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Time-dependent VARMA processes [Aℓ2012]

Definition of a m-dimensional tdVARMA(n)(p, q) (time
dependent VARMA process) = triangular array of random
vectors (r.v.) (x (n)

t , t ∈ N), n = series length, solution of

x (n)
t =

∑p
k=1 A(n)

tk x (n)
t−k + g(n)

t ǫt +
∑q

k=1 B(n)
tk g(n)

t−kǫt−k , where

{ǫt , t ∈ N}: independent m-dimensional r.v., with 0 mean
and covariance matrix Σ > 0 (nuisance parameter);

the coefficients A(n)
tk , B(n)

tk , and g(n)
t are m × m matrices;

their elements are deterministic functions of t (possibly n);

Σ
(n)
t = g(n)

t Σg(n)T
t : the error covariance matrix;

Initial values x (n)
t , ǫ

(n)
t , t < 1, supposed to be equal to 0 (∗).

(∗) Only for the asymptotic theory, not in practice
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tdVARMA(n) parametric model

The r × 1 vector θ contains all the parameters of interest to
be estimated, those in the A(n)

tk (θ), B(n)
tk (θ), and g(n)

t (θ) (not
Σ);
Their elements are deterministic functions of these
parameters, in addition to t (and possibly n);
In the simple VARMA case, the elements are the
parameters and g(n)

t (θ) is absent;

True value θ = θ0, so A(n)
tk (θ0) = A(n)

tk , B(n)
tk (θ0) = B(n)

tk , and

g(n)
t (θ0) = g(n)

t ;
Residuals:
e(n)

t (θ) = x (n)
t −∑p

k=1 A(n)
tk (θ)x (n)

t−k −∑q
k=1 B(n)

tk (θ)e(n)
t−k (θ);

Hence e(n)
t (θ0) = g(n)

t (θ0)ǫt = g(n)
t ǫt .
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tdARMA and tdVARMA evolution

Start in 1973 ("FARIMAG" models) in M’s thesis
Starting general case in 1977
A first talk in 1981 with computational results (WLS)
Exact maximum likelihood (EML) [M1982]
Azrak’s thesis in 1991-1996: AR case with mixing condition
Submission for ARMA in 1998 + EML algorithm [AM1998]
Adding explicit dependency on n in 1999-2002
Paper in SISP [AM2006] (without mixing)
tdVARMA models in Aℓj’s thesis in 2008-2012
Array CLT [AℓAM2014] and tdVARMA EML [AℓJM2016]
Paper in SJS without (n) with Ley [AℓALM2017]
Improvements for the (n) case 2011-2017 [AM20??a]
Comparison with other approaches [AM20??b]
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Example: univariate tdAR(n)(1) case

Example: θ = (A′,A′′, η)T (with appropriate conditions)

x (n)
t = A(n)

t (θ)x (n)
t−1 + g(n)

t (θ)ǫt

A(n)
t (θ) = A′ +

1
n − 1

(
t − n + 1

2

)
A′′,

g(n)
t (θ) = exp

{
η

n − 1

(
t − n + 1

2

)}

Notes.
Term (n + 1)/2 to achieve orthogonality
Factor 1/(n − 1) or 1/n just for the asymptotics (to restrain
the coefficient in a finite interval)
Not a random sequence xt but well random array x (n)

t
Similar parametrization for MA coefficients
Alternative for gt(θ): periodic 2-state function (g, 1/g)
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Figure: Artificial series (n = 128) produced using an tdAR(n)(1)
process with A′0 = 0.15, A′′0 = 0.015, gt(θ

0) = {6 ∗ 2,6 ∗ 0.5, ...}

0 20 40 60 80 100 120 140
−4

−3

−2

−1

0

1

2

3

4

Guy Mélard General estimation results for tdVARMA array models 7 /41



Introduction
Asymptotic results

Application to tdVARMA (n) models
Conclusions and references

Class of processes = tdVARMA (n)

Illustrations
Estimation

Practical time series

In [AM2006], series from Box & Jenkins (1970),
[BJRL2015]

Series A (n = 197): tdARIMA(n)(0,1,1)
Series B (n = 395): ARIMA(0,1,1) with td(n) error variance
Series G airline series (n = 144):
∇∇12 log xt = (1 − θL)(1 −ΘL12)et , or ’airline model’,
where L is the lag operator.

