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Abstract. We study the isometric extension problem for Hölder maps from

subsets of any Banach space into c0 or into a space of continuous functions.

For a Banach space X, we prove that any α-Hölder map, with 0 < α ≤ 1,
from a subset of X into c0 can be isometrically extended to X if and only

if X is finite dimensional. For a finite dimensional normed space X and

for a compact metric space K, we prove that the set of α’s for which all
α-Hölder maps from a subset of X into C(K) can be extended isometrically

is either (0, 1] or (0, 1) and we give examples of both occurrences. We also
prove that for any metric space X, the described above set of α’s does not

depend on K, but only on finiteness of K.

1. Introduction - Notation

If (X, d) and (Y, %) are metric spaces, α ∈ (0, 1] and K > 0 , we will say that
a map f : X → Y is α-Hölder with constant K (or in short (K,α)-Hölder) if

∀x, y ∈ X, %(f(x), f(y)) ≤ Kd(x, y)α.

Let us now recall and extend the notation introduced by Naor in [13]. For C ≥ 1,
BC(X,Y ) will denote the set of all α ∈ (0, 1] such that any (K,α)-Hölder function
f from a subset of X into Y can be extended to a (CK,α)-Hölder function from
X into Y . If C = 1, such an extension is called an isometric extension. When
C > 1, it is called an isomorphic extension. If a (CK,α)-Hölder extension exists
for all C > 1, we will say that f can be almost isometrically extended. So, let us
define:

A(X,Y ) = B1(X,Y ), B(X,Y ) =
⋃
C≥1

BC(X,Y ), and Ã(X,Y ) =
⋂
C>1

BC(X,Y ).

The study of these sets goes back to a classical result of Kirszbraun [10] as-
serting that if H is a Hilbert space, then 1 ∈ A(H,H). This was extended by
Grünbaum and Zarantonello [5] who showed that A(H,H) = (0, 1]. Then the
complete description of A(Lp, Lq) for 1 < p, q <∞ relies on works by Minty [12]
and Hayden, Wells and Williams [6] (see also the book of Wells and Williams [14]
for a very nice exposition of the subject). More recently, K. Ball [1] introduced a
very important notion of non linear type or cotype and used it to prove a general
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extension theorem for Lipschitz maps. Building on this work, Naor [13] improved
the description of the sets B(Lp, Lq) for 1 < p, q <∞.

In this paper, we concentrate on the study of A(X,Y ) and Ã(X,Y ), when X
is a Banach space and Y is a space of converging sequences or, more generally,
a space of continuous functions on a compact metric space. This can be viewed
as an attempt to obtain a non linear version of the results of Lindenstrauss and
Pelczyński [11] and later of Johnson and Zippin ([8] and [9]) on the extension of
linear operators with values in C(K) spaces.
So let us denote by c the space of all real converging sequences equipped with
the supremum norm and by c0 the subspace of c consisting of all sequences
converging to 0. If K is a compact space, C(K) denotes the space of all real
valued continuous functions on K, equipped again with the supremum norm.
In section 2, we show that if X is infinite dimensional and Y is any separable

Banach space containing an isomorphic copy of c0, then Ã(X,Y ) is empty. On
the other hand, we prove that A(X, c0) = (0, 1], whenever X is finite dimensional.

In section 3, we show that for any finite dimensional space X, Ã(X, c) = (0, 1] and
A(X, c) contains (0, 1). Then the study of the isometric extension for Lipschitz
maps turns out to be a bit more surprising. Indeed, we give an example of a 4-
dimensional space X such that A(X, c) = (0, 1). To our knowledge, this provides
the first example of Banach spaces X and Y such that A(X,Y ) is not closed

in (0, 1] and also such that A(X,Y ) 6= Ã(X,Y ). On the other hand, we show
that if the unit ball of a finite dimensional Banach space is a polytope, then
A(X, c) = (0, 1].
Finally, we prove in section 4, that c is the only C(K) space that one needs
to consider as the image space in the study of the isometric extension problem.
More precisely, we show that for every infinite compact metric space K and every
metric space X, A(X, c) = A(X,C(K)).

Acknowledgments . The research on this paper started during a sabbatical
visit of the second named author at the Département de Mathématiques, Uni-
versité de Franche-Comté in Besançon, France. She wishes to thank all members
of the Functional Analysis Group, and especially Prof. F. Lancien, for their
hospitality during that visit.

