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1. Introduction

In this paper we are concerned with H 1 functional calculus in the sense of the
construction introduced by McIntosh [23] and developed recently by Cowling,
Doust, McIntosh, and Yagi [8]. Given v in �0;p�, we will use the notation
Sv � fz 2 C n f0g: jarg z j < vg to denote the open sector of angle 2v around the
half-line R�. Let X be a complex Banach space. Given a linear operator A on X
we denote by D�A�, N�A� and R�A� the domain, the kernel and the range of A
respectively. We also denote by j�A� the spectrum of A and by r�A� the resolvent
set of A.

De®nition 1.1. Let q 2 �0;p� and let A be a linear operator on X. We say
that A is pseudosectorial of type q if A is closed, D�A� is dense in X, the
spectrum j�A� is included in Sq, and

" v 2 �q;p�; $ C > 0 such that " z 2 C n Sv; kz�Aÿ z�ÿ1k< C: �1:1�
If, moreover, N�A� � f0g and R�A� is dense, we simply say that A is sectorial of
type q.

The purpose of this paper is the study of a joint H 1 functional calculus for a
pair of sectorial operators A, B on X with commuting resolvents, that is, which
satisfy

" l 2 r�A�; " m 2 r�B�; �lÿ A�ÿ1�mÿ B�ÿ1 � �mÿ B�ÿ1�lÿ A�ÿ1: �1:2�
This joint functional calculus, which was ®rst introduced by Albrecht [1], is a
natural two-variable analogue of McIntosh's H 1 functional calculus. Given two
sectorial operators A and B which are of types q and q 0 respectively and satisfy
(1.2), and two numbers m 2 �q;p�, m 0 2 �q 0;p�, it consists of de®ning a closed
and densely de®ned operator F�A; B� for any bounded analytic function
F: Sm ´ Sm 0 ! C, in a way that preserves reasonable algebraic and continuity
properties. This leads to the notion of bounded H 1 joint functional calculus for a
pair of commuting sectorial operators. See § 2 below for precise de®nitions and
basic properties.

The ®rst problem addressed in this paper is the following: what are the Banach
spaces X for which �A; B� admits a bounded H 1 joint functional calculus as soon
as A and B each admit a bounded H 1 functional calculus? In [1], Albrecht proves
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that this is the case if X is an Lp-space, with 1 < p < �1. We extend this result to
a class of Banach spaces containing, in particular, every Banach space having
local unconditional structure and also every quotient of subspaces of B-convex
Banach lattices.

Later in the paper we apply these results to the study of the sum and the
product of two commuting sectorial operators A and B. As usual, the operators
A� B and AB are here understood with their natural domains:

D�A� B� � D�A�Ç D�B�; �1:3�
D�AB� � fx 2 D�B�: Bx 2 D�A�g: �1:4�

We recall that the assumption (1.2) ensures that D�A� B� and D�AB� are dense
and that A� B and AB are closable operators (see, for example, [30]).

Assume now that the sum of the types of A and B is strictly less than p. Then
a classical problem, which goes back at least to [9], is to determine conditions
under which A� B is closed. This problem turns out to be strongly related to
joint functional calculus. Indeed the closedness of A� B is implied by the
boundedness of A�A� B�ÿ1, which is equivalent to boundedness of F�A; B�,
where F�z; z 0� � z�z� z 0�ÿ1 (see Proposition 2.7 below). A remarkable theorem of
Dore and Venni [11] (completed by PruÈss and Sohr [30]) asserts that A� B is
closed under the following conditions:

(i) the Banach space X has the UMD property (that is, the Hilbert transform is
bounded on L2�R; X �), and

(ii) A and B each admit bounded imaginary powers and there exist four
positive constants K, K 0, m, m 0, such that m� m 0 < p and kAisk< Kem j s j,
kBisk< K 0em 0j s j for all s in R.

Furthermore, it is proved in [12, 30] that under these conditions, A� B and AB
actually admit bounded imaginary powers. We will obtain in § 4 the following
H 1 functional calculus analogue of the Dore±Venni±PruÈss±Sohr theorem. Note
however that the geometric assumption on X in Theorem 1.2 is different from the
UMD property.

Theorem 1.2. Let X be a Banach space. Assume that X is either a Banach
lattice or the quotient of two subspaces of a B-convex Banach lattice ( for
instance, a quotient of subspaces of Lp, where 1 < p < �1). Let A and B be two
sectorial operators on X, with commuting resolvents. Assume that A admits a
bounded H 1�Sm� functional calculus, B admits a bounded H 1�Sm 0 � functional
calculus, and m� m 0 < p.

Then A� B is a sectorial operator (in particular, A� B is closed) and

(i) for any n > Maxfm; m 0g, A� B admits a bounded H 1�Sn� functional
calculus,

(ii) for any n > m� m 0, AB admits a bounded H 1�Sn� functional calculus.

In the last two sections of this paper, we study another variant of McIntosh's
functional calculus which also leads to the study of the boundedness of
A�A� B�ÿ1 (for two commuting operators A and B) and discuss some connections
with the study of maximal regularity (in the Lp-sense) for the Cauchy problem.
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Let A be a sectorial operator on a B-convex Banach lattice L (for example, L is
an Lp-space with 1 < p < �1) and let A be its natural extension to L�H �, where
H is a Hilbert space. Assume that A (or equivalently A) admits a bounded
H 1�Sm� functional calculus. The main result in § 5 says that for any n > m, this
functional calculus extends in a natural way to a bounded Banach algebra
homomorphism from H 1�Sn; B�H �� into B�L�H ��.

Let us now recall the de®nition of maximal regularity, to which we apply this
result. Note that with the terminology introduced in De®nition 1.1, a linear
operator B on a Banach space X is pseudosectorial of type strictly less than 1

2
p if

and only if �ÿB� is the in®nitesimal generator of a bounded holomorphic
semigroup on X; see, for example, [16].

De®nition 1.3. Let T > 0 and 1 < p < �1 be two numbers. Let X be a
Banach space and let B be a pseudosectorial operator of type strictly less than 1

2
p

on X. Then B is said to have the maximal regularity property if there exists C > 0
such that for any f in Lp�0; T; X � there exists a unique function u in
W

1;p
0 �0; T; X �Ç Lp�0; T; D�B�� satisfying

u 0 � Bu � f on �0; T � and kuk< Ck f k:

It is well known that this property does not depend on 1 < p < �1 and
0 < T < �1. Moreover, if X is a Hilbert space, then any B as above has the
maximal regularity property. This is due to De Simon [10]. It is an open problem
to decide whether any pseudosectorial operator of type less than 1

2
p has the

maximal regularity property on Lp for 1 < p 6� 2 < �1. However great progress
was made by Dore and Venni [11] (see also [30]) by means of their theorem
quoted above. Indeed they proved that if X is a UMD Banach space (in particular,
if X � Lp, for 1 < p < �1), and if B admits bounded imaginary powers which
satisfy kBisk< K 0em 0j s j for some constants K 0 > 0 and 0 < m 0 < 1

2
p, then B has the

maximal regularity property.
In the following theorem, which will be proved in § 5, we obtain a suf®cient

condition for maximal regularity which combines the results of De Simon and
Dore and Venni, at least to some extent.

Theorem 1.4. Let �Q1; m1� be a measure space and let 1 < q < �1. Let H be
a Hilbert space and B an operator on Lq�Q1; m1� with a bounded H 1�Sm�
functional calculus for some m < 1

2
p. Let C be any pseudosectorial operator of

type strictly less than 1
2
p on H. Let ÄB and ÄC be the closures, which exist, of

B
 IH and IL q 
 C respectively.
Then ÄB� ÄC is a sectorial operator of type strictly less than 1

2
p with the

maximal regularity property.

