theta)}{\partial \eta_{22}} \right]_{\eta_{22} = \eta_{22}^0}$$

But

$$\Sigma_t^{(n)-1}(\theta)\frac{\partial \Sigma_t^{(n)}(\theta)}{\partial \eta_{22}} = \begin{pmatrix} 0 & 0\\ 0 & 2L(t,n) \end{pmatrix}.$$

Hence

$$V_{t,33}^{(n)} = 2 \frac{1}{(n-1)^2} \left(t - \frac{n+1}{2}\right)^2,$$

and, using the variance of a discrete uniform distribution on $\{1, 2, ..., n\}$ we obtain $V_{33} = \lim_{n \to \infty} (n+1)/(6(n-1)) = 1/6$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a $tdVAR^{(n)}(1)$ model (5)

Checking (vi). Finally, there remains to check that for i, j = 1, 2

$$\frac{1}{n^2} \sum_{d=1}^{n-1} \sum_{t=1}^{n-d} \sum_{k=1}^{t-1} \left\| g_{t-k}^{(n)} \right\|_F^2 \left\| \psi_{tik}^{(n)} \right\|_F \left\| \psi_{t+d,j,k+d}^{(n)} \right\|_F = O\left(\frac{1}{n}\right).$$

Take i = j = 2. First $\|g_{t-k}^{(n)}\|_F^2 = 1 + e^{2\eta_{22}^0 L(t-k,n)} < 1 + e^{\eta_{22}^0}$. Upper bound of $\|\psi_{t2k}^{(n)}\|_F$: Φ^{k-1} . Thus for $\|\psi_{t+d,2,k+d}^{(n)}\|_F$: Φ^{k+d-1} . The sum for k = 1, ..., t - 1 of the product $\Phi^{k-1}\Phi^{k+d-1}$ is bounded by Φ^{d-2} times a constant $1/(1 - \Phi^2)$. By exchanging the two outside sums, we have to find an upper bound of $\sum_{t=1}^{n-1} \sum_{d=1}^{n-t} \Phi^{d-1}$: $\Phi^{-1} \times$ the sum for t = 1, ..., n-1 of a constant $1/(1 - \Phi)$. Dividing by n^2 we have well O(1/n). The case i = j = 1 is more complex.

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a $tdVMA^{(n)}(1)$ model (1)

Bivariate tdVMA⁽ⁿ⁾(1) model [AℓAM20??]:

- where $L(t, n) = \frac{t \frac{n+1}{2}}{n-1}$, and $B_{22}^{\prime 0}$ is fixed
- with conditions (to be given) on the true values B⁰₁₁, B⁰₂₂ and η⁰₂₂ of θ = (B⁰₁₁, B⁰₂₂, η₂₂)
 Σ = (σ₁₁ σ₁₂ σ₂₁ σ₂₂)
 E(e⁽ⁿ⁾_t(θ⁰)e^{(n)T}_t(θ⁰)) = g⁽ⁿ⁾_tΣg^{(n)T}_t = def Σ_t

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Application to a tdVMA⁽ⁿ⁾(1) model (2)

Checking (ii). Exponential functions of time for the coefficients are much easier for analytical results on VMA processes. $(\psi_{t1k}^{(n)})_{11} = (-1)^k (B_{11}^{\prime 0})^{k-1},$ $(\psi_{t2k}^{(n)})_{22} = (-1)^k L(t-k+1,n) (B_{22}^{\prime 0})^k e^{\left(B_{22}^{\prime \prime 0} \sum_{\ell=0}^{k-1} L(t-\ell,n)\right)},$ and all other elements are zero. We assume that the true value of θ satisfies $|B_{11}^{\prime 0}| < 1$, and $|B_{22}^{\prime 0}|e^{B_{22}^{\prime \prime 0}/2} < 1.$ We denote $\sqrt{\Phi} = \max\{|B_{11}^{\prime 0}|, |B_{22}^{\prime 0}|e^{B_{22}^{\prime \prime 0}/2}\} < 1.$ Since $|L(t-\ell,n)| \leq \frac{1}{2}, \|\psi_{tik}^{(n)}\|_{F}^{2} < \Phi^{k}, i = 1, 2.$ Note.

