ON THE EXTENSION OF HÖLDER MAPS WITH VALUES IN SPACES OF CONTINUOUS FUNCTIONS

GILLES LANCIEN AND BEATA RANDRIANANTOANINA*

Abstract

We study the isometric extension problem for Hölder maps from subsets of any Banach space into c_{0} or into a space of continuous functions. For a Banach space X, we prove that any α-Hölder map, with $0<\alpha \leq 1$, from a subset of X into c_{0} can be isometrically extended to X if and only if X is finite dimensional. For a finite dimensional normed space X and for a compact metric space K, we prove that the set of α 's for which all α-Hölder maps from a subset of X into $C(K)$ can be extended isometrically is either $(0,1]$ or $(0,1)$ and we give examples of both occurrences. We also prove that for any metric space X, the described above set of α 's does not depend on K, but only on finiteness of K.

1. Introduction - Notation

If (X, d) and (Y, ϱ) are metric spaces, $\alpha \in(0,1]$ and $K>0$, we will say that a map $f: X \rightarrow Y$ is α-Hölder with constant K (or in short (K, α)-Hölder) if

$$
\forall x, y \in X, \quad \varrho(f(x), f(y)) \leq K d(x, y)^{\alpha}
$$

Let us now recall and extend the notation introduced by Naor in [13]. For $C \geq 1$, $\mathcal{B}_{C}(X, Y)$ will denote the set of all $\alpha \in(0,1]$ such that any (K, α)-Hölder function f from a subset of X into Y can be extended to a $(C K, \alpha)$-Hölder function from X into Y. If $C=1$, such an extension is called an isometric extension. When $C>1$, it is called an isomorphic extension. If a ($C K, \alpha$)-Hölder extension exists for all $C>1$, we will say that f can be almost isometrically extended. So, let us define:
$\mathcal{A}(X, Y)=\mathcal{B}_{1}(X, Y), \quad \mathcal{B}(X, Y)=\bigcup_{C \geq 1} \mathcal{B}_{C}(X, Y)$, and $\widetilde{\mathcal{A}}(X, Y)=\bigcap_{C>1} \mathcal{B}_{C}(X, Y)$.
The study of these sets goes back to a classical result of Kirszbraun [10] asserting that if H is a Hilbert space, then $1 \in \mathcal{A}(H, H)$. This was extended by Grünbaum and Zarantonello [5] who showed that $\mathcal{A}(H, H)=(0,1]$. Then the complete description of $\mathcal{A}\left(L^{p}, L^{q}\right)$ for $1<p, q<\infty$ relies on works by Minty [12] and Hayden, Wells and Williams [6] (see also the book of Wells and Williams [14] for a very nice exposition of the subject). More recently, K. Ball [1] introduced a very important notion of non linear type or cotype and used it to prove a general

[^0]extension theorem for Lipschitz maps. Building on this work, Naor [13] improved the description of the sets $\mathcal{B}\left(L^{p}, L^{q}\right)$ for $1<p, q<\infty$.
In this paper, we concentrate on the study of $\mathcal{A}(X, Y)$ and $\widetilde{\mathcal{A}}(X, Y)$, when X is a Banach space and Y is a space of converging sequences or, more generally, a space of continuous functions on a compact metric space. This can be viewed as an attempt to obtain a non linear version of the results of Lindenstrauss and Pelczyński [11] and later of Johnson and Zippin ([8] and [9]) on the extension of linear operators with values in $C(K)$ spaces.
So let us denote by c the space of all real converging sequences equipped with the supremum norm and by c_{0} the subspace of c consisting of all sequences converging to 0 . If K is a compact space, $C(K)$ denotes the space of all real valued continuous functions on K, equipped again with the supremum norm. In section 2, we show that if X is infinite dimensional and Y is any separable Banach space containing an isomorphic copy of c_{0}, then $\widetilde{\mathcal{A}}(X, Y)$ is empty. On the other hand, we prove that $\mathcal{A}\left(X, c_{0}\right)=(0,1]$, whenever X is finite dimensional. In section 3, we show that for any finite dimensional space $X, \widetilde{\mathcal{A}}(X, c)=(0,1]$ and $\mathcal{A}(X, c)$ contains $(0,1)$. Then the study of the isometric extension for Lipschitz maps turns out to be a bit more surprising. Indeed, we give an example of a 4dimensional space X such that $\mathcal{A}(X, c)=(0,1)$. To our knowledge, this provides the first example of Banach spaces X and Y such that $\mathcal{A}(X, Y)$ is not closed in $(0,1]$ and also such that $\mathcal{A}(X, Y) \neq \widetilde{\mathcal{A}}(X, Y)$. On the other hand, we show that if the unit ball of a finite dimensional Banach space is a polytope, then $\mathcal{A}(X, c)=(0,1]$.
Finally, we prove in section 4 , that c is the only $C(K)$ space that one needs to consider as the image space in the study of the isometric extension problem. More precisely, we show that for every infinite compact metric space K and every metric space $X, \mathcal{A}(X, c)=\mathcal{A}(X, C(K))$.
Acknowledgments . The research on this paper started during a sabbatical visit of the second named author at the Département de Mathématiques, Université de Franche-Comté in Besançon, France. She wishes to thank all members of the Functional Analysis Group, and especially Prof. F. Lancien, for their hospitality during that visit.

2. Maps into c_{0}

It is well known that for any metric space $(X, d), \mathcal{A}(X, \mathbb{R})=(0,1]$. Indeed, if M is a subset of X and $f: M \rightarrow \mathbb{R}$ is a (K, α)-Hölder function, then a (K, α)-Hölder extension g of f on X is given for instance by the inf-convolution formula:

$$
\forall x \in X, \quad g(x)=\inf \left\{f(u)+K(d(u, x))^{\alpha}: u \in M\right\}
$$

It follows immediately that $\mathcal{A}\left(X, \ell_{\infty}\right)=(0,1]$, where ℓ_{∞} is the space of all real bounded sequences equipped with the supremum norm. Now, since there is a 2 -Lipschitz retraction from ℓ_{∞} onto c_{0} (see for instance [2, page 14]), it is clear that for any metric space $X, \mathcal{B}_{2}\left(X, c_{0}\right)=(0,1]$. Our first result shows that
the difference between the isometric and isomorphic extension problems which is revealed in [13] is extreme when c_{0} is the image space. More precisely:
Theorem 2.1. Let X be an infinite dimensional normed vector space and Y be a separable Banach space containing an isomorphic copy of c_{0}. Then

$$
\widetilde{A}(X, Y)=\emptyset
$$

Proof. By a theorem of R.C. James [7], Y contains almost isometric copies of c_{0}. So, since we are studying the almost isometric extension problem, we may as well assume that there is a closed subspace Z of Y which is isometric to c_{0}. Let $\left(e_{n}\right)$ be the isometric image in Z of the canonical basis of c_{0} and $\left(e_{n}^{*}\right)$ be the Hahn-Banach extensions to Y of the corresponding coordinate functionals (this sequence is included in the unit sphere of $\left.Y^{*}\right)$. Since Y is separable, there is a subsequence $\left(e_{n_{k}}^{*}\right)_{k \geq 1}$ which is weak*-converging to some y^{*} in the unit ball of Y^{*}.
On the other hand, by a theorem of Elton and Odell [4], there exists $\varepsilon>0$ and a sequence $\left(x_{k}\right)_{k \geq 1}$ in X such that:

$$
\forall k \quad\left\|x_{k}\right\|=1-\varepsilon \text { and } \forall k \neq l \quad\left\|x_{k}-x_{l}\right\| \geq 1
$$