In [AℓJM2016]: monthly log returns of IBM stock prices and
S&P 500 index (1926-1999) by tdVAR(n)(1) and
tdVMA(n)(3) models
In [AM20??c] we add:

dataset of indices for monthly added value of the Belgian
industrial production by branches (26) of activity
(1985-1994)
dataset of 320 U.S. industrial production time series
(January 1986- present)
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Main results: Estimation method

Quasi-maximum likelihood estimator (with [α(n)
t (θ)]):

θ̂(n) = argminθ∈Rr

n∑

t=1

[
log |Σ(n)

t (θ)|+ e(n)T
t (θ)Σ

(n)−1
t (θ)e(n)

t (θ)
]
.

The quasi log-likelihood is computed by an algorithm due
to [AℓJM2016], inspired by Jónasson & Ferrando (2008)

In the univariate tdARMA case: [M1982] & [AM1998]

The objective function is minimized by numerical
optimization

By-product of the optimization procedure: standard errors
obtained by inverting the estimated information matrix
(Hessian)

Guy Mélard General estimation results for tdVARMA array models 9 /41



Introduction
Asymptotic results

Application to tdVARMA (n) models
Conclusions and references

Class of processes = tdVARMA (n)

Illustrations
Estimation

Preliminaries: AR and MA representations

(AR representation) x (n)
t = e(n)

t (θ) +
∑t−1

k=1 π
(n)
tk (θ)x (n)

t−k (1)

(MA representation) x (n)
t = e(n)

t (θ) +
∑t−1

k=1 ψ
(n)
tk (θ)e(n)

t−k (θ) (2)

where the coefficients π(n)tk (θ) and ψ(n)
tk (θ) are obtained by

double recurrence (w.r.t. k and t) (see [M1985])
To compute derivatives of e(n)

t (θ) w.r.t. θi we start from (1) and

then replace x (n)
t−k using (2) for θ = θ0:

∂e(n)
t (θ)

∂θi
=

t−1∑

k=1

ψ
(n)
tik (θ, θ0)e(n)

t−k (θ
0), (3)

with ψ(n)
tik (θ, θ0) =

k∑

u=1

∂π
(n)
tu (θ)

∂θi
ψ
(n)
t−u,k−u(θ

0)

Let ψ(n)
tik = ψ

(n)
tik (θ0, θ0), κt = 4th order moment of ǫt ,

κt = E((ǫtǫ
T
t )⊗ (ǫtǫ

T
t )), and denote the Frobenius norm ‖.‖F
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Sketch of the assumptions

i A(n)
ti (θ), B(n)

tj (θ) and g(n)
t (θ) are of class C3 w.r.t. θ ∈ compact set Θ ⊃ {θ0};

ii Upper bounds like
∑t−1

k=ν ‖ψ
(n)
tik ‖2

F < N1P(ν)Φν−1,
∑t−1

k=ν ‖ψ
(n)
tik ‖4

F < N2P(ν)Φν−1,
... with positive constants N1, N2, 0 < Φ < 1, a polynomial P(ν) (only needed for
VARMA), and ν = 1, ..., t − 1;

iii Existence of moments of order 4 + 2δ for ǫt ’s, δ > 0, + bounds on the Frobenius
norm of κt , & of Σ(n)

t and Σ
(n)−1
t , and their derivatives with respect to θ at θ0;

iv Existence of a strictly positive definite matrix V = limn→∞
1
n

∑n
t=1 V (n)

t , where

V (n)
t,ij , i, j = 1, ...,m, is given by

Eθ0

(
∂e(n)T

t (θ)

∂θi
Σ

(n)−1
t (θ)

∂e(n)
t (θ)

∂θj

)

+
1

2
tr

[

Σ
(n)−1
t (θ)

∂Σ
(n)
t (θ)

∂θi
Σ

(n)−1
t (θ)

∂Σ
(n)
t (θ)

∂θj

]

θ=θ0

;

v A similar existence condition for a positive definite matrix W (outer product of
gradient), to be defined, which includes 4th order moment κt ;

vi That for i = 1, ...,m

1

n2

n−1∑

d=1

n−d∑

t=1

t−1∑

k=1

‖g(n)
t−k‖

2
F‖ψ

(n)
tik ‖F‖ψ

(n)
t+d,i,k+d‖F = O

(
1

n

)
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Main theorem for tdVARMA(n) models

Theorem (AℓAM20??)

Under the (full) assumptions,

there exists a sequence of estimators θ̂(n) such that
plim θ̂(n) = θ0 when n → ∞,

furthermore

n1/2(θ̂(n) − θ0)
L→ N (0,V−1WV−1) when n → ∞.