In practice, we don't assume zero initial values for the process, but well it is invertible before time $1 \Rightarrow |B_{22}^{\prime 0}|e^{B_{22}^{\prime \prime 0}L(0,n)} < 1$.

・ロト ・回 ト ・ヨト ・ヨト

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies **Theoretical illustrations: tdVAR(1) and tdVMA(1)** Simulations

Application to a $tdVMA^{(n)}(1)$ model (3)

Checking (iv). Existence of V.

For element (3, 3), slightly more complex here because $g_t^{(n)}$ is non diagonal. We need to use Th2.6 of [AM20??a] and evaluate an integral in order to obtain the value of V_{33} . Also for that reason, the treatment of V_{ij} , i, j = 1, 2 is more complex but Th2.5 of [AM20??a] can again be applied.

Checking (vi). Triple sum is $O(\frac{1}{n})$. Again $||g_{t-k}^{(n)}||_F^2$ is bounded by a constant and an upper bound of $||\psi_{tik}^{(n)}||_F$ is Φ^{k-1} times a constant, i = 1, 2. Then we proceed like in the VAR(1) case.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Common features of tdVAR(1) & tdVMA(1) simulations

- We can obtain exact expressions for the terms $V_t^{(n)}$
- And also for $W_t^{(n)}$ for standard multivariate distributions (normal, Laplace, Student)
- We are able to compare the "theoretical" values of V (and W) to the empirical values through simulation
- tdVAR(1): $A_t^{(n)}(\theta) = \begin{pmatrix} 0.8 & 0.5 \\ 0 & 0.75L(t, n) \end{pmatrix}$,

$$\boldsymbol{g}_t^{(n)} = \begin{pmatrix} 1 & 0 \\ 0 & e^{\boldsymbol{0.7L(t,n)}} \end{pmatrix}, \quad \boldsymbol{\Sigma} = \boldsymbol{I}_2$$

• tdVMA(1): $B_t^{(n)}(\theta) = \begin{pmatrix} 0.8 & 0 \\ 0 & 0.25 + 0.4L(t, n) \end{pmatrix}$,

$$g_t^{(n)} = \begin{pmatrix} 1 & -0.6 \\ -0.6 & e^{0.7L(t,n)} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 2 & 0.8 \\ 0.8 & 1 \end{pmatrix}$$

1000 simulations of series of length 100 -> < @> < => < =>

Guy Mélard

General estimation results for tdVARMA array models 35/41

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Simulations for a tdVAR(1) model - normal errors

Table: Estimation results for the tdVAR^(*n*)(1) model, with Gaussian errors. "'avg": average (across the 1000 simulations), "'std err": standard error of the parameter estimates, "'std dev": standard deviation (across the 1000 simulations), "'theor": theoretical (based on true value), "'% rej. H_0 : par.=true val.": percentages of simulations rejecting the hypothesis $H_0(\theta_i = \theta_i^0)$ at 5%.

Parameter θ_i	A' ₁₁	A''_22	η_{22}
True value θ_i^0	0.8000	0.7500	0.7000
Avg estimates	0.7878	0.7329	0.6793
Avg std err (based on V)	0.0527	0.3391	0.2485
Std dev estimates	0.0548	0.3456	0.2606
Theor. std err	0.0530	0.3363	0.2425
% rej. <i>H</i> ₀ : par.=true val.	5.7	5.6	6.0

Guy Mélard

General estimation results for tdVARMA array models 36/41

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Simulations for a tdVAR(1) model - Laplace errors

Table: Estimation results for the tdVAR^(*n*)(1) model, with Laplace errors. "'avg": average (across the 1000 simulations), "'std err": standard error of the parameter estimates, "'std dev": standard deviation (across the 1000 simulations), "'theor": theoretical (based on true value), "'% rej. H_0 : par.=true val.": percentages of simulations rejecting the hypothesis $H_0(\theta_i = \theta_i^0)$ at 5%.