Let now f be defined by $f\left(x_{k}\right)=(-1)^{k} e_{n_{k}}$. This is clearly a $(1, \alpha)$-Hölder function for any α in $(0,1]$. Let $\delta>0$ such that $(1+\delta)(1-\varepsilon)^{\alpha}<1$ and $\eta=1-(1+\delta)(1-\varepsilon)^{\alpha}>0$. Assume that f can be extended at 0 into a $(1+\delta, \alpha)-$ Hölder function g with $g(0)=y$. Then, for any even $k, e_{n_{k}}^{*}(y) \geq \eta$ and for any odd $k, e_{n_{k}}^{*}(y) \leq-\eta$. This is in contradiction with the fact that $\left(e_{n_{k}}^{*}\right)$ is weak*-converging.

We will now solve the extension problem for Hölder maps from a finite dimensional space into c_{0}. Our result is.
Theorem 2.2. If X is a finite dimensional normed vector space, then

$$
\mathcal{A}\left(X, c_{0}\right)=(0,1] .
$$

Proof. Let $\alpha \in(0,1], M \subset X$ and $f: M \rightarrow c_{0}$ be a (K, α)-Hölder function. We may assume that $K=1$ and that M is closed. It is enough to show that for any $x_{0} \in X \backslash M, f$ can be extended into a ($1, \alpha$)-Hölder function g on $M \cup\left\{x_{0}\right\}$ and we will assume that $x_{0}=0$.

Since X is finite dimensional, we can cover the unit sphere of X with B_{1}, \ldots, B_{k}, balls of radius $1 / 4$ and define

$$
C_{i}=\left\{y \in X \backslash\{0\}: \frac{y}{\|y\|} \in B_{i}\right\}
$$

Let now $x, y \in C_{i}$ so that $\|x\| \geq\|y\|$. We have

$$
\begin{equation*}
\|x-y\| \leq\left\|x-x \frac{\|y\|}{\|x\|}\right\|+\|y\|\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \leq\|x\|-\frac{1}{2}\|y\| . \tag{2.1}
\end{equation*}
$$

We denote $I=\left\{i: 1 \leq i \leq k\right.$ and $\left.C_{i} \cap M \neq \emptyset\right\}$. Since X is finite dimensional, for each i in I, we can pick x_{i} in $\overline{C_{i}} \cap M$ such that for any $x \in C_{i} \cap M,\|x\| \geq\left\|x_{i}\right\|$. Then, it follows from the inequality (2.1) that

$$
\forall i \in I \quad \forall x \in C_{i} \cap M,\left\|x-x_{i}\right\| \leq\|x\|-\frac{1}{2}\left\|x_{i}\right\| \leq\|x\|
$$

Let us now pick $\varepsilon>0$ such that $\varepsilon<\frac{1}{2} \operatorname{dist}(0, M)^{\alpha}$. Then

$$
\exists N \in \mathbb{N} \forall n>N \forall i \in I:\left|f\left(x_{i}\right)(n)\right|<\varepsilon .
$$

We will now choose $g(0)=(u(n))_{n \geq 1}$.
Since, in the metric space $\left(X,\| \|^{\alpha}\right)$, \mathbb{R}-valued contractions can be extended into contractions, we can pick $\left(\eta_{n}\right)_{n \geq 1}$ in ℓ_{∞} so that

$$
\forall n \in \mathbb{N} \forall x \in M,\left|f(x)(n)-\eta_{n}\right| \leq\|x\|^{\alpha} .
$$

For $n \leq N$, we set $u(n)=\eta_{n}$.
For $n>N$, let $\delta_{n} \in\{-1,1\}$ be the sign of η_{n}. Now we set

$$
u(n)=\delta_{n} \min \left\{\left|\eta_{n}\right|, \max _{i \in I}\left|f\left(x_{i}\right)(n)\right|\right\}
$$

Note that since I is finite and each $f\left(x_{i}\right) \in c_{0}$, we have that $g(0)=(u(n))_{n \geq 1} \in$ c_{0}.
Next we check that for all $x \in M$ and all $n>N,|f(x)(n)-u(n)| \leq\|x\|^{\alpha}$. So let $x \in M$ and $i_{0} \in I$ such that $x \in C_{i_{0}} \cap M$. We have four cases:

1) If $|f(x)(n)| \leq|u(n)|$, then

$$
|f(x)(n)-u(n)| \leq 2 \varepsilon \leq\|x\|^{\alpha} .
$$

2) If $|f(x)(n)|>|u(n)|, \operatorname{sgn}(f(x)(n))=\delta_{n}$, and $|u(n)|=\left|\eta_{n}\right|$ then, by the definition of η_{n} :

$$
|f(x)(n)-u(n)| \leq\|x\|^{\alpha}
$$

3) If $|f(x)(n)|>|u(n)|, \operatorname{sgn}(f(x)(n))=\delta_{n}$, and $|u(n)|=\max _{i \in I}\left|f\left(x_{i}\right)(n)\right| \geq$ $\left|f\left(x_{i_{0}}\right)(n)\right|$, then

$$
\begin{aligned}
|f(x)(n)-u(n)| & =|f(x)(n)|-|u(n)| \\
& \leq\left|f(x)(n)-f\left(x_{i_{0}}\right)(n)\right|+\left|f\left(x_{i_{0}}\right)(n)\right|-|u(n)| \\
& \leq\left\|x-x_{i_{0}}\right\|^{\alpha} \leq\|x\|^{\alpha} .
\end{aligned}
$$

4) If $|f(x)(n)|>|u(n)|$ and $\operatorname{sgn}(f(x)(n)) \neq \delta_{n}$, then

$$
|f(x)(n)-u(n)|=|f(x)(n)|+|u(n)| \leq|f(x)(n)|+\left|\eta_{n}\right|=\left|f(x)(n)-\eta_{n}\right| \leq\|x\|^{\alpha} .
$$