Remarks .
1. For a Gaussian process: V = W ; otherwise the sandwich formula;
2. In the univariate ARMA case, see [AM2006];
3. If no (n), plim replaced by almost sure convergence, see
[AℓALM2017];
4. More on the proof later but parallel to [AℓALM2017] and its
Technical Appendix (TA) is used.
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New theoretical results [AM20??a]

No problem if the coefficients don’t depend on n, see
[AM2006] (tdARMA), [AℓALM2017] (tdVARMA)

A fundamental theorem for the asymptotic theory in the
array context, for the general case

A theorem for reducing the assumption on moments from 8
to 4 + 2δ, δ > 0

Two theorems to establish convergence for the two
covariance matrices V and W involved in the sandwich
formula

Plus Th2.4 = Lemma 1’ of [AM2016] = weak version of a
result by Hamdoune (1995) - not detailed here
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A fundamental theorem for the asymptotic theory

Purpose: provide an alternative to Klimko-Nelson (1978)
theorems for the case where the coefficients depend on n
Indeed, almost sure convergence is to be replaced by
convergence in probability
We give a direct proof of Theorem 1’ in [AM2006]
This is also proved for vectors, not only scalar processes
Even with a slight improvement by using an upper bound
on Eθ0(|∂α(n)

t (θ)/∂θi |2+δ), where δ > 0, θ0 is the true value

of the parameter θ and α(n)
t (θ) it the t-th term of the

Gaussian log-likelihood
This instead of an upper bound on a 4-th power
The consistency theorem is as follows and there is a
further theorem on asymptotic normality
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Theorem (AM20??a Th2.1)

Improvement on [AM2006,Theorem 1’]
Suppose there exist C1 > 0, C2 > 0, δ > 0, such that for all t = 1, ..., n, and uniformly
in n:

H1.1 Eθ0

(∣∣∣∣
∂α

(n)
t (θ)

∂θi

∣∣∣∣
2+δ
)

≤ C1, i = 1, ...,m;

H1.2 Eθ0

(∣∣∣∣
∂2α

(n)
t (θ)

∂θi∂θj
− Eθ

(
∂2α

(n)
t (θ)

∂θi∂θj

∣∣∣∣F
(n)
t−1

)∣∣∣∣
2
)

≤ C2, i, j = 1, ...,m.

Suppose further that

H1.3 plim
n→∞

1
n

∑n
t=1Eθ0

{
∂2α

(n)
t (θ)

∂θi∂θj

∣∣∣∣F
(n)
t−1

}
= Vij for i, j = 1, ...,m, where

V = (Vij )1≤i,j≤m is a strictly positive definite matrix of constants;

H1.4 plim
n→∞

sup
∆↓0

(n∆)−1

∣∣∣∣∣∣

∑n
t=1




{

∂2α
(n)
t (θ)

∂θi∂θj

}

θ=θ∗ij

−

{
∂2α

(n)
t (θ)

∂θi∂θj

}

θ=θ0





∣∣∣∣∣∣
<

∞, for i, j = 1, ...,m, where θ∗ij is a point of the straight line joining θ0 to

every θ, such that ‖θ − θ0‖ < ∆, 0 < ∆, where ‖.‖ is the Euclidean
norm.

Then there exists a sequence of estimators θ̂(n) such that plim θ̂(n) = θ0 when n → ∞.
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Theorem (AM20??a Th2.2)

Improvement on Theorem 1’. of AM2006
If the assumptions H1.1 − H1.4 of Theorem 1’ are satisfied, as well as H1.5 and H1.6,

H1.5 for i, j = 1, ...,m

plim
n→∞

1
n

∑n
t=1

{
Eθ0

(
∂α

(n)
t (θ)

∂θi

∂α
(n)
t (θ)

∂θj

∣∣∣∣Ft−1

)
− Eθ0

(
∂α

(n)
t (θ)

∂θi

∂α
(n)
t (θ)

∂θj

)}
= 0,

H1.6 there exists a positive definite matrix W = (Wij )1≤i,j≤m defined by

Wij = lim
n→∞

1
n

∑n
t=1Eθ0

(
∂α

(n)
t (θ)

∂θi

∂α
(n)
t (θ)

∂θj

)
,

then
n1/2(θ̂(n) − θ0)

L
→ N (0,V−1WV−1) when n → ∞.

N.B. W is defined here

Sketch of proof of Th2.1 and Th2.2.