Parameter θ_i	A' ₁₁	A''_22	η_{22}	
True value θ_i^0	0.8000	0.7500	0.7000	
Avg estimates	0.7904	0.7238	0.6846	
Avg std err (based on V)	0.0522	0.3425	0.2514	
Avg std err (based on $V^{-1}WV^{-1}$)	0.0516	0.3136	0.3627	
Std dev estimates	0.0582	0.3374	0.3794	
Theor. std err	0.0530	0.3363	0.3834	ULI
% rej. <i>H</i> ₀ : par.=true val.	8.3	8.3	6,8	- na

Guy Mélard

General estimation results for tdVARMA array models 37/41

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Simulations for a tdVMA(1) model - normal errors

Table: Estimation results for the tdVMA^(*n*)(1) model, with normal errors. "'avg": average (across the 1000 simulations), "'std err": standard error of the parameter estimates, "'std dev": standard deviation (across the 1000 simulations), "'theor": theoretical (based on true value), "'% rej. H_0 : par.=true val.": percentages of simulations rejecting the hypothesis $H_0(\theta_i = \theta_i^0)$ at 5%.

Parameter θ_i	B'_{11}	B_{22}''	η_{22}	
True value θ_i^0	0.8000	0.4000	0.7000	
Avg estimates	0.8026	0.3994	0.7117	
Avg std err (based on V)	0.0437	0.2239	0.1525	
Avg std err (based on $V^{-1}WV^{-1}$)	0.0516	0.3136	0.3627	
Std dev estimates	0.0461	0.2299	0.1605	
Theor. std err	0.0423	0.2223	0.1450	UL
% rej. <i>H</i> ₀ : par.=true val.	7.0	6.6	6,8	- うo

Guy Mélard

General estimation results for tdVARMA array models 38/41

Proof of main theorem for tdVARMA⁽ⁿ⁾ models Numerical and simulation strategies Theoretical illustrations: tdVAR(1) and tdVMA(1) Simulations

Simulations for a tdVMA(1) model - Student 5 errors

Table: Estimation results for the tdVMA^(*n*)(1) model, with Student errors with 5 d.f.. "'avg"': average (across the 1000 simulations), "'std err"': standard error of the parameter estimates, "'std dev"': standard deviation (across the 1000 simulations), "'theor"': theoretical (based on true value), "'% rej. H_0 : par.=true val."': % of simulations rejecting the hypothesis $H_0(\theta_i = \theta_i^0)$ at 5%.

Parameter θ_i	B'_{11}	B_{22}''	η ₂₂	
True value θ_i^0	0.8000	0.4000	0.7000	
Avg estimates	0.8028	0.3946	0.7061	
Avg std err (based on V)	0.0442	0.2252	0.1530	
Avg std err (based on $V^{-1}WV^{-1}$)	0.0455	0.2153	0.2475	
Avg std err (same, DERIVEST)	0.0456	0.2154	0.2475	
Std dev estimates	0.0460	0.2319	0.2389	ULI
% rej. <i>H</i> ₀ : par.=true val.	6.5	8.8	4,5	[າ <

Guy Mélard

General estimation results for tdVARMA array models 39/41

 Introduction
 Proof of main theorem for tdVARMA⁽ⁿ⁾ models

 Asymptotic results
 Numerical and simulation strategies

 Application to tdVARMA⁽ⁿ⁾ models
 Theoretical illustrations: tdVAR(1) and tdVMA(1)

 Conclusions and references
 Simulations

Figure: Histograms of estimates for the 3 parameters of the tdVMA model with 5 d.f. Student errors, compared with normal density

Guy Mélard

General estimation results for tdVARMA array models 40/41

Conclusions References Complements

Conclusions

This presentation is mainly based on four papers

- Paper 1 [AℓAM20??]: How to do the asymptotics of tdVARMA⁽ⁿ⁾ models and apply it to simple models, like tdVAR(1) and tdVMA(1) models?
- Paper 2 [AM20??a]: How to improve the fundamental justifications of [AM2006] in the array case and solve the problems of their use (moments, existence of the information matrix
- Paper 3 [A\(\ell ALM2017]\) How to use its Technical Appendix?
- Paper 4 [A\(\earlight A JM2016] How to improve its AJM program?

We hope to have answered all these questions.

Conclusions References Complements

Thank you. Comments are welcome References follow

Guy Mélard General estimation results for tdVARMA array models 42/41

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusions References Complements

Some references I

Abramowitz, M. & Stegun I. A. (1965) *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, Dover Publications, New York.