Remark 2.3. The proof is much simpler in the case $\alpha=1$. Indeed it is enough to set $u(n)=0$ for $n>N$. Then, for $x \in M$, pick $i_{0} \in I$ such that $x \in C_{i_{0}} \cap M$. Thus, the inequality (2.1) implies that for all $n>N$:

$$
\begin{aligned}
|f(x)(n)-u(n)|=|f(x)(n)| & \leq\left|f(x)(n)-f\left(x_{i_{0}}\right)(n)\right|+\varepsilon \leq\left\|x-x_{i_{0}}\right\|+\varepsilon \\
& \leq\|x\|-\frac{1}{2}\left\|x_{i_{0}}\right\|+\varepsilon \leq\|x\| .
\end{aligned}
$$

3. Maps into c

We now consider the isometric and almost isometric extension problems for Hölder maps from a normed vector space into c. If X is infinite dimensional, this question is settled by Theorem 2.1. Therefore, throughout this section, X will denote a finite dimensional normed vector space. The study of the almost isometric extensions is then rather simple. For this purpose, we recall that, for $\lambda>1$, a Banach space Y is said to be a $\mathcal{L}_{\lambda}^{\infty}$ space if every finite dimensional subspace of Y is contained in a finite dimensional subspace F of Y which is λ isomorphic to $\ell_{\infty}^{\operatorname{dim} F}$ (namely, there is an isomorphism T from F onto $\ell_{\infty}^{\operatorname{dim} F}$ such that $\|T\|\left\|T^{-1}\right\| \leq \lambda$).
Proposition 3.1. Let X be a finite dimensional normed vector space and Y be a Banach space which is a $\mathcal{L}_{\lambda}^{\infty}$ space for any $\lambda>1$. Then

$$
\widetilde{A}(X, Y)=(0,1]
$$

In particular, for every compact space K,

$$
\widetilde{A}(X, C(K))=(0,1]
$$

Proof. Let M be a closed subset of X and $f: M \rightarrow Y$ be a (1, α)-Hölder map. We start with the following Lemma.
Lemma 3.2. For any $x \in X \backslash M$ and any $\varepsilon>0$, f admits a $(1+\varepsilon, \alpha)$-Hölder extension to $M \cup\{x\}$.
Proof. If M is compact and $\delta>0$, we pick a δ-net $\left\{x_{1}, \ldots, x_{n}\right\}$ of M and a finite dimensional subspace F of Y, containing $f\left(x_{1}\right), . ., f\left(x_{n}\right)$ such that F is $(1+\delta)$-isomorphic to some ℓ_{∞}^{m}. Then, it follows from the introductory remarks of section 2 , that there exists $y \in F$ such that for all $1 \leq i \leq n, \| f\left(x_{i}\right)-$ $y\|\leq(1+\delta)\| x_{i}-x \|^{\alpha}$. If δ was chosen small enough, then for any $z \in M$, $\|f(z)-y\| \leq(1+\varepsilon)\|z-x\|^{\alpha}$.
For a general M and a fixed $x \in X \backslash M$, we apply the compact case to the restriction of f to $M \cap K B_{X}$, for K big enough and where B_{X} denotes the closed unit ball of X.

We now finish the proof of Proposition 3.1. Let $\left(x_{n}\right)_{n \geq 1}$ be a dense sequence in $X \backslash M$. For a given $\varepsilon>0$, we pick $\left(\varepsilon_{n}\right)_{n \geq 1}$ in $(0,1)$ so that $\prod_{n \geq 1}\left(1+\varepsilon_{n}\right)<1+\varepsilon$. It follows from the above Lemma and an easy induction that \bar{f} can be extended to a $(1+\varepsilon, \alpha)$-Hölder function on $M \cup\left\{x_{n}, n \geq 1\right\}$, which in turn can be extended by density to X.

Remark 3.3. For $Y=C(K)$, there is a more concrete argument, which even allows to extend f isometrically when M is compact. We use the Inf-convolution formula and define

$$
\forall t \in K f(x)(t)=\inf _{y \in M}\left[f(y)(t)+\|x-y\|^{\alpha}\right] .
$$

Clearly, $\|f(x)-f(y)\|_{\infty} \leq\|x-y\|^{\alpha}$. Since $f(M)$ is compact in $C(K), f(x)$ is the infimum of an equicontinuous family of functions and therefore is continuous on K.

Let us now concentrate on the isometric extension problem. We will need the following characterization.

Lemma 3.4. Let (X, d) be a metric space, M a subset of $X, f: M \rightarrow c$ a contraction and $x \in X \backslash M$. Then, the following statements are equivalent:
(1) f can be extended to a contraction $g: M \cup\{x\} \rightarrow c$.
(2) $\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n, m>N \quad \forall y, z \in M$

$$
|f(y)(n)-f(z)(m)| \leq d(y, x)+d(z, x)+\varepsilon .
$$

Proof. Suppose that (1) holds. Then $(g(x)(n))_{n}$ is a Cauchy sequence. Thus

$$
\forall \varepsilon>0 \exists N \forall n, m>N \quad|g(x)(n)-g(x)(m)|<\varepsilon
$$

Since g is a contractive extension of f, we have that for all $n, m>N$ and all $y, z \in M$

$$
\begin{aligned}
&|f(y)(n)-f(z)(m)| \leq|f(y)(n)-g(x)(n)|+|g(x)(n)-g(x)(m)|+ \\
&+|g(x)(m)-f(z)(m)| \\
& \leq d(y, x)+d(z, x)+\varepsilon
\end{aligned}
$$

Suppose now that (2) holds. Define

$$
s(j)=\sup _{m \geq j} \sup _{z \in M}(f(z)(m)-d(z, x)) .
$$

Let us fix $z_{0} \in M$. Then, it is easily seen that

$$
\forall j \in \mathbb{N}, \quad|s(j)| \leq\left\|f\left(z_{0}\right)\right\|_{\infty}+d\left(x, z_{0}\right) .
$$

On the other hand $\{s(j)\}_{j \in \mathbb{N}}$ is a decreasing sequence and therefore converges. We will denote by $s(\infty)$ its limit.
In order to define $(g(x)(n))_{n \geq 1}$, we pick a sequence $\left(N_{k}\right)_{k \geq 1}$ of integers such that
(i) (2) holds with $\varepsilon=2^{-k}$ and $N=N_{k}$;
(ii) $\forall j>N_{k} \quad s(j) \leq s(\infty)+2^{-k}$;
(iii) $\forall k \in \mathbb{N} \quad N_{k+1}>N_{k}$.