2. Maps into c0

It is well known that for any metric space (X, d), A(X,R) = (0, 1]. Indeed, if M
is a subset of X and f : M → R is a (K,α)-Hölder function, then a (K,α)-Hölder
extension g of f on X is given for instance by the inf-convolution formula:

∀x ∈ X, g(x) = inf{f(u) +K(d(u, x))α: u ∈M}.
It follows immediately that A(X, `∞) = (0, 1], where `∞ is the space of all real
bounded sequences equipped with the supremum norm. Now, since there is a
2-Lipschitz retraction from `∞ onto c0 (see for instance [2, page 14]), it is clear
that for any metric space X, B2(X, c0) = (0, 1]. Our first result shows that
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the difference between the isometric and isomorphic extension problems which is
revealed in [13] is extreme when c0 is the image space. More precisely:

Theorem 2.1. Let X be an infinite dimensional normed vector space and Y be
a separable Banach space containing an isomorphic copy of c0. Then

Ã(X,Y ) = ∅.

Proof. By a theorem of R.C. James [7], Y contains almost isometric copies of
c0. So, since we are studying the almost isometric extension problem, we may
as well assume that there is a closed subspace Z of Y which is isometric to c0.
Let (en) be the isometric image in Z of the canonical basis of c0 and (e∗n) be the
Hahn-Banach extensions to Y of the corresponding coordinate functionals (this
sequence is included in the unit sphere of Y ∗). Since Y is separable, there is a
subsequence (e∗nk)k≥1 which is weak∗-converging to some y∗ in the unit ball of
Y ∗.
On the other hand, by a theorem of Elton and Odell [4], there exists ε > 0 and
a sequence (xk)k≥1 in X such that:

∀k ‖xk‖ = 1− ε and ∀k 6= l ‖xk − xl‖ ≥ 1.

Let now f be defined by f(xk) = (−1)kenk . This is clearly a (1, α)-Hölder
function for any α in (0, 1]. Let δ > 0 such that (1 + δ)(1 − ε)α < 1 and
η = 1− (1+δ)(1−ε)α > 0. Assume that f can be extended at 0 into a (1+δ, α)-
Hölder function g with g(0) = y. Then, for any even k, e∗nk(y) ≥ η and for
any odd k, e∗nk(y) ≤ −η. This is in contradiction with the fact that (e∗nk) is
weak∗-converging.

�

We will now solve the extension problem for Hölder maps from a finite dimen-
sional space into c0. Our result is.

Theorem 2.2. If X is a finite dimensional normed vector space, then

A(X, c0) = (0, 1].

Proof. Let α ∈ (0, 1], M ⊂ X and f : M → c0 be a (K,α)-Hölder function. We
may assume that K = 1 and that M is closed. It is enough to show that for any
x0 ∈ X \M , f can be extended into a (1, α)-Hölder function g on M ∪ {x0} and
we will assume that x0 = 0.

Since X is finite dimensional, we can cover the unit sphere of X with B1, ..., Bk,
balls of radius 1/4 and define

Ci = {y ∈ X \ {0}: y

‖y‖
∈ Bi}.

Let now x, y ∈ Ci so that ‖x‖ ≥ ‖y‖. We have

(2.1) ‖x− y‖ ≤
∥∥x− x‖y‖

‖x‖
∥∥+ ‖y‖

∥∥ x

‖x‖
− y

‖y‖
∥∥ ≤ ‖x‖ − 1

2
‖y‖.
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We denote I = {i: 1 ≤ i ≤ k and Ci ∩M 6= ∅}. Since X is finite dimensional, for
each i in I, we can pick xi in Ci ∩M such that for any x ∈ Ci ∩M , ‖x‖ ≥ ‖xi‖.
Then, it follows from the inequality (2.1) that

∀i ∈ I ∀x ∈ Ci ∩M, ‖x− xi‖ ≤ ‖x‖ −
1

2
‖xi‖ ≤ ‖x‖.

Let us now pick ε > 0 such that ε <
1

2
dist(0,M)α. Then

∃N ∈ N ∀n > N ∀i ∈ I : |f(xi)(n)| < ε.

We will now choose g(0) = (u(n))n≥1.
Since, in the metric space (X, ‖ ‖α), R-valued contractions can be extended into
contractions, we can pick (ηn)n≥1 in `∞ so that

∀n ∈ N ∀x ∈M, |f(x)(n)− ηn| ≤ ‖x‖α.

For n ≤ N , we set u(n) = ηn.
For n > N , let δn ∈ {−1, 1} be the sign of ηn. Now we set

u(n) = δn min{|ηn|,max
i∈I
|f(xi)(n)|}.

Note that since I is finite and each f(xi) ∈ c0, we have that g(0) = (u(n))n≥1 ∈
c0.
Next we check that for all x ∈M and all n > N , |f(x)(n)− u(n)| ≤ ‖x‖α. So let
x ∈M and i0 ∈ I such that x ∈ Ci0 ∩M . We have four cases:

1) If |f(x)(n)| ≤ |u(n)|, then

|f(x)(n)− u(n)| ≤ 2ε ≤ ‖x‖α.