This result can be interpreted as follows. Let �Tt�t > 0 be a bounded holomorphic
semigroup on X � Lq�Q1; m1; H �. Assume that �Tt�t > 0 is obtained as a tensor
product, that is, for any t > 0, Tt is the closure of Ut 
 Vt where �Ut�t > 0 and
�Vt�t > 0 are two bounded holomorphic semigroups de®ned on Lq�Q1; m1� and H
respectively. Then to obtain the maximal regularity property for the negative
generator of �Tt�t > 0, it suf®ces to know that, for some m < 1

2
p, the negative

generator of �Ut�t > 0 has a bounded H 1�Sm� functional calculus on Lq�Q1; m1�.
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2. Preliminaries

First, we introduce the main notation. For v in �0;p�, we denote by Gv the
oriented contour de®ned by

Gv�t � � ÿteiv if ÿ1 < t < 0;

teÿiv if 0 < t < �1:

(
We will also often use the function J de®ned on C n fÿ1g by J�z� � z =�1� z�2.

In order to study the boundedness of special operators such as A�A� B�ÿ1, it
will be useful to use a variant of McIntosh's one-variable H 1 functional calculus.
To de®ne it, we replace scalar-valued holomorphic functions by operator-valued
holomorphic functions.

Given m 2 �0;p� and a Banach space E, we will denote by H 1�Sm; E � the Banach
space of bounded holomorphic functions f : Sm ! E, equipped with the norm

k f k � Supfk f �z�kE: z 2 Smg:
Let A be a sectorial operator of type q �0 < q < p� on a complex Banach space X.
The commutant of A, denoted EA, is de®ned to be the closed subalgebra of B�X �,

EA � fT 2 B�X �: T�lÿ A�ÿ1 � �lÿ A�ÿ1T ; l 2 r�A�g:
It is easy to check that a bounded operator T on X belongs to EA as soon as it
commutes with �lÿ A�ÿ1 for one element l in r�A�.

Let m > q and let E be a closed subalgebra of EA. We now consider H 1
0 �Sm; E� , the

space of all f in H 1�Sm; E � for which there exists s > 0 such that Jÿsf belongs to
H 1�Sm; E�. Let v be in �q; m�. Then for any f in H 1

0 �Sm; E �, we can de®ne

uA� f � �
1

2pi

Z
Gv

f �l��lÿ A�ÿ1 dl �2:1�

which is an integral converging in B�X � and whose value does not depend on the
choice of v.

Now observe that the operator uA�J� � J�A� � A�I � A�ÿ2 is one-to-one with
range D�A�Ç R�A�, which is a dense subspace of X since A is a sectorial
operator; see [30]. Let f be any function in H 1�Sm; E�. The product function fJ
belongs to H 1

0 �Sm; E �. Hence it makes sense to de®ne

uA� f � � J�A�ÿ1uA� fJ� �2:2�
with domain given, via (1.4), by

D�uA� f �� � fx 2 X: uA� f J�x 2 D�A�Ç R�A�g:
From the inclusion E Ì EA, it follows easily that uA is an algebra homomorphism
from H 1

0 �Sm; E � into B�X �. This implies that for any f in H 1�Sm; E �, D�uA� f ��
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contains R�J�A�� � D�A�Ç R�A� and is therefore dense. Since J�A� is bounded,
uA� f � is a closed operator. Then, by the closed graph theorem, uA� f � is bounded
if and only if D�uA� f �� � X.

We say that A admits a bounded H 1�Sm; E � functional calculus if uA� f � is
bounded for any f 2 H 1�Sm; E �. These de®nitions coincide with those in [8,
23] in the case when E � SpanfIXg. As in that case, the fundamental proposition
is as follows.

Proposition 2.1. The following assertions are equivalent:

(i) A admits a bounded H 1�Sm; E � functional calculus;

(ii) there exists C > 0 such that for all f 2 H 1
0 �Sm; E �, kuA� f �k< Ck f kH 1�Sm; E �;

(iii) there exists C > 0 such that for all f 2 H 1�Sm; E�, uA� f � 2 B�X � and
kuA� f �k< Ck f kH 1�Sm; E �.

In this case, uA is a (bounded) homomorphism on H 1�Sm; E�.
Of course when E � SpanfIXg, we merely speak of H 1�Sm� functional calculus

instead of H 1�Sm; E � functional calculus.
If A is pseudosectorial and if (ii) is satis®ed, we will say that A admits a

bounded H 1
0 �Sm; E � functional calculus.

We now turn to the de®nition of the joint H 1 functional calculus. The
following construction was ®rst introduced by Albrecht [1]. It is entirely parallel
to McIntosh's one-variable construction.

Given m, m 0 2 �0;p�, we denote by H 1�Sm ´ Sm 0 � the Banach algebra of all
bounded holomorphic scalar-valued functions on Sm ´ Sm 0 and we de®ne F by

F�z; z 0� � J�z�J�z 0� � z z 0

�1� z�2�1� z 0�2 :

Then we de®ne

H 1
0 �Sm ´ Sm 0 � � fF 2 H 1�Sm ´ Sm 0 �: $ s > 0; FÿsF 2 H 1�Sm ´ Sm 0 �g:

Let A and B be two sectorial operators on a Banach space X, of types q and q 0

respectively, with commuting resolvents. For m > q, m 0 > q 0, and F 2
H 1

0 �Sm ´ Sm 0 � one de®nes

F�A; B� � ÿ 1

4p2

Z
Gv ´ Gv 0

F�l;l0��lÿ A�ÿ1�l0 ÿ B�ÿ1 dl dl 0 �2:3�
with �v; v 0� 2 �q;m� ´ �q 0; m 0�. This integral converges in B�X � and does not
depend on the choice of �v; v 0�. To de®ne F�A; B� for general F we proceed as in
the one-variable case. For any F in H 1�Sm ´ Sm 0 �, the function FF belongs to
H 1

0 �Sm ´ Sm 0 �; hence we may set

F�A; B� � F�A; B�ÿ1�FF��A; B�: �2:4�
This makes sense since F�A; B� is one-to-one.

As in the ®rst situation, the calculus associated with �A; B� on Sm ´ Sm 0 by the
formula (2.3) de®nes an algebra homomorphism from H 1

0 �Sm ´ Sm 0 � into B�X �. To
go further, we need the auxiliary functions Jn and Fn de®ned for all n > 1 by

Jn�z� �
n2z

�n� z��1� nz� and Fn�z; z 0� � Jn�z�Jn�z 0�:
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Lemma 2.2. For any k > 1, we let Rk � R�Fk�A; B��. Then

(i) for all k > 1 and all x 2 X, limn!1 Fk
n�A; B�x � x,

(ii) for all k > 1 and all n > 1, R�Fk
n �A; B�� � Rk,

(iii) for all k > 1, Rk is dense in X,

(iv) for all k > 1, Fk�A; B� is a bounded, one-to-one operator with dense range.

Proof. It is well known that when A and B are sectorial, then, for any x in X,
limn!1 Jn�A�x � limn!1 Jn�B�x � x (see, for example, [29, § 8.1]). Moreover
the sequences �Jn�A��n > 1, �Jn�B��n > 1 are bounded, whence the result (i) follows.
The rest of the lemma is then clear.