Then we define $g(x)$ as follows:
(1) for $n \leq N_{1}$, let $g(x)(n)$ be any element of

$$
\begin{aligned}
\bigcap_{y \in M}[f(y)(n)-d(x, y), & f(y)(n)+d(x, y)]= \\
& {\left[\sup _{y \in M}(f(y)(n)-d(x, y)), \inf _{y \in M}(f(y)(n)+d(x, y))\right] . }
\end{aligned}
$$

(2) for $N_{k}<n \leq N_{k+1}$ we define

$$
g(x)(n)=\max \left\{\sup _{y \in M}(f(y)(n)-d(x, y)), s\left(N_{k}\right)-2^{-k}\right\} .
$$

It follows from (i) that

$$
\forall n>N_{k} \forall y \in M \quad s\left(N_{k}\right)-2^{-k} \leq f(y)(n)+d(x, y)
$$

So

$$
\forall n \in \mathbb{N} \sup _{y \in M}(f(y)(n)-d(x, y)) \leq g(x)(n) \leq \inf _{y \in M}(f(y)(n)+d(x, y))
$$

Thus $g(x) \in \ell_{\infty}$ and for all y in $M,\|g(x)-f(y)\|_{\infty} \leq d(x, y)$.
Finally, note that

$$
\forall n>N_{k} \sup _{y \in M}(f(y)(n)-d(x, y)) \leq s\left(N_{k}\right)
$$

Thus

$$
\forall n \in\left(N_{k}, N_{k+1}\right] \quad s\left(N_{k}\right)-2^{-k} \leq g(x)(n) \leq s\left(N_{k}\right)
$$

It is now clear that $(g(x)(n))_{n \geq 1}$ converges to $s(\infty)$ and therefore belongs to c.

As a first application we have
Theorem 3.5. For any finite dimensional normed vector space X

$$
(0,1) \subset \mathcal{A}(X, c)
$$

Proof. Let $0<\alpha<1, M$ a closed subset of X such that $0 \notin M$ and $f: M \rightarrow c$ be a $(1, \alpha)$-Hölder function. It is enough to show that f admits a $(1, \alpha)$-Hölder extension to $M \cup\{0\}$. For this purpose, we will apply Lemma 3.4 on the metric space $\left(X,\| \|^{\alpha}\right)$.
We fix $\varepsilon>0$ and pick $x_{0} \in M$. Since $\alpha<1$,

$$
\lim _{\|x\| \rightarrow \infty}\left[\left(\|x\|+\left\|x_{0}\right\|\right)^{\alpha}-\|x\|^{\alpha}\right]=0
$$

So, there is $K>0$ such that $\left\|x-x_{0}\right\|^{\alpha} \leq\|x\|^{\alpha}+\varepsilon / 3$ for all x so that $\|x\|>K$. Let us also choose K such that $\left\|x_{0}\right\| \leq K$. Since $M_{K}=M \cap K B_{X}$ is compact,

$$
\exists N \in \mathbb{N} \forall n, m>N \forall x \in M_{K}|f(x)(n)-f(x)(m)|<\frac{\varepsilon}{3} .
$$

Let now x and y in M.
If $x \in M_{K}$, then for all $n, m>N$:

$$
|f(x)(n)-f(y)(m)| \leq \frac{\varepsilon}{3}+\|x-y\|^{\alpha} \leq\|x\|^{\alpha}+\|y\|^{\alpha}+\frac{\varepsilon}{3} .
$$

If x and y belong to $M \backslash M_{K}$, then for all $n, m>N$:

$$
|f(x)(n)-f(y)(m)| \leq\left\|x-x_{0}\right\|^{\alpha}+\left\|y-x_{0}\right\|^{\alpha}+\frac{\varepsilon}{3} \leq\|x\|^{\alpha}+\|y\|^{\alpha}+\varepsilon
$$

Then the conclusion follows directly from Lemma 3.4.
We will now see that the possibility of extending isometrically all Lipschitz maps from a finite dimensional space into c may depend on the geometry of the space X. As a positive result, we have for instance

Theorem 3.6. For any $n \in \mathbb{N}$

$$
\mathcal{A}\left(\ell_{\infty}^{n}, c\right)=(0,1] .
$$

Proof. For $j \in\{1, \ldots, n\}, \delta \in\{-1,1\}$, we denote by $F_{j, \delta}$ the following ($n-$ 1 -face of the unit ball of ℓ_{∞}^{n} :

$$
F_{j, \delta}=\left\{x=\left(x_{1}, \ldots, x_{n}\right):\|x\|=1, x_{j}=\delta\right\} .
$$

Let $C_{j, \delta}$ denote the cone supported by $F_{j, \delta}$:

$$
C_{j, \delta}=\left\{x \in \ell_{\infty}^{n}: x_{j}=\delta\|x\|\right\}
$$

For $j, k \in\{1, . ., n\}, j \neq k$, and $\delta, \eta \in\{-1,1\}$ we denote by $F_{j, \delta, k, \eta}$ the ($n-2$)-face of $F_{j, \delta}$:

$$
F_{j, \delta, k, \eta}=F_{j, \delta} \cap F_{k, \eta}
$$

and by $C_{j, \delta, k, \eta}$ the corresponding cone:

$$
C_{j, \delta, k, \eta}=C_{j, \delta} \cap C_{k, \eta} .
$$

We also define a family of projections $P_{j, \delta, k, \eta}: C_{j, \delta} \longrightarrow C_{j, \delta, k, \eta}$ by

$$
P_{j, \delta, k, \eta}(x)=y, \text { where }\left\{\begin{array}{l}
y_{k}=\eta\left|x_{j}\right| \\
y_{i}=x_{i}, \text { if } i \neq k
\end{array}\right.
$$

Note that for every $x \in C_{j, \delta}, \eta\left|x_{j}\right|=\eta \delta x_{j}$, so $P_{j, \delta, k, \eta}$ is linear on $C_{j, \delta}$ and

$$
\begin{equation*}
\forall x \in C_{j, \delta} \quad\left\|P_{j, \delta, k, \eta}(x)\right\|=\|x\| \tag{3.1}
\end{equation*}
$$

Further, since for all $x \in C_{j, \delta},\left|x_{j}\right| \geq\left|x_{k}\right|$ we get

$$
\begin{equation*}
\operatorname{sgn}\left(\left(P_{j, \delta, k, \eta}(x)\right)_{k}-x_{k}\right)=\eta . \tag{3.2}
\end{equation*}
$$

We also introduce the projection $Q_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ defined by

$$
Q_{k}\left(x_{1}, . ., x_{n}\right)=\left(x_{1}, . ., x_{k-1}, x_{k+1}, . ., x_{n}\right)
$$

The following Lemma will provide us with a convenient finite covering of the space ℓ_{∞}^{n}.