2) If |f(x)(n)| > |u(n)|, sgn(f(x)(n)) = δn, and |u(n)| = |ηn| then, by the
definition of ηn:

|f(x)(n)− u(n)| ≤ ‖x‖α.
3) If |f(x)(n)| > |u(n)|, sgn(f(x)(n)) = δn, and |u(n)| = max

i∈I
|f(xi)(n)| ≥

|f(xi0)(n)|, then

|f(x)(n)− u(n)| = |f(x)(n)| − |u(n)|
≤ |f(x)(n)− f(xi0)(n)|+ |f(xi0)(n)| − |u(n)|
≤ ‖x− xi0‖α ≤ ‖x‖α.

4) If |f(x)(n)| > |u(n)| and sgn(f(x)(n)) 6= δn, then

|f(x)(n)− u(n)| = |f(x)(n)|+ |u(n)| ≤ |f(x)(n)|+ |ηn| = |f(x)(n)− ηn| ≤ ‖x‖α.

�

Remark 2.3. The proof is much simpler in the case α = 1. Indeed it is enough
to set u(n) = 0 for n > N . Then, for x ∈M , pick i0 ∈ I such that x ∈ Ci0 ∩M .
Thus, the inequality (2.1) implies that for all n > N :
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|f(x)(n)− u(n)| = |f(x)(n)| ≤ |f(x)(n)− f(xi0)(n)|+ ε ≤ ‖x− xi0‖+ ε

≤ ‖x‖ − 1

2
‖xi0‖+ ε ≤ ‖x‖.

3. Maps into c

We now consider the isometric and almost isometric extension problems for
Hölder maps from a normed vector space into c. If X is infinite dimensional,
this question is settled by Theorem 2.1. Therefore, throughout this section, X
will denote a finite dimensional normed vector space. The study of the almost
isometric extensions is then rather simple. For this purpose, we recall that, for
λ > 1, a Banach space Y is said to be a L∞λ space if every finite dimensional
subspace of Y is contained in a finite dimensional subspace F of Y which is λ-
isomorphic to `dimF

∞ (namely, there is an isomorphism T from F onto `dimF
∞ such

that ‖T‖ ‖T−1‖ ≤ λ).

Proposition 3.1. Let X be a finite dimensional normed vector space and Y be
a Banach space which is a L∞λ space for any λ > 1. Then

Ã(X,Y ) = (0, 1].

In particular, for every compact space K,

Ã(X,C(K)) = (0, 1].

Proof. Let M be a closed subset of X and f : M → Y be a (1, α)-Hölder map.
We start with the following Lemma.

Lemma 3.2. For any x ∈ X \M and any ε > 0, f admits a (1 + ε, α)-Hölder
extension to M ∪ {x}.

Proof. If M is compact and δ > 0, we pick a δ-net {x1, .., xn} of M and a
finite dimensional subspace F of Y , containing f(x1), .., f(xn) such that F is
(1 + δ)-isomorphic to some `m∞. Then, it follows from the introductory remarks
of section 2, that there exists y ∈ F such that for all 1 ≤ i ≤ n, ‖f(xi) −
y‖ ≤ (1 + δ)‖xi − x‖α. If δ was chosen small enough, then for any z ∈ M ,
‖f(z)− y‖ ≤ (1 + ε)‖z − x‖α.
For a general M and a fixed x ∈ X \ M , we apply the compact case to the
restriction of f to M ∩KBX , for K big enough and where BX denotes the closed
unit ball of X.

�

We now finish the proof of Proposition 3.1. Let (xn)n≥1 be a dense sequence in
X \M . For a given ε > 0, we pick (εn)n≥1 in (0, 1) so that

∏
n≥1(1+εn) < 1+ε.

It follows from the above Lemma and an easy induction that f can be extended
to a (1+ε, α)-Hölder function on M∪{xn, n ≥ 1}, which in turn can be extended
by density to X.

�
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Remark 3.3. For Y = C(K), there is a more concrete argument, which even
allows to extend f isometrically when M is compact. We use the Inf-convolution
formula and define

∀t ∈ K f(x)(t) = inf
y∈M

[f(y)(t) + ‖x− y‖α].

Clearly, ‖f(x) − f(y)‖∞ ≤ ‖x − y‖α. Since f(M) is compact in C(K), f(x) is
the infimum of an equicontinuous family of functions and therefore is continuous
on K.

Let us now concentrate on the isometric extension problem. We will need the
following characterization.