Let F 2 H 1�Sm ´ Sm 0 � and let F�A; B� be de®ned by (2.4). It is a closed
operator for the domain de®ned by D�F�A; B�� � fx 2 X: �FF��A; B� 2 R1g. By the
homomorphism property, D�F�A; B�� contains R1; hence it is dense in X by
Lemma 2.2. Consequently, F�A; B� is bounded if and only if D�F�A; B�� � X.
Moreover the de®nitions (2.3) and (2.4) are consistent for F in H 1

0 �Sm ´ Sm 0 �.
We will now prove, for completeness, a useful convergence lemma, which is a

variant of the usual convergence lemma due to McIntosh [23].

Lemma 2.3. Let �Fn�n > 1 be a bounded sequence in H 1
0 �Sm ´ Sm 0 � and F be in

H 1�Sm ´ Sm 0 � such that �Fn�n > 1 converges pointwise to F on Sm ´ Sm 0 . Then:

(i) for all x 2 R1, limn!1 kFn�A; B�xÿ F�A; B�xk � 0;

(ii) if, moreover, supn > 1 kFn�A; B�k is ®nite, then F�A; B� is bounded.

Proof. Let us denote G � FF and Gn � FnF. For x in R1, there is y 2 X such
that x � F�A; B�y. So

kFn�A; B�xÿ F�A; B�xk
� kGn�A; B�yÿ G�A; B�yk

� 1

4p2

Z
Gv ´ Gv 0

�Gn�l; l0� ÿ G�l; l0���lÿ A�ÿ1�l0 ÿ B�ÿ1y dl dl0
 ;

for some �v; v 0� 2 �q; m� ´ �q 0; m 0�. Now, (i) follows from Lebesgue's dominated
convergence theorem and then (ii) is clear.

We say that �A; B� admits a bounded H 1�Sm ´ Sm 0 � joint functional calculus if

F�A; B� is a bounded operator for any F in H 1�Sm ´ Sm 0 �. By combining Lemma
2.3 and the closed graph theorem as in [23], one can transfer Proposition 2.1 to
the two-variable setting.

Proposition 2.4. The following assertions are equivalent:

(i) �A; B� admits a bounded H 1�Sm ´ Sm 0 � joint functional calculus;

(ii) there exists C > 0 such that for all F 2 H 1
0 �Sm ´ Sm 0 �, kF�A; B�k <

CkFkH 1�Sm ´ Sm 0 �;
(iii) there exists C > 0 such that for all F 2 H 1�Sm ´ Sm 0 �, F�A; B� 2 B�X � and

kF�A; B�k< CkFkH 1�Sm ´ Sm 0 �.
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In this case, the map F 7! F�A; B� is a (bounded) homomorphism on
H 1�Sm ´ Sm 0 �.

Next we indicate how one can in a standard way extend this calculus to an
even larger class than H 1�Sm ´ Sm 0 �, namely the class of all analytic functions of
polynomial growth on Sm ´ Sm 0 . Let P be an analytic function on Sm ´ Sm 0 ; we say
that P is of polynomial growth if there is k in N such that PFk 2 H 1

0 �Sm ´ Sm 0 �.
For such a function P, we de®ne P�A; B� � F�A; B�ÿk�PFk��A; B�. By the
homomorphism property, this de®nition does not depend on k such that
PFk 2 H 1

0 �Sm ´ Sm 0 � and by Lemma 2.2 we immediately obtain the following.

Proposition 2.5. Let A and B be two sectorial operators on X with respective
types q and q 0 and with commuting resolvents. Let �m; m 0� 2 �q;p� ´ �q 0;p� and P
be an analytic function of polynomial growth on Sm ´ Sm 0 . Then P�A; B� is a
closed operator whose domain is dense in X.

We will now state two propositions that will be very useful for our applications
to maximal regularity problems.

Proposition 2.6. Let A be a sectorial operator of type q and B a
pseudosectorial operator of type q 0, whose resolvents commute. Assume
q� q 0 < p. Then R�A� B� is dense in X and A� B is injective.

Now let q < m < pÿ q 0. If we de®ne f in H 1�Sm; EA� by f �z� � z�z� B�ÿ1,
then the following assertions are equivalent:

(i) uA� f � 2 B�X �;
(ii) A� B is a closed operator and

$ C > 0 such that " x 2 D�A�Ç D�B�; kAxk< CkAx� Bxk: �2:5�

Proof. Let q < m < pÿ q 0. Consider j and t in H 1
0 �Sm; EA� de®ned by

j�z� � �z� B��1� B�ÿ1J2�z� and t�z� � �z� B�ÿ1J2�z�:

The homomorphism property yields �1� B�ÿ1J4�A� � uA�j�uA�t�. Since uA�j� �
�A� B��1� B�ÿ1J2�A�, we deduce that R��1� B�ÿ1J4�A�� Ì R�A� B�. Consider
now x � �1� B�ÿ1y in D�B�. Since �1� B�ÿ1J4

n�A�y! x, we see that
R��1� B�ÿ1J4�A�� is dense in D�B� and therefore dense in X. Consequently
R�A� B� is dense in X.

Now let x be in N�A� B�. There exists a sequence �xn� in D�A�Ç D�B�
such that xn ! x and �A� B�xn ! 0. Passing to the limit in the equality
�1� B�ÿ1J4�A�xn � uA�j�uA�t�xn, one obtains �1� B�ÿ1J4�A�x � 0, and therefore
x � 0. This proves the ®rst part of the proposition.

Turning to the second part, we will now show that

" x 2 D�A�Ç D�B�; uA� fJ��A� B�x � J�A�Ax: �2:6�
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So let x 2 D�A�Ç D�B�; then given v in �q; m�, we have

uA� fJ2��A� B�x � 1

2pi

Z
Gv

J2�l�l�l� B�ÿ1�lÿ A�ÿ1�A� B�x dl (by (2.1))

� 1

2pi

Z
Gv

lJ2�l��lÿ A�ÿ1x dlÿ 1

2pi

Z
Gv

lJ2�l��l� B�ÿ1x dl

� AJ2�A�x (by Cauchy's theorem).

Since x 2 D�A�, we obtain J�A�uA� f J��A� B�x � J2�A�Ax. Then (2.6) follows
from the injectivity of J�A�.

Let us show that (i) implies (ii). We assume that uA� f � is bounded. Then it
follows again from the injectivity of J�A� that for any x 2 D�A�Ç D�B�,
uA� f ��A� B�x � Ax. This clearly implies (2.5) and the closedness of A� B can
then be deduced in the usual way.

Assume now that the assertion (ii) is satis®ed. From (2.6) it follows that

" y 2 J�A��R�A� B��; kuA� f �yk< Ckyk:

So we can conclude our proof by showing that J�A��R�A� B�� is dense in X.
Since R�A� B� � X, it is enough to prove that J�A��R�A� B�� is dense in
R�A� B�. This relies on the following standard arguments: let x � �A� B�y in
R�A� B�; then xn � Jn�A�x! x and xn 2 J�A��R�A� B��.

With essentially the same proof, we obtain the following result.

Proposition 2.7. Let A and B be two sectorial operators with commuting
resolvents and respective types q and q 0. Assume q� q 0 < p and let q < m < pÿ q 0

and q 0 < m 0 < pÿ m. De®ne F in H 1�Sm ´ Sm 0 � by F�z; z 0� � z =�z� z 0� for any
�z; z 0� 2 Sm ´ Sm 0 . Then the following assertions are equivalent:

(i) F�A; B� 2 B�X �;
(ii) A� B is a closed operator and

$ C > 0 such that " x 2 D�A�Ç D�B�; kAxk< CkAx� Bxk:

We will continue this section by ®xing some notation and recalling some
de®nitions related to the general geometric properties of the Banach spaces that
we will consider in this paper.

De®nition 2.8. Let X be a Banach space and denote by rn�t� �
sign�sin�2npt��, for n > 1, the Rademacher functions on the interval I � �0; 1�.