Lemma 3.7. For any $M \subset X=\ell_{\infty}^{n}$, any $\varepsilon>0$ and any $j \in\{1, \ldots, n\}$, $\delta \in\{-1,1\}$, such that $C_{j, \delta} \cap M \neq \emptyset$, there exist $A_{1}, . ., A_{\mu}$ subsets of X such that

$$
\left(C_{j, \delta} \cap M\right) \subset \bigcup_{i=1}^{\mu} A_{i}
$$

and $\forall i \in\{1, . ., \mu\} \exists x^{i} \in A_{i} \cap M$ satisfying

$$
\forall x \in A_{i} \cap M \quad\left\|x-x^{i}\right\| \leq\|x\|-\left\|x^{i}\right\|+\varepsilon
$$

Proof of Lemma 3.7. We will give a proof by induction on the dimension of ℓ_{∞}^{n}. If $n=1$, the statement is clear, so let us now assume that it is satisfied for $n-1$, where $n \geq 2$.
Let $M, \bar{\varepsilon}, j$ and δ be as in the statement of Lemma 3.7. We pick an element $x^{j, \delta} \in C_{j, \delta} \cap M$ and we denote

$$
B_{j, \delta}=x^{j, \delta}+C_{j, \delta} .
$$

Note that

$$
\begin{equation*}
\forall x \in B_{j, \delta} \quad\left\|x-x^{j, \delta}\right\|=\|x\|-\left\|x^{j, \delta}\right\| . \tag{3.3}
\end{equation*}
$$

Denote $d_{j, \delta, k, \eta}=\left|\left(P_{j, \delta, k, \eta}\left(x^{j, \delta}\right)\right)_{k}-\left(x^{j, \delta}\right)_{k}\right|$. Let $x \in C_{j, \delta}$ such that for any $k \in\{1, . ., n\} \backslash\{j\}$, and any $\eta \in\{-1,1\}$,

$$
\begin{equation*}
\left|\left(P_{j, \delta, k, \eta}(x)\right)_{k}-x_{k}\right| \geq d_{j, \delta, k, \eta} \tag{3.4}
\end{equation*}
$$

Then, we claim that $x \in B_{j, \delta}$.
Indeed, by (3.2)

$$
\left|\left(P_{j, \delta, k, \eta}(x)\right)_{k}-x_{k}\right|=\eta\left(P_{j, \delta, k, \eta}(x)\right)_{k}-\eta x_{k}
$$

and

$$
\left|\left(P_{j, \delta, k, \eta}\left(x^{j, \delta}\right)\right)_{k}-\left(x^{j, \delta}\right)_{k}\right|=\eta\left(P_{j, \delta, k, \eta}\left(x^{j, \delta}\right)\right)_{k}-\eta\left(x^{j, \delta}\right)_{k} .
$$

Thus (3.4) implies that

$$
\eta\left(P_{j, \delta, k, \eta}(x)\right)_{k}-\eta\left(P_{j, \delta, k, \eta}\left(x^{j, \delta}\right)\right)_{k} \geq \eta x_{k}-\eta\left(x^{j, \delta}\right)_{k}
$$

and hence

$$
\eta \eta \delta x_{j}-\eta \eta \delta\left(x^{j, \delta}\right)_{j}=\delta\left(x_{j}-\left(x^{j, \delta}\right)_{j}\right) \geq \eta x_{k}-\eta\left(x^{j, \delta}\right)_{k} .
$$

Since this holds for all $\eta \in\{-1,1\}$, we get that for all $k \in\{1, . ., n\} \backslash\{j\}$,

$$
\delta\left(x-x^{j, \delta}\right)_{j} \geq\left|\left(x-x^{j, \delta}\right)_{k}\right| .
$$

Thus $x-x^{j, \delta} \in C_{j, \delta}$ and $x \in B_{j, \delta}$.
Combining (3.2) and (3.4), we conclude that

$$
C_{j, \delta} \backslash B_{j, \delta} \subset \bigcup_{\substack{k \in\{1, \ldots, n\} \backslash\{j, \eta \in\{-1,1\}}} B_{j, \delta, k, \eta}
$$

where

$$
B_{j, \delta, k, \eta}=\left\{x \in C_{j, \delta}:\left(\left(P_{j, \delta, k, \eta}(x)\right)_{k}-x_{k}\right) \in \eta\left[0, d_{j, \delta, k, \eta}\right)\right\}
$$

Now, for each $k \in\{1, . ., n\} \backslash\{j\}$, and $\eta \in\{-1,1\}$, we choose $N_{k, \eta} \in \mathbb{N}$ such that $\frac{d_{j, \delta, k, \eta}}{N_{k, \eta}}<\frac{\varepsilon}{3}$. Then we set
$\forall k \in\{1, . ., n\} \backslash\{j\} \forall \eta \in\{-1,1\} \forall \nu \in\left\{1, \ldots, N_{k, \eta}\right\}:$

$$
I_{j, \delta, k, \eta}^{\nu}=\left[\frac{(\nu-1) d_{j, \delta, k, \eta}}{N_{k, \eta}}, \frac{\nu d_{j, \delta, k, \eta}}{N_{k, \eta}}\right)
$$

and

$$
B_{j, \delta, k, \eta}^{\nu}=\left\{x \in C_{j, \delta}:\left(\left(P_{j, \delta, k, \eta}(x)\right)_{k}-x_{k}\right) \in \eta I_{j, \delta, k, \eta}^{\nu}\right\} .
$$

So we have

$$
\begin{equation*}
C_{j, \delta} \backslash B_{j, \delta} \subset \bigcup_{\substack{k \in\{1, . ., n\} \backslash\{j\} \\ \eta \in\{-1,1\}}} \bigcup_{\nu=1}^{N_{k, \eta}} B_{j, \delta, k, \eta}^{\nu} \tag{3.5}
\end{equation*}
$$

We now fix $k \in\{1, . ., n\} \backslash\{j\}, \eta \in\{-1,1\}$ and $\nu \leq N_{k, \eta}$ such that $B_{j, \delta, k, \eta}^{\nu} \cap M \neq \emptyset$ and denote for simplicity:

$$
\begin{gathered}
B=B_{j, \delta, k, \eta}^{\nu}, I=\eta I_{j, \delta, k, \eta}^{\nu}, \widetilde{P}=P_{j, \delta, k, \eta}, P=Q_{k} \widetilde{P}, M^{\prime}=P(M \cap B) \\
\text { and } C=P\left(C_{j, \delta}\right)=Q_{k} C_{j, \delta, k, \eta}=\left\{x \in \ell_{\infty}^{n-1}: x_{\phi(j)}=\delta\|x\|\right\}
\end{gathered}
$$

where $\phi(j)=j$ if $k>j$ and $\phi(j)=j-1$ if $k<j$.
Since M^{\prime} is a non empty subset of C, our induction hypothesis yields the existence of $A_{1}^{\prime}, . ., A_{L}^{\prime} \subset C$ so that $M^{\prime} \subset \bigcup_{l \leq L} A_{l}^{\prime}$ and $\forall l \in\{1, . ., L\} \exists y^{l} \in A_{l}^{\prime} \cap M^{\prime}$ satisfying

$$
\forall y \in A_{l}^{\prime} \cap M^{\prime} \quad\left\|y-y^{l}\right\| \leq\|y\|-\left\|y^{l}\right\|+\frac{\varepsilon}{3}
$$