Lemma 3.4. Let (X, d) be a metric space, M a subset of X, f : M → c a
contraction and x ∈ X \M . Then, the following statements are equivalent:

(1) f can be extended to a contraction g: M ∪ {x} → c.
(2) ∀ε > 0 ∃N ∈ N ∀n,m > N ∀y, z ∈M

|f(y)(n)− f(z)(m)| ≤ d(y, x) + d(z, x) + ε.

Proof. Suppose that (1) holds. Then (g(x)(n))n is a Cauchy sequence. Thus

∀ε > 0 ∃N ∀n,m > N |g(x)(n)− g(x)(m)| < ε.

Since g is a contractive extension of f , we have that for all n,m > N and all
y, z ∈M

|f(y)(n)− f(z)(m)| ≤ |f(y)(n)− g(x)(n)|+ |g(x)(n)− g(x)(m)|+
+ |g(x)(m)− f(z)(m)|

≤ d(y, x) + d(z, x) + ε.

Suppose now that (2) holds. Define

s(j) = sup
m≥j

sup
z∈M

(f(z)(m)− d(z, x)).

Let us fix z0 ∈M . Then, it is easily seen that

∀j ∈ N, |s(j)| ≤ ‖f(z0)‖∞ + d(x, z0).

On the other hand {s(j)}j∈N is a decreasing sequence and therefore converges.
We will denote by s(∞) its limit.
In order to define (g(x)(n))n≥1, we pick a sequence (Nk)k≥1 of integers such that

(i) (2) holds with ε = 2−k and N = Nk;
(ii) ∀j > Nk s(j) ≤ s(∞) + 2−k;
(iii) ∀k ∈ N Nk+1 > Nk.

Then we define g(x) as follows:
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(1) for n ≤ N1, let g(x)(n) be any element of⋂
y∈M

[f(y)(n)− d(x, y),f(y)(n) + d(x, y)] =

[ sup
y∈M

(f(y)(n)− d(x, y)), inf
y∈M

(f(y)(n) + d(x, y))].

(2) for Nk < n ≤ Nk+1 we define

g(x)(n) = max{ sup
y∈M

(f(y)(n)− d(x, y)), s(Nk)− 2−k}.

It follows from (i) that

∀n > Nk ∀y ∈M s(Nk)− 2−k ≤ f(y)(n) + d(x, y).

So

∀n ∈ N sup
y∈M

(f(y)(n)− d(x, y)) ≤ g(x)(n) ≤ inf
y∈M

(f(y)(n) + d(x, y)).

Thus g(x) ∈ `∞ and for all y in M , ‖g(x)− f(y)‖∞ ≤ d(x, y).
Finally, note that

∀n > Nk sup
y∈M

(f(y)(n)− d(x, y)) ≤ s(Nk).

Thus
∀n ∈ (Nk, Nk+1] s(Nk)− 2−k ≤ g(x)(n) ≤ s(Nk).

It is now clear that (g(x)(n))n≥1 converges to s(∞) and therefore belongs to
c. �

As a first application we have

Theorem 3.5. For any finite dimensional normed vector space X

(0, 1) ⊂ A(X, c).

Proof. Let 0 < α < 1, M a closed subset of X such that 0 /∈ M and f : M → c
be a (1, α)-Hölder function. It is enough to show that f admits a (1, α)-Hölder
extension to M ∪ {0}. For this purpose, we will apply Lemma 3.4 on the metric
space (X, ‖ ‖α).
We fix ε > 0 and pick x0 ∈M . Since α < 1,

lim
‖x‖→∞

[(‖x‖+ ‖x0‖)α − ‖x‖α] = 0.

So, there is K > 0 such that ‖x− x0‖α ≤ ‖x‖α + ε/3 for all x so that ‖x‖ > K.
Let us also choose K such that ‖x0‖ ≤ K. Since MK = M ∩KBX is compact,

∃N ∈ N ∀n,m > N ∀x ∈MK |f(x)(n)− f(x)(m)| < ε

3
.

Let now x and y in M .
If x ∈MK , then for all n,m > N :

|f(x)(n)− f(y)(m)| ≤ ε

3
+ ‖x− y‖α ≤ ‖x‖α + ‖y‖α +

ε

3
.
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If x and y belong to M \MK , then for all n,m > N :

|f(x)(n)− f(y)(m)| ≤ ‖x− x0‖α + ‖y − x0‖α +
ε

3
≤ ‖x‖α + ‖y‖α + ε.

Then the conclusion follows directly from Lemma 3.4. �

We will now see that the possibility of extending isometrically all Lipschitz
maps from a finite dimensional space into c may depend on the geometry of the
space X. As a positive result, we have for instance

Theorem 3.6. For any n ∈ N

A(`n∞, c) = (0, 1].