(i) We say that X is of type p, for 1 < p < 2, if there is a constant C such that
for all ®nite subsets fx1; . . . ; xng of X,Xn

i�1

ri xi


L1�I; X �

< C

�Xn

i�1

kxikp

�1=p

:

(ii) We say that X is of cotype q, for 2 < q < �1, if there is a constant C
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such that for all ®nite subsets fx1; . . . ; xng of X,�Xn

i�1

kxikq

�1=q

< C

Xn

i�1

ri xi


L1�I; X �

:

(iii) We say that a Banach space X is B-convex if it is of type p, for some p > 1.

Finally, we recall an interpolation theorem of Carleson. For convenience,
we will transpose to Sp=2 the statement that can be found in [15] for the upper
half plane.

Theorem 2.9 (Carleson). Let �zj�j > 1 be a sequence in Sp=2. Then the
following conditions are equivalent:

(i) there is d > 0 such that

" k > 1;
Y
j 6� k

zk ÿ zj

zk � Åzj

���� ����> d; �2:7�

(ii) there exist a sequence � fj�j > 1 in H 1�Sp=2� and a constant M > 0 such that

" j > 1; fj�zj� � 1; " k 6� j; fj�zk� � 0;

and " z 2 Sp=2;
X
j > 1

j fj�z�j< M:
�2:8�

Such a sequence �zj�j > 1 is called an interpolating sequence in Sp=2. Indeed, let
Y be a Banach space and �yj�j > 1 a bounded sequence in Y . Then the function f
de®ned on Sp=2 by f �z� �Pj > 1 fj�z�yj satis®es the following properties:

f 2 H 1�Sp=2; Y �; k f kH 1�Sp= 2; Y � < M sup
j > 1

kyjk and " j > 1; f �zj� � yj: �2:9�

3. On Banach spaces with the joint calculus property

In this section we describe large classes of Banach spaces having the following
property.

De®nition 3.1. We say that a Banach space X has the joint calculus property
if whenever A and B are sectorial operators on X with commuting resolvents,
which are of types q and q 0 respectively and admit a bounded H 1�Sm� or
H 1�Sm 0 � respectively, functional calculus (where 0 < q < m and 0 < q 0 < m 0), then
�A; B� admits a bounded H 1�Sb ´ Sb 0 � joint functional calculus for any �b; b 0� in
�m;p� ´ �m 0;p�.

Let us ®rst mention that there exist Banach spaces without the joint calculus
property. For example, it can be deduced from [24] that the Banach space of all
compact operators on ,2 does not have this property. As we mentioned in our
introduction, Albrecht [1] proved that Lp-spaces, with 1 < p < 1, have the joint
calculus property. Recently, Franks and McIntosh [14] obtained a simpler proof
of Albrecht's theorem based on a decomposition result for analytic functions.
Since this decomposition will be an important tool in this section, we now recall
it precisely.
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Franks and McIntosh [14, § 3] proved the following: for any �m; m 0� in
�0;p� ´ �0;p� and any �b; b 0� in �m;p� ´ �m 0;p�, there are a constant C > 0 and
sequences �wi�i > 0, � Äwi�i > 0 in H 1

0 �Sm�, and �Jj�j > 0, � ÄJj�j > 0 in H 1
0 �Sm 0 � such that

" p > 0; sup
Sm

X
i > 0

jwijp; sup
Sm

X
i > 0

j Äwij p; sup
Sm 0

X
j > 0

jJjj p; and

sup
Sm 0

X
j > 0

j ÄJjj p are finite,
�3:1�

and for all h 2 H 1�Sb ´ Sb 0 �, there exists �ai; j� 2 CN2

such that for all z �
�z1; z2� 2 Sm ´ Sm 0 ,

h�z� �
X

i; j > 0

ai; j wi�z1� Äwi�z1�Jj�z2� ÄJj�z2�;

with sup
i; j > 0

jai; j j< CkhkH 1�Sb ´ Sb 0 �:
�3:2�

A complete reference for the notions of geometry of Banach spaces that we will
use can be found in [20, 21, 28]. However, we will recall a few de®nitions. We
say that a Banach space X has a local unconditional structure (l.u.st.) if there is a
constant l such that for any ®nite-dimensional subspace F of X, there is a space
E with an unconditional basis �en� and there are operators A 2 B�F; E � and
B 2 B�E; X � such that BA is the canonical embedding of F into X and
kAk kBkK < l, where K is the unconditional basis constant of �en�. Any
Banach lattice has this property and it is even known (see [13]) that a Banach
space has l.u.st. if and only if its bidual is isomorphic to a complemented
subspace of a Banach lattice. We will also consider the following class of Banach
spaces, introduced by Pisier [25]: a Banach space X has property �a� if there
exists a constant C > 0 such that the inequality X

1 < i; j < n

ai; j�ri 
 rj�xi; j


L2�I ´ I; X �

< C sup
1 < i; j < n

jai; jj
 X

1 < i; j < n

�ri 
 rj�xi; j


L2�I ´ I; X �

�a�

is satis®ed for every integer n and every choice of �ai; j� in Cn2

and �xi; j� in X n2

(where �rn� denotes the sequence of Rademacher functions on I � �0; 1�).
The main results of this section are the following.

Theorem 3.2. Every Banach space with a local unconditional structure has
the joint calculus property.

Theorem 3.3. Let X be a Banach space such that X or X � has property �a�.
Then X has the joint calculus property.

Before proceeding with the proofs of these theorems we need to introduce a
technical intermediate property: we say that a Banach space X satis®es property

(A) if there is a constant C > 0 such that, for any n in N, �ai; j� in Cn2

, �xi; j� in
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X n2

and �x�i; j� in �X ��n2

,���� X
1 < i; j < n

ai; j kxi; j; x�i; j l
����< C sup

1 < i; j < n

jai; j j

´
 X

1 < i; j < n

�ri 
 rj�xi; j


L2�I ´ I; X �

´
 X

1 < i; j < n

�ri 
 rj�x�i; j


L2�I ´ I; X ��

: �A�

Then the proofs of both Theorems 3.2 and 3.3 rely on the following.

Proposition 3.4. If a Banach space X satis®es property (A), then it has the
joint calculus property.

Proof. We keep the notation introduced in De®nition 3.1 and apply the
analytic decomposition given by (3.1) and (3.2).

To any h in H 1�Sb ´ Sb 0 �, we associate the partial sums of its decomposition
given by (3.2), namely, hn �

P
1 < i; j < n ai; j�wi

Äwi 
 Jj ÄJj� for all n > 1. By Lemma
2.3, in order to show that �A; B� admits a bounded H 1�Sb ´ Sb 0 � functional
calculus, it is enough to ®nd a constant K > 0 such that

" h 2 H 1�Sb ´ Sb 0 �; " n > 1; khn�A; B�k< KkhkH 1�Sb ´ Sb 0 �: �3:3�
So, let x 2 X and x� 2 X �. Then

jkhn�A; B�x; x� lj �
���� X

1 < i; j < n

ai; j kwi�A�Jj�B�x; Äwi�A�� ÄJj�B��x� l
����

< CkhkH 1�Sb ´ Sb 0 �

 X
1 < i; j < n

�ri 
 rj�wi�A�Jj�B�x


L2�I ´ I; X �

´
 X

1 < i; j < n

�ri 
 rj� Äwi�A�� ÄJj�B��x�


L2�I ´ I; X ��
;

by (3.2) and property (A) for X . Now, ®x �s; t� 2 I ´ I. Using the fact that A and
B admit a bounded H 1 functional calculus on Sm and Sm 0 , respectively, we have X

1 < i; j < n

ri �s�rj �t�wi �A�Jj �B�x


X

<

 X
1 < i < n

ri �s�wi �A�


B�X �

 X
1 < j < n

rj �t�Jj �B�


B�X �
kxk

< K1

 X
1 < i < n

ri �s�wi


H 1�Sm�

 X
1 < j < n

rj �t�Jj


H 1�Sm 0 �

kxk

< K2kxk by (3.1).
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Therefore  X
1 < i; j < n

�ri 
 rj�wi�A�Jj�B�x


L2�I ´ I; X �
< K2kxk:

Similarly  X
1 < i; j < n

�ri 
 rj� Äwi �A�� ÄJj�B��x�


L2�I ´ I; X ��
< K3kx�k;

whence (3.3) follows.