Now let $A_{l}=\left\{x=\left(x_{i}\right)_{i=1}^{n} \in C_{j, \delta}: P(x) \in A_{l}^{\prime}, x_{k} \in \delta \eta x_{j}-I\right\}$. We have that

$$
B \cap M \subset \bigcup_{l \leq L} A_{l}
$$

Then, for any $l \leq L$, we pick $x^{l} \in A_{l} \cap M$ such that $P\left(x^{l}\right)=y^{l}$. Note that

$$
\forall x \in A_{l} \cap M \quad\|x\|=\left|x_{j}\right|=\|P x\| \geq\left\|y^{l}\right\|-\frac{\varepsilon}{3}=\left|x_{j}^{l}\right|-\frac{\varepsilon}{3}=\left\|x^{l}\right\|-\frac{\varepsilon}{3} .
$$

Therefore

$$
\forall x \in A_{l} \cap M \quad\left|x_{j}-x_{j}^{l}\right| \leq\left|x_{j}\right|-\left|x_{j}^{l}\right|+\frac{2 \varepsilon}{3} .
$$

Now,

$$
\left\|x-x^{l}\right\|=\max \left\{\left\|P(x)-P\left(x^{l}\right)\right\|,\left|x_{k}-x_{k}^{l}\right|\right\}
$$

We have

$$
\left\|P(x)-P\left(x^{l}\right)\right\| \leq\|P(x)\|-\left\|P\left(x^{l}\right)\right\|+\frac{\varepsilon}{3}=\|x\|-\left\|x^{l}\right\|+\frac{\varepsilon}{3} .
$$

Since the diameter of I is less than $\frac{\varepsilon}{3}$, we get on the other hand that

$$
\begin{align*}
\left|x_{k}-x_{k}^{l}\right| & =\left|\left(x_{k}-\eta \delta x_{j}\right)-\left(x_{k}^{l}-\eta \delta x_{j}^{l}\right)+\eta \delta x_{j}-\eta \delta x_{j}^{l}\right| \\
& \leq \frac{\varepsilon}{3}+\left|x_{j}-x_{j}^{l}\right| \leq \varepsilon+\left|x_{j}\right|-\left|x_{j}^{l}\right|=\varepsilon+\|x\|-\left\|x^{l}\right\| . \tag{3.6}
\end{align*}
$$

So the conclusion of the lemma follows from (3.3) and (3.5).

We now proceed with the proof of Theorem 3.6. As usual, we consider a contraction $f: M \rightarrow c$, where M is a closed subset of ℓ_{∞}^{n} with $0 \notin M$. We will only show, as we may, that f can be contractively extended to $M \cup\{0\}$.
Let $\varepsilon>0$. It follows from Lemma 3.7 that there exist $A_{1}, . ., A_{\mu}$ subsets of X such that $M \subset \bigcup_{i=1}^{\mu} A_{i}$ and

$$
\forall 1 \leq i \leq \mu \exists x^{i} \in A_{i} \cap M \text { such that } \forall x \in A_{i} \cap M \quad\left\|x-x^{i}\right\| \leq\|x\|-\left\|x^{i}\right\|+\frac{\varepsilon}{2}
$$

There also exists $N \in \mathbb{N}$ such that

$$
\forall n, m>N \forall i \in\{1, . ., \mu\} \quad\left|f\left(x^{i}\right)(n)-f\left(x^{i}\right)(m)\right|<\frac{\varepsilon}{2}
$$

Let now x and y in M. Then we pick i such that $x \in A_{i}$. Thus, for all $n, m>N$

$$
\begin{aligned}
&|f(x)(n)-f(y)(m)| \leq\left|f(x)(n)-f\left(x^{i}\right)(n)\right|+\left|f\left(x^{i}\right)(n)-f\left(x^{i}\right)(m)\right| \\
& \quad+\left|f\left(x^{i}\right)(m)-f(y)(m)\right| \\
& \leq\left\|x-x^{i}\right\|+\frac{\varepsilon}{2}+\left\|x^{i}-y\right\| \\
& \leq\|x\|-\left\|x^{i}\right\|+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}+\|y\|+\left\|x^{i}\right\| \\
& \leq\|x\|+\|y\|+\varepsilon .
\end{aligned}
$$

Then we can apply Lemma 3.4 to conclude our proof.

Corollary 3.8. Let X be any finite dimensional Banach space whose unit ball is a polytope. Then

$$
\mathcal{A}(X, c)=(0,1] .
$$

Proof. If B_{X} is a polytope, we can find f_{1}, \ldots, f_{n} in the unit sphere of the dual space of X such that

$$
B_{X}=\bigcap_{i=1}^{n}\left\{x \in X:\left|f_{i}(x)\right| \leq 1\right\}
$$

Then the map $T: X \rightarrow \ell_{\infty}^{n}$ defined by $T x=\left(f\left(x_{i}\right)\right)_{i=1}^{n}$ is clearly a linear isometry and the result follows immediately from Theorem 3.6.

We will finish this section with a counterexample in dimension 4. We denote by $\ell_{2}^{2} \oplus_{1} \ell_{2}^{2}$ the space \mathbb{R}^{4} equipped with the norm:

$$
\forall(s, t, u, v) \in \mathbb{R}^{4},\|(s, t, u, v)\|=\left(s^{2}+t^{2}\right)^{1 / 2}+\left(u^{2}+v^{2}\right)^{1 / 2}
$$

Then we have

Theorem 3.9.

$$
\mathcal{A}\left(\ell_{2}^{2} \oplus_{1} \ell_{2}^{2}, c\right)=(0,1)
$$

Proof. For $n \in \mathbb{N}$, we define $x_{n}=\left(K^{2 n}, K^{n}, 0,0\right)$ and $y_{n}=\left(0,0, K^{2 n}, K^{n}\right)$, where $K>1$ is to be chosen. Note that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad\left\|x_{n}\right\| \leq K^{2 n}+\frac{1}{2} \text { and }\left\|y_{n}\right\| \leq K^{2 n}+\frac{1}{2} \tag{3.7}
\end{equation*}
$$