It is adapted from the Lehmann and Casella (1998, Section 6.5) proof in the i.i.d. case
+ weak law of large numbers for martingale arrays
+ central limit theorem theorem for martingale arrays with a Lyapunov condition
[AℓAM2014]
+ Cramér-Wold device
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A theorem for reducing the assumption on moments

In [AM2006] we have assumed existence of 8-th moments
for the errors

We have kept that assumption in [AℓALM2017]

In [AℓALM2017] we make use of a Technical Appendix
Lemma 4.11 where that assumption is essential

However, we are now able to reduce the moment
assumption from 8 to 4 + 2δ, δ > 0

This is expressed here in a vector context, e.g. a matrix
Σ
(n)
t instead of σ(n)2t
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Theorem (AM20??a Th2.3)

Assume that α(n)
t (θ) has the form

α
(n)
t (θ) = {x (n)

t − Eθ(x (n)|F (n)
t−1)}

TΣ
(n)−1
t (θ){x (n)

t − Eθ(x (n)|F (n)
t−1)}, for some invertible

matrix Σ
(n)
t (θ). Denote e(n)

t = x (n)
t − Eθ(x (n)|F (n)

t−1) and ‖.‖F , the Frobenius norm of a
matrix. Suppose that for some δ > 0 we have for all t and n

∥∥∥∥∥
∂Σ

(n)−1
t (θ)

∂θi

∣∣∣∣∣
θ=θ0

∥∥∥∥∥

2

F

≤ K4,
∥∥∥Σ(n)−1

t (θ0)
∥∥∥

2

F
≤ m2,

Eθ0

(∣∣∣e(n)T
t (θ)e(n)

t (θ)
∣∣∣
2+δ
)

≤ P1, Eθ0




∣∣∣∣∣
∂e(n)T

t (θ)

∂θi

∂e(n)
t (θ)

∂θi

∣∣∣∣∣

1+δ/2


 ≤ P2,

i = 1, ...,m, for some constants K4, m2, P1, and P2, and that e(n)
t (θ0) and

∂e(n)
t (θ)/∂θi |θ=θ0 are independent. Then, the assumption H1.1 is satisfied for that δ,

which means that there exists a positive constant C1 such that for all t and all n, and
i = 1, ...,m

Eθ0






∣∣∣∣∣
∂α

(n)
t (θ)

∂θi

∣∣∣∣∣

2+δ



 ≤ C1.

Guy Mélard General estimation results for tdVARMA array models 18 /41



Introduction
Asymptotic results

Application to tdVARMA (n) models
Conclusions and references

Main theorem
A fundamental theorem for the asymptotic theory
A theorem for reducing the assumption on moments
Convergence for the two covariance matrices V and W

Convergence for the two covariance matrices V & W

We can write:

V = lim
n→∞

1
n

n∑

t=1

V (n)
t , W = lim

n→∞

1
n

n∑

t=1

W (n)
t

We can compute numerically V (n)
t and W (n)

t (depending on
κt ) for simple models
Proving existence of the limits V and W is not that easy
One way is to use the Cesàro theorem (that if a sequence
un converges to U, then the Cesàro means Un = 1

n

∑n
i=1 ui

converges to U)
This is not always possible, even in some simple examples
of [AM2006]
The following two theorems can thus help us
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Theorem (AM20??a Th2.5)

Let {u(n)
t , t = 1, ..., n} and {v (n)

t , t = 1, ..., n} be two triangular
arrays of real numbers such that

(1/n)
∑n

t=1 v (n)
t absolutely converges when n → ∞ and

limn→∞(1/n)
∑n

t=1 v (n)
t = L, and that

{u(n)
t } → C > 0 when t → ∞, hence n → ∞.

Then (1/n)
∑n

t=1 u(n)
t v (n)

t converges when n → ∞ and its limit
is LC.
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Example (AM2006, Example 3)

tdAR(n)(1) model defined by x (n)
t = A(n)

t (θ)x (n)
t−1 + g(n)

t ǫt , with independent ǫt ’s with 0

mean and finite variance σ2, and g(n)
t > 0, assumed not to depend on the parameters

θ, for simplicity. We have to show existence of

Vt = limn→∞
1
n

∑n
t=1 V (n)

t where V (n)
t =

{
∂A(n)

t (θ)

∂θi

∂A(n)
t (θ)

∂θj

}

θ=θ0
E(x (n)2

t−1 ),

i, j = 1, ...,m, see [AℓALM2017]. Assume A(n)
t (θ0) = A0 with |A0| < 1. Then (see

[AM2006]) un
t = E(x (n)2

t−1 ) is convergent with limit say C > 0. This is true in particular if

g(n)
t = exp{ t−(n+1)/2)

n−1 }. Therefore, if 1
n

∑n
t=1

{
∂A(n)

t (θ)

∂θi

∂A(n)
t (θ)

∂θj

}

θ=θ0
is absolutely

convergent, i, j = 1, ...,m, and converges to a limit Lij , then V does exists by
application of [AM20??a Theorem 2.5], and its element Vij is equal to CLij .