Proof. For j ∈ {1, . . . , n}, δ ∈ {−1, 1}, we denote by Fj,δ the following (n −
1)−face of the unit ball of `n∞:

Fj,δ = {x = (x1, . . . , xn): ‖x‖ = 1, xj = δ}.
Let Cj,δ denote the cone supported by Fj,δ:

Cj,δ = {x ∈ `n∞: xj = δ‖x‖}.
For j, k ∈ {1, .., n}, j 6= k, and δ, η ∈ {−1, 1} we denote by Fj,δ,k,η the (n−2)−face
of Fj,δ:

Fj,δ,k,η = Fj,δ ∩ Fk,η,
and by Cj,δ,k,η the corresponding cone:

Cj,δ,k,η = Cj,δ ∩ Ck,η.
We also define a family of projections Pj,δ,k,η: Cj,δ −→ Cj,δ,k,η by

Pj,δ,k,η(x) = y, where

{
yk = η|xj |
yi = xi, if i 6= k.

Note that for every x ∈ Cj,δ, η|xj | = ηδxj , so Pj,δ,k,η is linear on Cj,δ and

(3.1) ∀x ∈ Cj,δ ‖Pj,δ,k,η(x)‖ = ‖x‖.
Further, since for all x ∈ Cj,δ, |xj | ≥ |xk| we get

(3.2) sgn((Pj,δ,k,η(x))k − xk) = η.

We also introduce the projection Qk: Rn → Rn−1 defined by

Qk(x1, .., xn) = (x1, .., xk−1, xk+1, .., xn).

The following Lemma will provide us with a convenient finite covering of the
space `n∞.

Lemma 3.7. For any M ⊂ X = `n∞, any ε > 0 and any j ∈ {1, . . . , n},
δ ∈ {−1, 1}, such that Cj,δ ∩M 6= ∅, there exist A1, .., Aµ subsets of X such that

(Cj,δ ∩M) ⊂
µ⋃
i=1

Ai
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and ∀i ∈ {1, .., µ} ∃xi ∈ Ai ∩M satisfying

∀x ∈ Ai ∩M ‖x− xi‖ ≤ ‖x‖ − ‖xi‖+ ε.

Proof of Lemma 3.7. We will give a proof by induction on the dimension of `n∞.
If n = 1, the statement is clear, so let us now assume that it is satisfied for n−1,
where n ≥ 2.
Let M , ε, j and δ be as in the statement of Lemma 3.7. We pick an element
xj,δ ∈ Cj,δ ∩M and we denote

Bj,δ = xj,δ + Cj,δ.

Note that

(3.3) ∀x ∈ Bj,δ ‖x− xj,δ‖ = ‖x‖ − ‖xj,δ‖.
Denote dj,δ,k,η = |(Pj,δ,k,η(xj,δ))k − (xj,δ)k|. Let x ∈ Cj,δ such that for any
k ∈ {1, .., n} \ {j}, and any η ∈ {−1, 1},
(3.4) |(Pj,δ,k,η(x))k − xk| ≥ dj,δ,k,η
Then, we claim that x ∈ Bj,δ.
Indeed, by (3.2)

|(Pj,δ,k,η(x))k − xk| = η(Pj,δ,k,η(x))k − ηxk
and

|(Pj,δ,k,η(xj,δ))k − (xj,δ)k| = η(Pj,δ,k,η(xj,δ))k − η(xj,δ)k.

Thus (3.4) implies that

η(Pj,δ,k,η(x))k − η(Pj,δ,k,η(xj,δ))k ≥ ηxk − η(xj,δ)k,

and hence

ηηδxj − ηηδ(xj,δ)j = δ(xj − (xj,δ)j) ≥ ηxk − η(xj,δ)k.

Since this holds for all η ∈ {−1, 1}, we get that for all k ∈ {1, .., n} \ {j},
δ(x− xj,δ)j ≥ |(x− xj,δ)k|.

Thus x− xj,δ ∈ Cj,δ and x ∈ Bj,δ.
Combining (3.2) and (3.4), we conclude that

Cj,δ \Bj,δ ⊂
⋃

k∈{1,..,n}\{j},
η∈{−1,1}

Bj,δ,k,η

where
Bj,δ,k,η = {x ∈ Cj,δ: ((Pj,δ,k,η(x))k − xk) ∈ η[0, dj,δ,k,η)}.