It follows rather easily from Goldstine's Lemma that if a Banach space X has
property (A), so does its dual. Since the converse implication is obvious, we can
state the following.

Lemma 3.5. Let X be a Banach space. Then X has property (A) if and only if
its dual X � has property (A).

Proof of Theorem 3.2. Applying Proposition 3.4, we wish to show that any
Banach space with a local unconditional structure satis®es property (A). We know
that a Banach space has l.u.st. if and only if its bidual is isomorphic to a
complemented subspace of a Banach lattice [13]. Moreover, it is clear that if X
satis®es property (A), so does any complemented subspace of X. By Lemma 3.5,
it is therefore enough to show that any Banach lattice satis®es property (A).

Let X be a Banach lattice. Then for any �ai; j� 2 Cn2

, �xi; j� 2 X n2

and �x�i; j� 2 �X ��n
2

,X
ai; j kxi; j; x�i; j l

��� ���< sup jai; j j
X
jxi; j j2

� �1=2 
X

X
jx�i; jj2

� �1=2 
X �:

�3:4�

Let us say a word about the meaning of this inequality. If the reader is not a
specialist in Banach lattices, a good way to get some intuition is to imagine X
(and then X �) as a function lattice on a measure space Q. Then, the quantityÿP jxi; j �q�j2

�1=2
makes sense for almost every q in Q and turns out to de®ne an

element of X. The above inequality is thus a consequence of the pointwise
application of the Cauchy±Schwarz inequality. A meaning can also be given toÿP jxi; j j2

�1=2
in general Banach lattices (see [21] for complete details) and the

previous inequality holds true as well.
The following two-variable version of Khintchine's inequality is well known:

$ C such that " �ai; j�1 < i; j < n 2 Cn2

;
X
jai; j j2

� �1=2
<C

X
ai; j ri 
 rj

 
L1�I ´ I �:

This can be viewed as a particular case of Kahane's inequality (see, for example,
[21, p. 74]). The latter inequality implies that, for any �xi; j� in X n2

,�X jxi; j j2
�1=2

X

< C

Z
I 2

����X ri �t�rj �s�xi; j

���� ds dt


X

whence �X jxi; j j2
�1=2

X

< C

X �ri 
 rj�xi; j


L2�I 2; X �

: �3:5�

The inequalities (3.4) and (3.5) yield the desired property (A) for X .
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Proof of Theorem 3.3. Assume, for instance, that X has property �a� and let
us show property (A). With the above notation we have���� X

1 < i; j < n

ai; j kxi; j; x�i; j l
����

�
���� Z

I ´ I

�X
i; j

ai; j ri �t�rj �s�xi; j;
X
k; ,

rk�t�r,�s�x�k;,
�

ds dt

����
<

X
i; j

ai; j �ri 
 rj�xi; j


L2�I ´ I; X �

X
i; j

�ri 
 rj� x�i; j


L2�I ´ I; X ��

< C sup
i; j
jai; jj

X
i; j

�ri 
 rj�xi; j


L2�I ´ I; X �

X
i; j

�ri 
 rj�x�i; j


L2�I ´ I; X ��

by the �a� property of X. When X � has property �a�, we just have to modify this
proof in an obvious manner.

In [25], Pisier exhibited several classes of Banach spaces with property �a�.
From his results and Theorem 3.3, we deduce the next result.

Corollary 3.6. Let E be a Banach space with l.u.st. (or merely the Gordon±
Lewis property).

(i) If E has a ®nite cotype, then every subspace of E has the joint calculus
property.

(ii) If E � has a ®nite cotype, then every quotient of E has the joint calculus
property.

(iii) If E and E � have ®nite cotype, then every quotient of subspaces of E has
the joint calculus property.

We refer the reader to [28] for information on the Gordon±Lewis property.
From (i) it follows that every subspace of L1 has the joint calculus property and
from (iii) that every quotient of subspaces of a B-convex Banach lattice (or
equivalently a Banach lattice with a ®nite cotype and such that its dual has a
®nite cotype) has the joint calculus property. We mention for completeness that
Bourgain [3] constructed a B-convex Banach lattice which is not a UMD space. In
order to describe the ®eld of application of our results, let us ®nally notice that
for any measure space �Q;S; m� and any 1 < p < �1, if a Banach space X enjoys
property �a�, so does Lp�Q; X �.

We will now study the joint calculus property for a few Banach spaces that are
typical for their lack of unconditional structure.

Let T � fz 2 C: jz j � 1g and D � fz 2 C: jz j < 1g. We let Lp � Lp�T� for
1 < p < 1, where T is equipped with its Haar measure. Let H p �
f f 2 Lp: " n < 0;

R
T f �z�zn dz � 0g be the usual Hardy spaces over D. Lastly we

denote by A�D� the disk algebra which is the space of continuous functions on
T belonging to H 1. We denote by P the quotient mapping from L1 onto L1=H1.
We can now state together our positive results about these spaces.
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Theorem 3.7. The spaces L1=H 1, H 1, and A�D� enjoy the joint calculus
property.

Proof. We will show that these spaces satisfy (A). We start with L1=H 1. In [4]
Bourgain proved that L1=H 1 is a Grothendieck space of cotype 2 or, equivalently
(see [28]), that it satis®es the following lifting property. There is a constant C > 0
such that, for any subset fx1; . . . ; xng of L1=H 1, there is a subset fy1; . . . ; yng of L1

such that

" i 2 f1; . . . ; ng; Pyi � xi and

Xn

i�1

ri yi


L2�I; L1�

< C

Xn

i�1

ri xi


L2�I; L1=H 1�

:

A thorough examination of the proof given in [6] (see also [28, Chapter 6])
yields the following lifting property with two variables. There is a constant C > 0
such that, for any subset fxi; jg1 < i; j < n of L1=H 1, there is a subset fyi; jg1 < i; j < n of
L1 such that

" 1 < i; j < n; Pyi; j � xi; j

and  X
1 < i; j < n

�ri 
 rj�yi; j


L2�I ´ I; L1�

< C

 X
1 < i; j < n

�ri 
 rj�xi; j


L2�I ´ I; L1=H 1�

: �3:6�

Since L1 satis®es property (A), it follows clearly from (3.6) that L1=H 1 also enjoys
property (A) and therefore the joint calculus property by Proposition 3.4.

Notice now that H 1 is isometric to �L1=H 1��. So H 1 has property (A) by
Lemma 3.5. Recall ®nally that the dual of A�D� is isometric to the ,1-sum
L1=H 1 �1 L1

s , where L1
s denotes the space of all singular measures on T. We have

already seen that L1=H 1 has property (A). Since it is a Banach lattice, so does L1
s .

Therefore A�D��, and thus A�D�, have property (A).