Aït-Sahalia, Y. (2015) User's guide for the Matlab library implementing closed form MLE for diffusions, Dept of Economics & Bendheim Center for Finance, Princeton University.

[A ℓ 2012] Alj., A. (2012). Contribution to the estimation of VARMA models with time-dependent coefficients, Ph.D. Thesis, Université libre de Bruxelles.

[AℓALM2017] Alj, A., Azrak, R., Ley, C. & Mélard, G. (2017). Asymptotic properties of QML estimators for VARMA models with time-dependent coefficients, *Scandinavian Journal of Statistics*, DOI:

10.1111/sjos.12268.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusions References Complements

Some references II

[Alam2014] Ali, A., Azrak, R. and Mélard, G. (2014) On conditions in central limit theorems for martingale difference arrays, Economics Letters 123 (3), 305-307.

[A/AM20??] Alj, A., Azrak, R. & Mélard, G. (20??). General estimation results for tdVARMA array models, in preparation. [A/JM2016] Alj, A., Jónasson, K., and Mélard, G. (2016) The exact Gaussian likelihood estimation of time-dependent VARMA models, Comput. Statist. Data Anal., 100, 633-644.

[AM1998] Azrak, R. and Mélard, G. (1998) Exact guasi-likelihood of time-dependent ARMA models, J. Statist. Plann. Inference 68(1), 31 - 45.

[AM2006] Azrak R. and Mélard, G. (2006). Asymptotic properties of guasi-maximum likelihood estimators for ARMA models with time-dependent coefficients, Statist. Inference for Stoch. Processes 9. No 3. 279-330.

・ロン ・回 ・ ・ ヨン

Conclusions References Complements

Some references III

[AM20??a] Azrak, R. and Mélard, G. (20??a) Asymptotic properties of conditional least-squares for array time series, in preparation. [AM20??b] Azrak, R, and Mélard, G. (20??b) Autoregressive models with time-dependent coefficients - A comparison between several approaches, submitted.

[AM20??c] Azrak, R. and Mélard, G. (20??c) ARMA models with time-dependent coefficients with economic examples, in preparation. Box, G. E. P., Jenkins, G. M., Reinsel G. C. & Ljung, G. M. (2015). Time series analysis, forecasting and control, 5th edn. Wiley, New York

D'Errico, J. (2007) Package DERIVEST,

http://www.mathworks.com/matlabcentral/fileexchange/13490 Erdélyi, A. (1953) Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York.

・ロン ・回 ・ ・ ヨン

Conclusions References Complements

Some references IV

Hamdoune, S. (1995) Etude des problèmes d'estimation de certains modèles ARMA évolutifs, Thesis presented at Université Henri Poincaré, Nancy 1.

Jónasson, K. (2008) Algorithm 878: Exact VARMA likelihood and its gradient for complete and incomplete data with Matlab, *ACM Trans. Math. Softw.* **35**(1), 6.

Jónasson, K. and Ferrando, S. E. (2008) Evaluating exact VARMA likelihood and its gradient when data are incomplete, *ACM Trans. Math Softw.* **35**(1), 5.

Klimko, L. A. & Nelson, P. I. (1978) On conditional least squares estimation for stochastic processes, *Annals of Statistics* **6**, 629-642. Lehmann, E. L., Casella, G. (1998) *Theory of Point Estimation*. Springer Verlag, New York. [M1982] Mélard, G. (1982) The likelihood function of a

time-dependent ARMA model, in O. D. Anderson and M. R. Perryman

(日)

Conclusions References Complements

Some references V

(eds), *Applied Time Series Analysis*, North-Holland, Amsterdam, 229-239.

[M1985] Mélard, G. (1985) *Analyse de données chronologiques*, Coll. Séminaire de mathématiques supérieures - Séminaire scientifique OTAN (NATO Advanced Study Institute) **89**, Presses de l'Université de Montréal, Montréal. Reprint

http://homepages.ulb.ac.be/~gmelard/Montreal1985_2012.pdf Meng, Y. & Lin Z. (2009) Maximal inequalities and laws of large numbers for L_q -mixingale arrays. *Statistics and Probability Letters* **79**, 1539-1547.

・ロン ・回 ・ ・ ヨン