On the other hand,

$$
\lim _{K \rightarrow+\infty}\left(\left\|x_{n}\right\|-K^{2 n}\right)=\frac{1}{2}, \text { uniformly for } n \in \mathbb{N}
$$

and

$$
\lim _{K \rightarrow+\infty}\left(\left\|x_{n}-x_{m}\right\|-\left(K^{2 n}-K^{2 m}\right)\right)=\frac{1}{2}, \text { uniformly for } n>m
$$

Thus, we can pick K large enough, so that

$$
\begin{equation*}
\forall n, m \in \mathbb{N} \quad\left\|x_{n}-y_{m}\right\| \geq K^{2 n}+K^{2 m}+\frac{7}{8} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall n>m \in \mathbb{N} \quad\left\|x_{n}-x_{m}\right\|=\left\|y_{n}-y_{m}\right\| \geq K^{2 n}-K^{2 m}+\frac{3}{8} \tag{3.9}
\end{equation*}
$$

Then we denote $M=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{n}, n \in \mathbb{N}\right\}$. We will now construct $u_{n}=f\left(x_{n}\right)$ and $v_{n}=f\left(y_{n}\right)$ in c so that $f: M \rightarrow c$ is 1-Lipschitz. So let $n \in \mathbb{N}$. For k odd and $k \leq n$, set $u_{n}(k)=K^{2 n}+\frac{5}{8}$ and $u_{n}(k)=K^{2 n}+\frac{1}{4}$ otherwise.
For k even and $k \leq n$, set $v_{n}(k)=-\left(K^{2 n}+\frac{5}{8}\right)$ and $v_{n}(k)=-\left(K^{2 n}+\frac{1}{4}\right)$ otherwise.

We now check that f is 1-Lipschitz.
For all $n>m \in \mathbb{N},\left\|u_{n}-u_{m}\right\|_{\infty} \leq K^{2 n}+\frac{5}{8}-\left(K^{2 m}+\frac{1}{4}\right)=K^{2 n}-K^{2 m}+\frac{3}{8}$.
Therefore, by (3.9), $\left\|u_{n}-u_{m}\right\|_{\infty} \leq\left\|x_{n}-x_{m}\right\|$.
We have, as well that $\left\|v_{n}-v_{m}\right\|_{\infty} \leq\left\|y_{n}-y_{m}\right\|$.
We also have that for all $n, m \in \mathbb{N},\left\|u_{n}-v_{m}\right\|_{\infty}=K^{2 n}+K^{2 m}+\frac{7}{8}$.
Thus, (3.8) implies that $\left\|u_{n}-u_{m}\right\|_{\infty} \leq\left\|x_{n}-y_{m}\right\|$.
We have shown that f is 1 -Lipschitz.
Assume now that f can be extented at 0 into a 1-Lipschitz function g and let $g(0)=w=(w(k))_{k \geq 1} \in c$. Then it follows from (3.7) that for all odd values of $k, w(k) \geq \frac{1}{8}$ and for all even values of $k, w(k) \leq-\frac{1}{8}$. This contradicts the fact that $w \in c$.

Remark 3.10. As we already mentioned in the introduction, this seems to be the first example of Banach spaces X and Y such that $\mathcal{A}(X, Y) \neq \widetilde{\mathcal{A}}(X, Y)$ and also such that $\mathcal{A}(X, Y)$ is not closed in $(0,1]$.

4. Maps into $C(K)$ spaces

In this last section we show that if K is an infinite compact metric space, then the study of the isometric extension for Lipschitz maps with values in $C(K)$ reduces to the results of the previous section. More precisely, we prove the following.
Theorem 4.1. Let (X, d) be a metric space and (K, ϱ) be an infinite compact metric space. Then

$$
\mathcal{A}(X, C(K))=\mathcal{A}(X, c)
$$

The main step of the proof will be to establish the following generalization of Lemma 3.4.
Proposition 4.2. Let M be a subset of $X, f: M \rightarrow C(K)$ a contraction and $x \in X \backslash M$. We denote by D the diameter of K for the distance ϱ. Then, the following statements are equivalent:
(1) f can be extended to a contraction $g: M \cup\{x\} \rightarrow C(K)$.
(2) $\forall \varepsilon>0 \quad \exists \delta>0$ such that $\forall t, s \in K$ with $\varrho(t, s)<\delta \quad \forall y, z \in M$

$$
|f(y)(t)-f(z)(s)| \leq d(y, x)+d(z, x)+\varepsilon
$$

(3) $\exists \varphi:[0, D] \longrightarrow[0,+\infty)$ such that φ is continuous, $\varphi(0)=0$ and

$$
\forall t, s \in K \forall y, z \in M \quad|f(y)(t)-f(z)(s)| \leq d(y, x)+d(z, x)+\varphi(\varrho(t, s))
$$

Proof. Suppose that (1) holds. Then (2) follows from the triangle inequality and the fact that $g(x)$ is uniformly continuous on K.

Assume now that (2) holds. Let us define, for $\lambda \in(0, D]$:

$$
\xi(\lambda)=\sup _{y, z \in M} \sup _{\varrho(t, s) \leq \lambda}(|f(y)(t)-f(z)(s)|-d(x, y)-d(x, z))
$$

The function ξ is clearly non decreasing and bounded below by $-2 \operatorname{dist}(x, M)$. So we can set

$$
\xi(0)=\lim _{\lambda \searrow 0} \xi(\lambda)
$$

We have that

$$
\forall t, s \in K \forall y, z \in M|f(y)(t)-f(z)(s)| \leq d(y, x)+d(z, x)+\xi(\varrho(t, s)) .
$$

It follows from (2) that $\xi(0) \leq 0$. So, if we set $\psi=\xi-\xi(0)$, we get that ψ is non decreasing, $\psi(0)=0$ and ψ is continuous at 0 . Since $\psi \geq \xi$, we still have

$$
\forall t, s \in K \forall y, z \in M \quad|f(y)(t)-f(z)(s)| \leq d(y, x)+d(z, x)+\psi(\varrho(t, s))
$$

We now define the function φ in the following way: $\varphi(0)=0$ and for $n \in \mathbb{N}$, $\varphi\left(\frac{D}{n+1}\right)=\psi\left(\frac{D}{n}\right)$. We also ask φ to be constant equal to $\psi(D)$ on $\left[\frac{D}{2}, D\right]$, and affine on each $\left[\frac{D}{n+2}, \frac{D}{n+1}\right]$ for $n \in \mathbb{N}$. It is now clear that φ is non decreasing, continuous on $[0, D]$ and that $\psi \leq \varphi$ on $[0, D]$. So we have

$$
\forall t, s \in K \forall y, z \in M \quad|f(y)(t)-f(z)(s)| \leq d(y, x)+d(z, x)+\varphi(\varrho(t, s)) .
$$

This proves that (2) implies (3).