Remark 3.8. In fact it is possible to deduce from (3.6) that L1=H 1 has
property �a�. Moreover, using similar arguments as in the proof of Theorem 3.7,
one obtains that for any re¯exive subspace R of an L1-space L1�Q�, the quotient
space L1�Q�=R has the joint calculus property. More generally, if X is a Banach
space with property (A) and if Y Ì X is a subspace, then X=Y has property (A)
(and thus the joint calculus property) as soon as Y is B-convex (see [27, 28]).

We will conclude this section with a counter-example to bounded joint
functional calculus on Schatten spaces. Let S1 be the Banach space of all
compact operators on ,2. For 1 < p < 1, the Schatten space Sp is de®ned as the
space of all T in S1 such that jT j p has a ®nite trace. It can be equipped with the
norm ap�T � � �trjT j p�1=p, for which it is a Banach space.

Theorem 3.9. For all 1 < p < 1, with p 6� 2, the space Sp fails to have the
joint calculus property.

Proof. Let 1 < p < 1 with p 6� 2. We denote by �ej�j > 1 the canonical basis of
,2. For any i; j > 1, we let Ei; j be the rank 1 operator on ,2 de®ned by
Ei; j x � kx; ej lei for every x in ,2. Let K0 0 be the linear span of the operators Ei; j.

400 f. lancien, g. lancien and c. le merdy

PLMS



We consider it as equipped with the Sp-norm. For every family a � �ai; j�i; j > 1 of
complex numbers, we denote by Ma: K0 0 ! K0 0 the so-called Schur multiplier
de®ned by Ma�Ei; j� � ai; j Ei; j. When Ma is bounded, we say that it is a bounded
Schur multiplier on Sp.

We identify elements of Sp with their in®nite matrices with respect to the
canonical basis of ,2. Let �ai�1i�1 and �bi�1i�1 be two sequences of positive
numbers. Let DA and DB be the two diagonal matrices

DA �

a1 0

. .
.

ai

0 . .
.

0BBBB@
1CCCCA and DB �

b1 0

. .
.

bi

0 . .
.

0BBBB@
1CCCCA: �3:7�

Then, one can de®ne two sectorial operators A and B of type 0 (that is, of type
q for any q > 0) on Sp as follows: let D�A� � fT 2 Sp: DAT 2 Spg and for
T 2 D�A�, A�T � � DAT . Similarly, D�B� � fT 2 Sp: TDB 2 Spg and for T 2 D�B� ,
B�T � � TDB. For any m in �0;p�, A and B admit a bounded H 1�Sm� functional
calculus. Indeed, for any f in H 1�Sm�, and any T in Sp, we have

f �A��T � � f �DA�T and f �B��T � � Tf �DB�
where

f �DA� �

f �a1� 0

. .
.

f �ai�
0 . .

.

0BBBB@
1CCCCA and f �DB� �

f �b1� 0

. .
.

f �bi�
0 . .

.

0BBBB@
1CCCCA:

Now let m and m 0 be in �0;p� and F 2 H 1�Sm ´ Sm 0 �. Then for every i; j > 1, Ei; j

belongs to D�F�A; B�� and F�A; B��Ei; j� � F�ai; bj�Ei; j. We deduce that

F�A; B� is bounded () M�F�ai;bj�� is a bounded Schur multiplier on Sp: �3:8�
We now ®x �ai�i > 1 � �bi�i > 1 � �2i�i > 1 and assume that �A; B� admits a

bounded H 1�Sp ´ Sp� functional calculus. It can be easily checked that �2i�i > 1 is
an interpolating sequence in Sp (that is, �

����
2i
p
�i > 1 satis®es (2.7)). So by Theorem

2.9, there exist M > 0 and � fi�i > 1 Ì H 1�Sp� such that

" i > 1; fi�2i� � 1; " k 6� i; fi�2k� � 0; and " z 2 Sp;
X
i > 1

j fi�z�j< M:

Let a � �ai; j�i; j > 1 be any bounded family of complex numbers. We may de®ne Fa

in H 1�Sp ´ Sp� by Fa�z; z 0� �Pi; j > 1 ai; j fi�z� fj�z 0�. Clearly Fa�2i; 2 j� � ai; j for
every i; j > 1. Hence, by (3.8), Ma is a bounded Schur multiplier on Sp. But the
fact that this holds for all bounded a is false, as can be seen in [28, proof of
Corollary 8.20].

Remark 3.10. McIntosh and Yagi used the operators considered above in [24]
and showed that A� B is not closed in S1. On the other hand, if 1 < p < 1, Sp is
a UMD space (see [5]) and therefore, the theorem of Dore and Venni ensures that
A� B is closed. The Schatten spaces Sp, for 1 < p < 1 and p 6� 2, provide, to our
knowledge, the ®rst examples of UMD spaces that fail the joint calculus property.
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4. Functional calculus for analytic functions of polynomial growth

Throughout this section we consider two sectorial operators A and B on a
Banach space X with respective types q and q 0 and with commuting resolvents.
We also consider P, an analytic function of polynomial growth on Sm ´ Sm 0 , where
�m; m 0� 2 �q;p� ´ �q 0;p�. Our main purpose will be to study the functional
calculus associated with the closed densely de®ned operator P�A; B� (see
Proposition 2.5), when �A; B� admits a bounded H 1 joint functional calculus.
Our general result is the following.

Theorem 4.1. In the above setting, assume moreover that �A; B� admits a

bounded H 1�Sm ´ Sm 0 � joint functional calculus and P�Sm ´ Sm 0 � Ì Sh for some
h 2 �0;p�. Then:

(i) P�A; B� is pseudosectorial of type h;

(ii) if we assume moreover that P�A; B� is one-to-one and has a dense range, then
P�A; B� is sectorial of type h and admits a bounded H 1�Sn� functional calculus
for any n 2 �h;p�; furthermore, we have the following composition property:

" f 2 H 1�Sn�; f �P�A; B�� � � f ± P��A; B�:

Proof. Let k 2N such that PFk 2 H 1
0 �Sm ´ Sm 0 �. Let us ®rst notice that for

any n > 1, Fk
n 2 H 1

0 �Sm ´ Sm 0 � and satis®es

" y 2 X; P�A; B�Fk
n�A; B�y � �PFk

n��A; B�y:
Let us consider l 2 C n Sh . For �z; z 0� 2 Sm ´ Sm 0 we set Fl�z; z 0� � 1=�lÿ P�z; z 0��.
Clearly Fl 2 H 1�Sm ´ Sm 0 �. Since �A; B� admits a bounded H 1�Sm ´ Sm 0 � func-
tional calculus, Fl�A; B� 2 B�X �. Observe that �lFk

n ÿ PFk
n�Fl � Fk

n on Sm ´ Sm 0 . So,
using the homomorphism property and the previous remark, we obtain

" x 2 X; �lÿ P�A; B��Fk
n�A; B�Fl�A; B�x � Fk

n�A; B�x:
Then as n tends to 1, we obtain, by point (i) of Lemma 2.2 and by the
closedness of P�A; B�,

" x 2 X; Fl�A; B�x 2 D�P�A; B�� and �lÿ P�A; B��Fl�A; B�x � x: �4:1�
On the other hand, we have Fl�A; B��lÿ P�A; B��Fk

n�A; B� � Fk
n�A; B�, which

yields, for all x 2 Rk, Fl�A; B��lÿ P�A; B��x � x. Therefore, by the closedness of
P�A; B� and the boundedness of Fl�A; B�,

" x 2 D�P�A; B��; Fl�A; B��lÿ P�A; B��x � x: �4:2�
The identities (4.1) and (4.2) assert that l 2 r�P�A; B�� and that

�lÿ P�A; B��ÿ1 � Fl�A; B�: �4:3�
For l 2 C n Sh , we put Gl � lFl. Obviously Gl�A; B� � l�lÿ P�A; B��ÿ1. Now,
for any n 2 �h;p�, fGl: l 2 C n Sng is a bounded subset of H 1�Sm ´ Sm 0 �. Since
�A; B� admits a bounded H 1�Sm ´ Sm 0 � functional calculus, fGl�A; B�: l 2 C n Sng is a
bounded subset of B�X �. This concludes point (i).