Now, for each k ∈ {1, .., n} \ {j}, and η ∈ {−1, 1}, we choose Nk,η ∈ N such that
dj,δ,k,η
Nk,η

<
ε

3
. Then we set

∀k ∈ {1, .., n} \ {j} ∀η ∈ {−1, 1} ∀ν ∈ {1, . . . , Nk,η}:

Iνj,δ,k,η =
[ (ν − 1)dj,δ,k,η

Nk,η
,
νdj,δ,k,η
Nk,η

)
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and

Bνj,δ,k,η = {x ∈ Cj,δ: ((Pj,δ,k,η(x))k − xk) ∈ ηIνj,δ,k,η}.
So we have

(3.5) Cj,δ \Bj,δ ⊂
⋃

k∈{1,..,n}\{j},
η∈{−1,1}

Nk,η⋃
ν=1

Bνj,δ,k,η.

We now fix k ∈ {1, .., n}\{j}, η ∈ {−1, 1} and ν ≤ Nk,η such that Bνj,δ,k,η∩M 6= ∅
and denote for simplicity:

B = Bνj,δ,k,η, I = ηIνj,δ,k,η, P̃ = Pj,δ,k,η, P = QkP̃ , M
′ = P (M ∩B)

and C = P (Cj,δ) = QkCj,δ,k,η = {x ∈ `n−1∞ : xφ(j) = δ‖x‖},
where φ(j) = j if k > j and φ(j) = j − 1 if k < j.
Since M ′ is a non empty subset of C, our induction hypothesis yields the existence
of A′1, .., A

′
L ⊂ C so that M ′ ⊂

⋃
l≤LA

′
l and ∀l ∈ {1, .., L} ∃yl ∈ A′l∩M ′ satisfying

∀y ∈ A′l ∩M ′ ‖y − yl‖ ≤ ‖y‖ − ‖yl‖+
ε

3
.

Now let Al = {x = (xi)
n
i=1 ∈ Cj,δ: P (x) ∈ A′l, xk ∈ δηxj − I}. We have that

B ∩M ⊂
⋃
l≤L

Al.

Then, for any l ≤ L, we pick xl ∈ Al ∩M such that P (xl) = yl. Note that

∀x ∈ Al ∩M ‖x‖ = |xj | = ‖Px‖ ≥ ‖yl‖ −
ε

3
= |xlj | −

ε

3
= ‖xl‖ − ε

3
.

Therefore

∀x ∈ Al ∩M |xj − xlj | ≤ |xj | − |xlj |+
2ε

3
.

Now,

‖x− xl‖ = max{‖P (x)− P (xl)‖, |xk − xlk|}.
We have

‖P (x)− P (xl)‖ ≤ ‖P (x)‖ − ‖P (xl)‖+
ε

3
= ‖x‖ − ‖xl‖+

ε

3
.

Since the diameter of I is less than
ε

3
, we get on the other hand that

|xk − xlk| = |(xk − ηδxj)− (xlk − ηδxlj) + ηδxj − ηδxlj |

≤ ε

3
+ |xj − xlj | ≤ ε+ |xj | − |xlj | = ε+ ‖x‖ − ‖xl‖.

(3.6)

So the conclusion of the lemma follows from (3.3) and (3.5). �
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We now proceed with the proof of Theorem 3.6. As usual, we consider a
contraction f : M → c, where M is a closed subset of `n∞ with 0 /∈ M . We will
only show, as we may, that f can be contractively extended to M ∪ {0}.
Let ε > 0. It follows from Lemma 3.7 that there exist A1, .., Aµ subsets of X
such that M ⊂

⋃µ
i=1Ai and

∀1 ≤ i ≤ µ ∃xi ∈ Ai ∩M such that ∀x ∈ Ai ∩M ‖x− xi‖ ≤ ‖x‖ − ‖xi‖+
ε

2
.

There also exists N ∈ N such that

∀n,m > N ∀i ∈ {1, .., µ} |f(xi)(n)− f(xi)(m)| < ε

2
.

Let now x and y in M . Then we pick i such that x ∈ Ai. Thus, for all n,m > N

|f(x)(n)− f(y)(m)| ≤ |f(x)(n)− f(xi)(n)|+ |f(xi)(n)− f(xi)(m)|
+ |f(xi)(m)− f(y)(m)|

≤ ‖x− xi‖+
ε

2
+ ‖xi − y‖

≤ ‖x‖ − ‖xi‖+
ε

2
+
ε

2
+ ‖y‖+ ‖xi‖

≤ ‖x‖+ ‖y‖+ ε.

Then we can apply Lemma 3.4 to conclude our proof.
�

Corollary 3.8. Let X be any finite dimensional Banach space whose unit ball
is a polytope. Then

A(X, c) = (0, 1].

Proof. If BX is a polytope, we can find f1, ..., fn in the unit sphere of the dual
space of X such that

BX =

n⋂
i=1

{x ∈ X: |fi(x)| ≤ 1}.