This is the case, in particular, if (see [AM2006]), A(n)
t (θ) = θ1 + θ2

t−(n+1)/2
n−1 at least

when θ0
1 = A0 and θ0

2 = 0.
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Theorem (AM20??a Th2.6)

Consider limn→∞(1/n)
∑n

t=1 v (n)
t . Assume that there exists a

Riemann-integrable function V (x) defined on [0, 1] such that
V (t/n) = v (n)

t . Then limn→∞(1/n)
∑n

t=1 v (n)
t =

∫ 1
0 V (x)dx

Example (AM2006, Examples 2, 3, 4)

Let g(n)
t,θ = exp{θ(t − (n + 1)/2)/(n − 1)} for θ ≥ 0, t = 1, ..., n (see [AM2006,

Examples 2, 3 and 4]). Suppose that, for ξ ≥ 0 and η > 0: v (n)
t = g(n)

t,ξ /(1 + g(n)
t,η)

2.
Using a variation of Th2.6 (where (t − (n + 1)/2)/(n − 1) is replaced by x), we have:

limn→∞(1/n)
∑n

t=1 v (n)
t = limn→∞

n−1
n

∫ 0.5
−0.5

eξx

(1+eηx )2
dx ,and a simple primitive for

ξ = 0 is

x +
1

η

{
1

1 + eηx
− log(1 + eηx )

}
+ C.

For ξ > 0, it is based on the hypergeometric function, see Abramowitz and Stegun
(1965, Chapter 15) or Erdélyi (1953)
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Proof of main theorem, tdVARMA(n) [AℓAM20??]

We use most lemmas in [AℓALM2017]’s Technical
Appendix = TA, easily generalized in an array context,
except TA Lemma 4.11 replaced by [AM20??a, Th2.3]
Like in [AℓALM2017], we have to use the (full) assumptions
to check the conditions of [AM20??a, Th2.1 and 2.2] for all
t and uniformly in n (except H1.6 which is assumed)
H1.1 = bound of Eθ0(|∂α(n)

t (θ)/∂θi |2+δ): consequence of
[AM20??a, Th2.3]
H1.2 like in [AℓALM2017]
H1.3 (existence of V as plim): based on [AM20??a, Th2.4]
H1.4 (3rd order terms): weak law of large numbers for
martingale arrays + weak law of large numbers for
L2-mixingale arrays of Meng & Lin (2009)
H1.5 (expectation vs conditional exp.): [AM20??a, Th2.4]
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Numerical and simulation strategies (1)

Like Jónasson (2008) VARMA estimation Matlab program,
AJM in [AℓJM] makes use of Optimization Toolbox fminunc
Penalties are applied for each evaluation of the
log-likelihood where the conditions are not fulfilled
AJM used by [AℓALM2017], only in the Gaussian case
It allows computation of the Hessian V at the optimum, not
the outer product of gradient W
Done by numerical divided differences ⇒ limited accuracy
AJM2 is a new version in development, aimed at, in
particular but not only, adding the evaluation of W , in
addition to the Hessian V
Hence standard errors based on either 1

n V−1 or sandwich
formula 1

n V−1WV−1
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Numerical and simulation strategies (2)

New program AJM2 aimed at
adding the evaluation of W , in addition to the Hessian V ,
hence also the sandwich formula
W evaluated using estimates of ∂α(n)

t (θ)/∂θi , for each t ,
also with limited accuracy
adding (improved) DERIVEST to provide better accuracy
simulation procedure changed to permit verification (now
inverse of residual computation), plus support of other laws
than normal

Laplace: normal deviate × Exp(1) deviate
Student with ν df: normal deviate / deviate of sqrt of χ2

ν
/ν

Note. DERIVEST: Found in Aït-Sahalia (2015) Matlab library implementing
closed-form MLE for diffusions, due to D’Errico: hessian for V ,
jacobianest for W but hessian & jacobianest had to be modified
(either bug, or code unsuited in the case of penalties)
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Theoretical illustrations