In order to prove (ii), we will show that the composition property is satis®ed by
any f in H 1

0 �Sn�. Then the full statement will clearly follow. Note that we do not
need to assume that P�A; B� is one-to-one and has dense range in the following
computation.
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Let f be in H 1
0 �Sn�, and set F � f ± P in H 1�Sm ´ Sm 0 �. We ®x v 2 �q; m�,

v 0 2 �q 0; m 0� and v 00 2 �h; n�. By (2.3),

F�A; B�J�A�J�B� � 1

�2pi�2
Z

Gv

Z
Gv 0

J�z�J�z 0� f �P�z; z 0���zÿ A�ÿ1�z 0 ÿ B�ÿ1 dz dz 0:

By Cauchy's formula we have, for any l0 2 Sh,

f �l0� �
1

2pi

Z
Gv 00

f �l�
lÿ l0

dl:

Therefore

F�A; B�J�A�J�B�

� 1

�2pi�3
Z

Gv

Z
Gv 0

Z
Gv 00

J�z�J�z 0� f �l�Fl�z; z 0��zÿ A�ÿ1�z 0 ÿ B�ÿ1 dz dz 0 dl

� 1

�2pi�
Z

Gv 00
f �l��lÿ P�A; B��ÿ1J�A�J�B� dl (by (4.3))

� f �P�A; B��J�A�J�B�:
Since F�A; B� and f �P�A; B�� are bounded and since J�A�J�B� has a dense range,
we obtain F�A; B� � f �P�A; B��.

In order to apply statement (ii) of Theorem 4.1, we need to have the following
proposition at our disposal.

Proposition 4.2. Under the assumptions of Theorem 4.1, if we assume
moreover that 1=P is of polynomial growth on Sm ´ Sm 0 , then P�A; B� is injective
and has a dense range and therefore admits a bounded H 1�Sn� functional
calculus, for all n > h.

Proof. Let k be a positive integer such that PFk and Fk=P belong to
H 1

0 �Sm ´ Sm 0 �. From the homomorphism property it follows that

" x 2 D�P�A; B��; 1

P

� �
�A; B�F2k�A; B�P�A; B�x � F2k�A; B�x:

Since F2k�A; B� is injective, P�A; B� is injective. Similarly,

P�A; B�Fk�A; B�
�

Fk

P

�
�A; B� � F2k�A; B�:

Then, it follows from Lemma 2.2 that R�P�A; B�� is dense in X.

From now until the end of § 4, we will assume that the couple �A; B� introduced
at the beginning of this section admits a bounded H 1�Sm ´ Sm 0 � joint functional
calculus. We now study in detail a few typical examples of functions of
polynomial growth on Sm ´ Sm 0 .

Example 1. Let P1�z; z 0� � z� z 0 and assume m� m 0 < p. Then P1 and 1=P1

are of polynomial growth on Sm ´ Sm 0 and P1�Sm ´ Sm 0 � � SMaxfm;m 0g. Let us show
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now that P1�A; B� � A� B. Since �A; B� admits a bounded H 1�Sm ´ Sm 0 �
functional calculus, it follows from Proposition 2.7 that A� B is closed. The
function P1F

2 belongs to H 1
0 �Sm ´ Sm 0 � and �P1F

2��A; B� has an integral
representation from which it can easily be shown that P1�A; B� and A� B
coincide on R2 � R�F2�A; B��. Now, for any x in D�A�Ç D�B�, �xn�n > 1 �
�F2

n�A; B�x�n > 1 is a sequence in R2 such that xn ! x, Axn ! Ax, Bxn ! Bx (see
Lemma 2.2). Similarly, for any y in D�P1�A; B��, �yn�n > 1 � �F2

n�A; B�y�n > 1 is
included in R2, yn ! y and P1�A; B�yn ! P1�A; B�y. Thus the closedness of A� B
and P1�A; B� implies that they are equal.

Example 2. Let P2�z; z 0� � z z 0 and assume m� m 0 < p. Again P2 and 1=P2 are
of polynomial growth on Sm ´ Sm 0 and P2�Sm ´ Sm 0 � � Sm�m 0 . Using the integral
representation of �P2F

2��A; B� � P2�A; B�F2�A; B�, one can easily check that
P2�A; B� and AB coincide on R2. Then we can use the sequence �F2

n�A; B�� as in
Example 1 and it therefore follows from the closedness of P2�A; B� that
P2�A; B� � AB.

If we combine Examples 1 and 2, Theorem 4.1 and Proposition 4.2 we
immediately obtain the following.

Corollary 4.3. If �A; B� admits a bounded H 1�Sm ´ Sm 0 � joint functional
calculus, with m� m 0 < p, then:

(i) A� B is a sectorial operator of type Maxfm; m 0g;
(ii) for all n > Maxfm; m 0g, A� B admits a bounded H 1�Sn� functional

calculus;

(iii) AB is a sectorial operator of type m� m 0;
(iv) for all n > m� m 0, AB admits a bounded H 1�Sn� functional calculus.

Proof of Theorem 1.2. Combine Corollary 4.3, Theorem 3.2 and Corollary 3.6.

5. The H 1�Sm; B�H �� functional calculus on L�H �;
applications to maximal regularity

Throughout this section, L will denote a B-convex Banach lattice, or
equivalently, a Banach lattice with a ®nite cotype, whose dual L� has a ®nite
cotype. We recall that for 1 < p < 1, Lp-spaces are B-convex. We will use the
following result of Maurey [22] (see also [21, pp. 49±50]). If L is a Banach lattice
with a ®nite cotype, then there is a constant K > 0 such that, for every subset
fxign

i�1 of L,

Kÿ1

�Xn

i�1

jxi j2
�1=2

L

<

Xn

i�1

ri xi


L1�I;L�

< K

�Xn

i�1

jxi j2
�1=2

L

: �5:1�

Since L is B-convex, it is order continuous and therefore L and L� can be
represented as function lattices on the same measure space �Q;S; m� (see [21, 1.a,
1.b] for details). Moreover, the duality is described by

" �x; x�� 2 L ´ L�; kx; x� l �
Z

Q
x�q�x��q� dm�q�:
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Now let X be a Banach space. We introduce the following classical de®nition:

L�X � � f f : Q! X: f strongly measurable and k f � ? �kX 2 Lg:
Note that L�X � equipped with k f kL�X � �

 k f � ? �kX


L is a Banach space and the

B-convexity of L implies that L
 X is dense in L�X �. As a typical example,
notice that if L � Lp�Q; m� for some p 2 �1;�1�, then L�X � � Lp�Q; m; X � is the
classical Bochner X-valued Lp-space.

For every S in B�X �, IL 
 S extends to a bounded operator IL 
 S on L�X �,
with kIL 
 SkB�L�X �� � kSkB�X �. This allows us to consider B�X � as a closed
subalgebra of B�L�X ��. Now let A be a sectorial operator on L. Assume that
A
 IX , de®ned on D�A� 
 X, is closable in L�X � and that its closure A is also
sectorial. Then B�X � is actually a subalgebra of EA; thus we have

B�X � Ì EA Ì B�L�X ��:
It then makes sense to study the functional calculus uA (see (2.1), (2.2)) on the
Banach algebra H 1�Sm; B�X ��. It will be shown in § 6 that this functional calculus
is not always bounded when A has a bounded H 1 functional calculus. The
purpose of this section is to establish positive results in the Hilbert space case and
to apply them to maximal regularity. The following introductory proposition deals
with the extension to L�H �, where H is a Hilbert space, of a bounded or of a
sectorial operator on L.