Then the map T : X → `n∞ defined by Tx = (f(xi))
n
i=1 is clearly a linear isometry

and the result follows immediately from Theorem 3.6. �

We will finish this section with a counterexample in dimension 4. We denote
by `22 ⊕1 `

2
2 the space R4 equipped with the norm:

∀(s, t, u, v) ∈ R4, ‖(s, t, u, v)‖ = (s2 + t2)1/2 + (u2 + v2)1/2.

Then we have

Theorem 3.9.

A(`22 ⊕1 `
2
2, c) = (0, 1).
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Proof. For n ∈ N, we define xn = (K2n,Kn, 0, 0) and yn = (0, 0,K2n,Kn), where
K > 1 is to be chosen. Note that

(3.7) ∀n ∈ N, ‖xn‖ ≤ K2n +
1

2
and ‖yn‖ ≤ K2n +

1

2
.

On the other hand,

lim
K→+∞

(‖xn‖ −K2n) =
1

2
, uniformly for n ∈ N

and

lim
K→+∞

(‖xn − xm‖ − (K2n −K2m)) =
1

2
, uniformly for n > m.

Thus, we can pick K large enough, so that

(3.8) ∀n,m ∈ N ‖xn − ym‖ ≥ K2n +K2m +
7

8
.

and

(3.9) ∀n > m ∈ N ‖xn − xm‖ = ‖yn − ym‖ ≥ K2n −K2m +
3

8
.

Then we denote M = {xn: n ∈ N} ∪ {yn, n ∈ N}. We will now construct
un = f(xn) and vn = f(yn) in c so that f : M → c is 1-Lipschitz. So let n ∈ N.

For k odd and k ≤ n, set un(k) = K2n +
5

8
and un(k) = K2n +

1

4
otherwise.

For k even and k ≤ n, set vn(k) = −(K2n +
5

8
) and vn(k) = −(K2n +

1

4
)

otherwise.
We now check that f is 1-Lipschitz.

For all n > m ∈ N, ‖un − um‖∞ ≤ K2n +
5

8
− (K2m +

1

4
) = K2n −K2m +

3

8
.

Therefore, by (3.9), ‖un − um‖∞ ≤ ‖xn − xm‖.
We have, as well that ‖vn − vm‖∞ ≤ ‖yn − ym‖.
We also have that for all n,m ∈ N, ‖un − vm‖∞ = K2n +K2m +

7

8
.

Thus, (3.8) implies that ‖un − um‖∞ ≤ ‖xn − ym‖.
We have shown that f is 1-Lipschitz.

Assume now that f can be extented at 0 into a 1-Lipschitz function g and let
g(0) = w = (w(k))k≥1 ∈ c. Then it follows from (3.7) that for all odd values of

k, w(k) ≥ 1

8
and for all even values of k, w(k) ≤ −1

8
. This contradicts the fact

that w ∈ c.
�

Remark 3.10. As we already mentioned in the introduction, this seems to be the

first example of Banach spaces X and Y such that A(X,Y ) 6= Ã(X,Y ) and also
such that A(X,Y ) is not closed in (0, 1].



EXTENSION OF HÖLDER MAPS INTO SPACES OF CONTINUOUS FUNCTIONS 13

4. Maps into C(K) spaces

In this last section we show that if K is an infinite compact metric space,
then the study of the isometric extension for Lipschitz maps with values in C(K)
reduces to the results of the previous section. More precisely, we prove the
following.

Theorem 4.1. Let (X, d) be a metric space and (K, %) be an infinite compact
metric space. Then

A(X,C(K)) = A(X, c).

The main step of the proof will be to establish the following generalization of
Lemma 3.4.

Proposition 4.2. Let M be a subset of X, f : M → C(K) a contraction and
x ∈ X \M . We denote by D the diameter of K for the distance %. Then, the
following statements are equivalent:

(1) f can be extended to a contraction g: M ∪ {x} → C(K).
(2) ∀ε > 0 ∃δ > 0 such that ∀t, s ∈ K with %(t, s) < δ ∀y, z ∈M

|f(y)(t)− f(z)(s)| ≤ d(y, x) + d(z, x) + ε.

(3) ∃ϕ: [0, D] −→ [0,+∞) such that ϕ is continuous, ϕ(0) = 0 and

∀t, s ∈ K ∀y, z ∈M |f(y)(t)− f(z)(s)| ≤ d(y, x) + d(z, x) + ϕ(%(t, s)).

Proof. Suppose that (1) holds. Then (2) follows from the triangle inequality and
the fact that g(x) is uniformly continuous on K.

Assume now that (2) holds. Let us define, for λ ∈ (0, D]:

ξ(λ) = sup
y,z∈M

sup
%(t,s)≤λ

(|f(y)(t)− f(z)(s)| − d(x, y)− d(x, z)).