Everything is based on MA representations
Bivariate (r = 2) tdVAR(1) and tdVMA(1) are more or less
easily handled with linear or exponential functions of time
for the coefficients, and g(n)

t exponential
Cascade of specifications in order to illustrate the
assumptions using analytical expressions with a small
number of parameters
Here we go straight to m = 3 (1 parameter of each type)
First compute ψ(n)

tik in order to check the bound
∑t−1

k=ν ‖ψ
(n)
tik ‖2

F < N1P(ν)Φν−1, with Φ < 1 and P(ν), a
polynomial
Then, investigate the existence of V (2 types of terms)
Finally, prove the O(1

n ) triple sum property
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Application to a tdVAR(n)(1) model (1)

Bivariate tdVAR(n)(1) model [AℓAM20??]:

x (n)
t =

(
A′

11 A′0
12

0 A′′
22L(t , n)

)
x (n)

t−1 +

(
1 0
0 eη22L(t ,n)

)
ǫt ,

= A(n)
t (θ) = g(n)

t (θ)

where L(t , n) =
t− n+1

2
n−1 , and A′0

12 is fixed

with conditions (to be given) on the true values A′0
11, A′′0

22
and η0

22 of θ = (A′
11,A

′′
22, η22)

Σ =

(
σ11 0
0 σ22

)

E(e(n)
t (θ0)e(n)T

t (θ0)) = g(n)
t Σg(n)T

t =def Σt
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Application to a tdVAR(n)(1) model (2)

Checking (ii). tdAR coefficient:

A(n)
t (θ) =

(
A′

11 A′0
12

0 A′′
22L(t , n)

)
.

Let us define A(n)(k−1)
t =

∏k−1
l=1 A(n)

t−l , k > 1, and A(n)(0)
t = Ir .

It can be shown that ‖ψ(n)
t2k‖2

F = [L(t , n)A(n)(k−1)
t ,22 ]2.

But L(t , n) ≤ 1
2 and A(n)(k−1)

t ,22 = (A
′′0
22)

k−1 ∏k−1
l=1 L(t − l , n).

Assume |A′0
11| < 1, |A′′0

22 | < 2. Let
√
Φ = max{|A′0

11|, 1
2 |A

′′0
22 |} < 1.

Hence
∑t−1

k=ν ‖ψ
(n)
t2k‖2

F ≤ ∑t−1
k=ν Φ

k−1< N1Φ
ν−1, with N1 = 1

1−Φ .

More delicate for ‖ψ(n)
t1k‖2

F = [(A(n)(k−1)
t ,11 )2 + (A(n)(k−1)

t ,12 )2].
∑t−1

k=ν ‖ψ
(n)
t1k‖2

F< N ′
1Φ

ν−1P2(ν), P2(ν): polynomial of degree 2.
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Application to a tdVAR(n)(1) model (3)

Checking (iv). Now existence of Vij = limn→∞
1
n

∑n
t=1 V (n)

t ,ij
2 types of terms. For i , j = 1, 2, only term 1 equal to

V (n)
t ,ij =

{
∂A(n)

t (θ)

∂θi

∂A(n)
t (θ)

∂θj

}

θ=θ0

Σ
(n)−1
t E(x (n)

t−1x (n)T
t−1 ). (1)

Difficult case i = j = 2. Suppose η0
22 > 0.

Product of factors 1 & 2 of (1) has element (2,2)
v (n)

t = L2(t , n) exp(−2η0
22L(t , n)) such that (1/n)

∑n
t=1 v (n)

t
converges to a limit when n → ∞.
Last factor of (1) u(n)

t can be shown to converge to a limit > 0.
Hence application of Th2.5 of [AM20??a] implies existence of
V22. Similar for other elements.
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Application to a tdVAR(n)(1) model (4)

V (n)
t ,33 = 1

2 tr
[
Σ
(n)−1
t (θ)

∂Σ
(n)
t (θ)
∂η22

Σ
(n)−1
t (θ)

∂Σ
(n)
t (θ)
∂η22

]

η22=η
0
22

.

But

Σ
(n)−1
t (θ)

∂Σ
(n)
t (θ)

∂η22
=

(
0 0
0 2L(t , n)

)
.

Hence

V (n)
t ,33 = 2

1
(n − 1)2

(
t − n + 1

2

)2

,

and, using the variance of a discrete uniform distribution on
{1, 2, ..., n} we obtain V33 = limn→∞(n + 1)/(6(n − 1)) = 1/6.
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Application to a tdVAR(n)(1) model (5)

Checking (vi). Finally, there remains to check that for i , j = 1, 2

1
n2

n−1∑

d=1

n−d∑

t=1

t−1∑

k=1

∥∥∥g(n)
t−k

∥∥∥
2

F

∥∥∥ψ(n)
tik

∥∥∥
F

∥∥∥ψ(n)
t+d ,j,k+d

∥∥∥
F
= O

(
1
n

)
.