Suppose now that (3) holds and define, for $t \in K$,

$$
g(x)(t)=\sup _{s \in K} \sup _{z \in M}(f(z)(s)-d(z, x)-\varphi(\varrho(t, s))) .
$$

Fix $y_{0} \in M$. Then, for all $z \in M$ and for all $s \in K$,

$$
\begin{aligned}
f(z)(s)-d(z, x)-\varphi(\varrho(t, s)) & \leq\left\|f\left(y_{0}\right)\right\|_{C(K)}+d\left(z, y_{0}\right)-d(z, x) \\
& \leq\left\|f\left(y_{0}\right)\right\|_{C(K)}+d\left(x, y_{0}\right) .
\end{aligned}
$$

So $g(x)(t)$ is well defined. Further, it follows from the uniform continuity of φ on $[0, D]$ that $g(x)$ is continuous on K.
Since $\varphi(0)=0$, we have, by definition of $g(x)$, that for all $y \in M$ and all $t \in K$

$$
\begin{equation*}
f(y)(t)-g(x)(t) \leq d(x, y) \tag{4.1}
\end{equation*}
$$

By (3), we get that for all $y, z \in M$ and for all $t, s \in K$

$$
|f(z)(s)-f(y)(t)| \leq d(y, x)+d(z, x)+\varphi(\varrho(t, s))
$$

so

$$
f(z)(s)-d(z, x)-\varphi(\varrho(t, s)) \leq f(y)(t)+d(y, x)
$$

and by taking the supremum over z and s we obtain

$$
\begin{equation*}
g(x)(t)-f(y)(t) \leq d(x, y) \tag{4.2}
\end{equation*}
$$

Combining (4.1) and (4.2), we get that for all $y \in M\|g(x)-f(y)\|_{C(K)} \leq d(x, y)$. Thus (3) implies (1) and this ends the proof of Proposition 4.2.

Proof of Theorem 4.1. Since K is an infinite compact metric space, it contains a closed subset F which is homeomorphic to the one point compactification of \mathbb{N}. Then, $C(F)$ is clearly isometric to c. On the other hand, by the linear version of Tietze extension theorem due to K. Borsuk [3], there is a linear isometry $T: C(F) \rightarrow C(K)$ such that for any f in $C(F), T f$ is an extension of f to K. Let now R be the restriction operator from $C(K)$ onto $C(F)$. Then $P=T R$ is a projection of norm 1 from $C(K)$ onto an isometric copy of c. Therefore, it is clear that for any metric space $X, \mathcal{A}(X, C(K)) \subset \mathcal{A}(X, c)$.

For the other inclusion, it is enough to show that if $1 \notin \mathcal{A}(X, C(K))$, then $1 \notin \mathcal{A}(X, c)$. So let us assume that $1 \notin \mathcal{A}(X, C(K))$. Then there exist $M \subset X$, a contraction $f: M \rightarrow C(K)$ and $x \in X \backslash M$ such that f can not be contractively extended to $M \cup\{x\}$. Thus, by Proposition 4.2, there exists $\varepsilon>0$ so that for all $n \in \mathbb{N}$ there exist $t_{n}, s_{n} \in K$ with $\varrho\left(t_{n}, s_{n}\right)<1 / n$ and $y_{n}, z_{n} \in M$ so that

$$
\begin{equation*}
\left|f\left(y_{n}\right)\left(t_{n}\right)-f\left(z_{n}\right)\left(s_{n}\right)\right|>d\left(y_{n}, x\right)+d\left(z_{n}, x\right)+\varepsilon \tag{4.3}
\end{equation*}
$$

Since K is compact, we may assume that the sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ is convergent. Define now a sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ in K by setting, for $n \in \mathbb{N}, w_{2 n-1}=t_{n}$ and $w_{2 n}=s_{n}$. Then the sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ is convergent. So we can define a 1 Lipschitz map $h: M \rightarrow c$ by

$$
\left.\forall y \in M h(y)=(h(y)(n))_{n \in \mathbb{N}}=\left(f(y)\left(w_{n}\right)\right)\right)_{n \in \mathbb{N}}
$$

It now clearly follows from (4.3) and Lemma 3.4 that h does not have any extension to a 1-Lipschitz map from $M \cup\{x\}$ into c. Therefore $1 \notin \mathcal{A}(X, c)$.

References

[1] K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric and Functional Analysis, 2 (1992), 137-172.
[2] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Coloquium Publications, 48 (2000), American Mathematical Society, Providence, RI.
[3] K. Borsuk, Über Isomorphie der Funktionalraüme, Bull. Int. Acad. Polon. Sci. A, 1/3 (1933), 1-10.
[4] J. Elton, E. Odell, The unit ball of every infinite dimensional normed linear space contains $a(1+\varepsilon)$-separated sequence, Colloq. Math. 44 (1981), no 1, 105-109.
[5] F. Grünbaum, E.H. Zarantonello, On the extension of uniformly continuous mappings, Michigan Math. J. 15 (1968), 65-74.
[6] T. Hayden, J.H. Wells, L.R. Williams, On the extension of Lipschitz-Hölder maps on L^{p} spaces, Studia Math. 39 (1971), 29-38.
[7] R.C. James, Uniformly non square Banach spaces, Ann. of Math. 80 (1964), no 2, 542-550.
[8] W.B. Johnson, M. Zippin, Extension of operators from subspaces of $c_{0}(\Gamma)$ into $C(K)$ spaces, Proc. Amer. Math. Soc. 107 (1989), no 3, 751-754.
[9] W.B. Johnson, M. Zippin, Extension of operators from weak* ${ }^{*}$-closed subspaces of ℓ_{1} into $C(K)$ spaces, Studia. Math. 117 (1995), no 1, 43-55.
[10] M.D. Kirszbraun, Über die zusammenziehende und Lipschitze Transformationen, Fund. Math., 22 (1934), 77-108.
[11] J. Lindenstrauss, A. Pelczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
[12] G. Minty, On the extension of Lipschitz, Lipschitz-Hölder and monotone functions, Bull. Amer. Math. Soc., 76 (1970), 334-339.
[13] A. Naor, A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between L^{p} spaces, Mathematika 48 (2001), no 1-2, 253-271.
[14] J.H. Wells and L.R. Williams, Embeddings and Extensions in Analysis, Ergebnisse 84, Springer-Verlag (1975).

Département de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France

E-mail address: glancien@math.univ-fcomte.fr
Department of Mathematics and Statistics, Miami University, Oxford, OH 45056, USA

E-mail address: randrib@muohio.edu

[^0]: 2000 Mathematics Subject Classification. 46B20 (46T99, 54C20, 54E35).
 *Partially funded by a CFR Grant from Miami University.