The function ξ is clearly non decreasing and bounded below by −2 dist (x,M).
So we can set

ξ(0) = lim
λ↘0

ξ(λ).

We have that

∀t, s ∈ K ∀y, z ∈M |f(y)(t)− f(z)(s)| ≤ d(y, x) + d(z, x) + ξ(%(t, s)).

It follows from (2) that ξ(0) ≤ 0. So, if we set ψ = ξ− ξ(0), we get that ψ is non
decreasing, ψ(0) = 0 and ψ is continuous at 0. Since ψ ≥ ξ, we still have

∀t, s ∈ K ∀y, z ∈M |f(y)(t)− f(z)(s)| ≤ d(y, x) + d(z, x) + ψ(%(t, s)).

We now define the function ϕ in the following way: ϕ(0) = 0 and for n ∈ N,
ϕ( D

n+1 ) = ψ(Dn ). We also ask ϕ to be constant equal to ψ(D) on [D2 , D], and

affine on each [ D
n+2 ,

D
n+1 ] for n ∈ N. It is now clear that ϕ is non decreasing,

continuous on [0, D] and that ψ ≤ ϕ on [0, D]. So we have

∀t, s ∈ K ∀y, z ∈M |f(y)(t)− f(z)(s)| ≤ d(y, x) + d(z, x) + ϕ(%(t, s)).

This proves that (2) implies (3).
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Suppose now that (3) holds and define, for t ∈ K,

g(x)(t) = sup
s∈K

sup
z∈M

(f(z)(s)− d(z, x)− ϕ(%(t, s))).

Fix y0 ∈M . Then, for all z ∈M and for all s ∈ K,

f(z)(s)− d(z, x)− ϕ(%(t, s)) ≤ ‖f(y0)‖C(K) + d(z, y0)− d(z, x)

≤ ‖f(y0)‖C(K) + d(x, y0).

So g(x)(t) is well defined. Further, it follows from the uniform continuity of ϕ
on [0, D] that g(x) is continuous on K.
Since ϕ(0) = 0, we have, by definition of g(x), that for all y ∈M and all t ∈ K
(4.1) f(y)(t)− g(x)(t) ≤ d(x, y).

By (3), we get that for all y, z ∈M and for all t, s ∈ K
|f(z)(s)− f(y)(t)| ≤ d(y, x) + d(z, x) + ϕ(%(t, s)),

so

f(z)(s)− d(z, x)− ϕ(%(t, s)) ≤ f(y)(t) + d(y, x),

and by taking the supremum over z and s we obtain

(4.2) g(x)(t)− f(y)(t) ≤ d(x, y).

Combining (4.1) and (4.2), we get that for all y ∈M ‖g(x)−f(y)‖C(K) ≤ d(x, y).
Thus (3) implies (1) and this ends the proof of Proposition 4.2.

�

Proof of Theorem 4.1. Since K is an infinite compact metric space, it contains a
closed subset F which is homeomorphic to the one point compactification of N.
Then, C(F ) is clearly isometric to c. On the other hand, by the linear version
of Tietze extension theorem due to K. Borsuk [3], there is a linear isometry
T : C(F ) → C(K) such that for any f in C(F ), Tf is an extension of f to K.
Let now R be the restriction operator from C(K) onto C(F ). Then P = TR is
a projection of norm 1 from C(K) onto an isometric copy of c. Therefore, it is
clear that for any metric space X, A(X,C(K)) ⊂ A(X, c).

For the other inclusion, it is enough to show that if 1 /∈ A(X,C(K)), then
1 /∈ A(X, c). So let us assume that 1 /∈ A(X,C(K)). Then there exist M ⊂ X, a
contraction f : M → C(K) and x ∈ X \M such that f can not be contractively
extended to M ∪ {x}. Thus, by Proposition 4.2, there exists ε > 0 so that for all
n ∈ N there exist tn, sn ∈ K with %(tn, sn) < 1/n and yn, zn ∈M so that

(4.3) |f(yn)(tn)− f(zn)(sn)| > d(yn, x) + d(zn, x) + ε.

Since K is compact, we may assume that the sequence (tn)n∈N is convergent.
Define now a sequence (wn)n∈N in K by setting, for n ∈ N, w2n−1 = tn and
w2n = sn. Then the sequence (wn)n∈N is convergent. So we can define a 1-
Lipschitz map h : M → c by

∀y ∈M h(y) = (h(y)(n))n∈N = (f(y)(wn)))n∈N.
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It now clearly follows from (4.3) and Lemma 3.4 that h does not have any exten-
sion to a 1-Lipschitz map from M ∪ {x} into c. Therefore 1 /∈ A(X, c).

�
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