Take i = j = 2. First ‖g(n)
t−k‖2

F = 1 + e2η0
22L(t−k ,n) < 1 + eη

0
22 .

Upper bound of ‖ψ(n)
t2k‖F : Φk−1. Thus for ‖ψ(n)

t+d ,2,k+d‖F : Φk+d−1.

The sum for k = 1, ..., t − 1 of the product Φk−1Φk+d−1 is
bounded by Φd−2 times a constant 1/(1 − Φ2).
By exchanging the two outside sums, we have to find an upper
bound of

∑n−1
t=1

∑n−t
d=1 Φ

d−1: Φ−1× the sum for t = 1, ..., n − 1
of a constant 1/(1 − Φ). Dividing by n2 we have well O(1/n).
The case i = j = 1 is more complex.
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Application to a tdVMA(n)(1) model (1)

Bivariate tdVMA(n)(1) model [AℓAM20??]:

x (n)
t =

(
B′

11 0
0 B′0

22eB′′
22L(t ,n)

)
e(n)

t−1 +

(
1 α

β eη22L(t ,n)

)
ǫt ,

= B(n)
t (θ) = g(n)

t (θ)

where L(t , n) =
t− n+1

2
n−1 , and B′0

22 is fixed

with conditions (to be given) on the true values B′0
11, B′′0

22
and η0

22 of θ = (B′
11,B

′′
22, η22)

Σ =

(
σ11 σ12

σ21 σ22

)

E(e(n)
t (θ0)e(n)T

t (θ0)) = g(n)
t Σg(n)T

t =def Σt
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Application to a tdVMA(n)(1) model (2)

Checking (ii). Exponential functions of time for the coefficients
are much easier for analytical results on VMA processes.
(ψ

(n)
t1k )11 = (−1)k (B′0

11)
k−1,

(ψ
(n)
t2k )22 = (−1)kL(t − k + 1, n)(B′0

22)
ke(B′′0

22

∑k−1
ℓ=0 L(t−ℓ,n)),

and all other elements are zero.
We assume that the true value of θ satisfies |B′0

11| < 1, and

|B′0
22|eB′′0

22 /2 < 1.

We denote
√
Φ = max{|B′0

11|, |B′0
22|eB′′0

22 /2} < 1.

Since |L(t − ℓ, n)| ≤ 1
2 , ‖ψ(n)

tik ‖2
F < Φk , i = 1, 2.

Note.
In practice, we don’t assume zero initial values for the process,
but well it is invertible before time 1 ⇒ |B′0

22|eB′′0
22 L(0,n) < 1.
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Application to a tdVMA(n)(1) model (3)

Checking (iv). Existence of V .
For element (3, 3), slightly more complex here because g(n)

t is
non diagonal. We need to use Th2.6 of [AM20??a] and
evaluate an integral in order to obtain the value of V33.
Also for that reason, the treatment of Vij , i , j = 1, 2 is more
complex but Th2.5 of [AM20??a] can again be applied.

Checking (vi). Triple sum is O
(1

n

)
.

Again ‖g(n)
t−k‖2

F is bounded by a constant and an upper bound of

‖ψ(n)
tik ‖F is Φk−1 times a constant, i = 1, 2. Then we proceed

like in the VAR(1) case.
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Common features of tdVAR(1) & tdVMA(1) simulations

We can obtain exact expressions for the terms V (n)
t

And also for W (n)
t for standard multivariate distributions

(normal, Laplace, Student)
We are able to compare the "theoretical" values of V (and
W ) to the empirical values through simulation

tdVAR(1): A(n)
t (θ) =

(
0.8 0.5
0 0.75L(t , n)

)
,

g(n)
t =

(
1 0
0 e0.7L(t ,n)

)
, Σ = I2

tdVMA(1): B(n)
t (θ) =

(
0.8 0
0 0.25 + 0.4L(t , n)

)
,

g(n)
t =

(
1 −0.6

−0.6 e0.7L(t ,n)

)
, Σ =

(
2 0.8

0.8 1

)

1000 simulations of series of length 100
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Simulations for a tdVAR(1) model - normal errors

Table: Estimation results for the tdVAR(n)(1) model, with Gaussian errors.
"‘avg"’: average (across the 1000 simulations), "‘std err"’: standard error of
the parameter estimates, "‘std dev"’: standard deviation (across the 1000
simulations), "‘theor"’: theoretical (based on true value), "‘% rej. H0: par.=true
val."’: percentages of simulations rejecting the hypothesis H0(θi = θ

0
i ) at 5%.

Parameter θi A′
11 A′′

22 η22

True value θ0
i 0.8000 0.7500 0.7000

Avg estimates 0.7878 0.7329 0.6793

Avg std err (based on V ) 0.0527 0.3391 0.2485

Std dev estimates 0.0548 0.3456 0.2606

Theor. std err 0.0530 0.3363 0.2425

% rej. H0: par.=true val. 5.7 5.6 6.0
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Simulations for a tdVAR(1) model - Laplace errors

Table: Estimation results for the tdVAR(n)(1) model, with Laplace errors.
"‘avg"’: average (across the 1000 simulations), "‘std err"’: standard error of
the parameter estimates, "‘std dev"’: standard deviation (across the 1000
simulations), "‘theor"’: theoretical (based on true value), "‘% rej. H0: par.=true
val."’: percentages of simulations rejecting the hypothesis H0(θi = θ

0
i ) at 5%.

Parameter θi A′
11 A′′

22 η22

True value θ0
i 0.8000 0.7500 0.7000

Avg estimates 0.7904 0.7238 0.6846
Avg std err (based on V ) 0.0522 0.3425 0.2514
Avg std err (based on V−1WV−1) 0.0516 0.3136 0.3627
Std dev estimates 0.0582 0.3374 0.3794
Theor. std err 0.0530 0.3363 0.3834
% rej. H0: par.=true val. 8.3 8.3 6.8
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Simulations for a tdVMA(1) model - normal errors

Table: Estimation results for the tdVMA(n)(1) model, with normal errors.
"‘avg"’: average (across the 1000 simulations), "‘std err"’: standard error of
the parameter estimates, "‘std dev"’: standard deviation (across the 1000
simulations), "‘theor"’: theoretical (based on true value), "‘% rej. H0: par.=true
val."’: percentages of simulations rejecting the hypothesis H0(θi = θ

0
i ) at 5%.

Parameter θi B′
11 B′′

22 η22

True value θ0
i 0.8000 0.4000 0.7000

Avg estimates 0.8026 0.3994 0.7117
Avg std err (based on V ) 0.0437 0.2239 0.1525
Avg std err (based on V−1WV−1) 0.0516 0.3136 0.3627
Std dev estimates 0.0461 0.2299 0.1605
Theor. std err 0.0423 0.2223 0.1450
% rej. H0: par.=true val. 7.0 6.6 6.8
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Simulations for a tdVMA(1) model - Student 5 errors

Table: Estimation results for the tdVMA(n)(1) model, with Student errors with
5 d.f.. "‘avg"’: average (across the 1000 simulations), "‘std err"’: standard
error of the parameter estimates, "‘std dev"’: standard deviation (across the
1000 simulations), "‘theor"’: theoretical (based on true value), "‘% rej. H0:
par.=true val."’: % of simulations rejecting the hypothesis H0(θi = θ

0
i ) at 5%.

Parameter θi B′
11 B′′

22 η22

True value θ0
i 0.8000 0.4000 0.7000

Avg estimates 0.8028 0.3946 0.7061
Avg std err (based on V ) 0.0442 0.2252 0.1530
Avg std err (based on V−1WV−1) 0.0455 0.2153 0.2475
Avg std err (same, DERIVEST) 0.0456 0.2154 0.2475
Std dev estimates 0.0460 0.2319 0.2389
% rej. H0: par.=true val. 6.5 8.8 4.5
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Figure: Histograms of estimates for the 3 parameters of the tdVMA
model with 5 d.f. Student errors, compared with normal density
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Conclusions

This presentation is mainly based on four papers

Paper 1 [AℓAM20??]: How to do the asymptotics of
tdVARMA(n) models and apply it to simple models, like
tdVAR(1) and tdVMA(1) models?

Paper 2 [AM20??a]: How to improve the fundamental
justifications of [AM2006] in the array case and solve the
problems of their use (moments, existence of the
information matrix

Paper 3 [AℓALM2017] How to use its Technical Appendix?

Paper 4 [AℓAJM2016] How to improve its AJM program?

We hope to have answered all these questions.
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Thank you. Comments are welcome
References follow
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