Proposition 5.1. Let H be a Hilbert space and 0 < q < p.

(i) There exists a constant C > 0 such that for every T in B�L�, T 
 IH is
bounded on L
 H and satis®es kT 
 IHk< CkT k. Moreover, if T is injective
then its extension T � T 
 IH to L�H � is injective.

(ii) If A is a sectorial operator of type q on L, then A
 IH, de®ned on
D�A� 
 H, is a closable operator, whose closure A is sectorial of type q on
L�H �. If moreover A admits a bounded H 1�Sm� functional calculus, so does A.

Proof. We start with the proof of (i). Let T 2 B�L� and let y be in L
 H.
Then y �Pn

i�1 xi 
 ei, where fxign
i�1 Ì L and �ei�ni�1 is an orthonormal system.

We have �T 
 IH�y �
Pn

i�1 Txi 
 ei. Hence to obtain kT 
 IHk< CkT k it suf®ces
to have �Xn

i�1

jTxij2
�1=2

L

< CkT k
�Xn

i�1

jxij2
�1=2

L

:

Such an inequality is actually true for any Banach lattice L by a result of Krivine [17]
(see also [21, p. 93]). Note however that under our assumption of B-convexity, it
can be proved directly as a consequence of (5.1). Indeed, we clearly haveXn

i�1

ri Txi


L1�I;L�

< kT k
Xn

i�1

ri xi


L1�I;L�

:

For any h 2 H and any y 2 L�H �, we may de®ne the element of L,
Äh�y� � kh; y� ? �l. Suppose now that T is injective and let y be in L�H � such that
Ty � 0. Then for any h 2 H, T�Äh�y�� � Äh�Ty� � 0. Hence Äh�y� � 0, that is,
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kh; y�q�l � 0 for almost every q in Q. Since L is B-convex, the essential image of
y is separable (see [21, Proposition 1.a.9]) and therefore we obtain y � 0.

Let us now prove (ii). We give ourselves a sectorial operator A of type q on
L. Let us consider a sequence �yn�1n�1 in D�A� 
 H such that yn ! 0 and
�A
 IH�yn ! y in L�H �. By point (i) proved above, we can set

R � �I � A�ÿ1 
 IH in B�L�H ��:
We let z � Ry. Clearly, R�A
 IH�yn � ��I ÿ �I � A�ÿ1� 
 IH�yn ! z. Since
�I ÿ �I � A�ÿ1� 
 IH is bounded, z � 0. But (i) implies that R is injective, so
y � 0. The operator A
 IH is therefore closable. Moreover A � A
 IH clearly
has dense range and domain and is injective, for the same reasons as in (i).

In order to conclude this proof we show that r�A� � r�A� and

" l 2 r�A�; �lÿA�ÿ1 � �lÿ A�ÿ1 
 IH : �5:2�
The inclusion r�A� Ì r�A� is obvious, so consider l in r�A�. Then lÿA is
injective, so it is enough to prove that

" z 2 L�H �; y � ��lÿ A�ÿ1 
 IH�z 2 D�A� and �lÿA�y � z:

Let z 2 L�H � and �zn� be in L
 H such that zn ! z. Let yn � ��lÿ A�ÿ1 
 IH�zn.
Since �lÿ A�ÿ1 
 IH is bounded, �yn� is a Cauchy sequence included in D�A� 
 IH . So
yn converges to y, for some y in L�H �. Moreover Ayn � lyn ÿ zn ! lyÿ z. Thus

y 2 D�A�, �lÿA�y � z and y � ��lÿ A�ÿ1 
 IH�z.

As an obvious consequence of (5.2) and (i), we see that A is sectorial of
type q.

Assume ®nally that A admits a bounded H 1�Sm� functional calculus. Then it
follows from (5.2) and (2.1) that for any f in H 1

0 �Sm�, f �A� � f �A� 
 IH . Thus
point (i) and Proposition 2.1 imply that A admits a bounded H 1�Sm�
functional calculus.

Theorem 5.2. Let 0 < q < m < p. If A is a sectorial operator of type q on L
and admits a bounded H 1�Sm� functional calculus, then, for any n in �m;p�, A
admits a bounded H 1�Sn; B�H �� functional calculus.

Let us start with a few preliminary lemmas. The ®rst is an extended version of
the quadratic estimates of [8].

Lemma 5.3. Let x 2 L and w 2 H 1
0 �Sm�. Then for almost all q in Q, the

function h�q�: t 7! �w�tA�x��q� belongs to the Hilbert space H0 �
L2��0;1�; tÿ1 dt� and h is an element of L�H0�.

Moreover, for a given w in H 1
0 �Sm�, there is a constant C > 0 such that, for

any x in L, khkL�H0� < CkxkL.

Proof. Let us ®x w in H 1
0 �Sm�. Since D�A�Ç R�A� is dense in L, it suf®ces to

show that this lemma holds for any x in D�A�Ç R�A�. So let x belong to
D�A�Ç R�A�; we can write x � J�A�y with y in L. Then, by Fubini's theorem, the
map f : t 7! w�etA�x belongs to L1�R; L� and, for all t in R, Ãf �t� � Ãwe�t �Aitx,
where we 2 L1�R� is de®ned by we�t � � w�et�. Then, for almost every q in Q,
fq: t 7! �w�etA�x��q� is in L1�R� and, for all s in R, Ãfq�s� � Ãwe�s��Aisx��q�. Now,
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by Plancherel's theorem, we ®nd that, q-almost everywhere, h�q� 2 H0 and

kh�q�kH0
� 1

2p

Z �1

ÿ1
j Ãwe�s��Aisx��q�j2 ds

� �1=2

: �5:3�

Finally, following the proof of Theorem 6.6 in [8], we ®nd that the right-hand
side of (5.3) de®nes an element of L whose norm is less than CkxkL, where C is
a constant independent of x.

Next, we generalize Lemma 5.3 to the case of ®nite sequences in L.

Lemma 5.4. Let w be in H 1
0 �Sm�. There exists a constant C > 0 such that, for

any ®nite subset fxign
i�1 of L,�Z 1

0

Xn

i�1

jw�tA�xij2
dt

t

�1=2
L

< C

�Xn

i�1

jxij2
�1=2

L

: �5:4�

Proof. By Lemma 5.3 and by the properties of the Banach lattices, both
quantities in the inequality (5.4) make sense. So let fxign

i�1 Ì L and de®ne
hi 2 L�H0� as above by hi �q�: t 7! �w�tA�xi��q�. Then, for any ®xed q 2 Q,�Z 1

0

Xn

i�1

jw�tA�xi j2�q�
dt

t

�1=2

�
�Xn

i�1

khi �q�k2
H0

�1=2

�
Xn

i�1

ri hi�q�


L2�I; H0�

< K1

Xn

i�1

ri hi �q�


L1�I; H0�

by Kahane's inequality (see, for example, [21, p. 74]). By convexity we then have�Z 1

0

Xn

i�1

jw�tA�xij2
dt

t

�1=2
L

< K1

Xn

i�1

ri hi


L1�I;L�H0��

:

But we can writeXn

i�1

ri hi


L1�I;L�H0��

�
Z

I

�Z 1

0

����w�tA�Xn

i�1

ri �s�xi

����2 dt

t

�1=2
L

ds:

Hence applying Lemma 5.3 to
P

ri �s�xi for all s in I, we obtainXn

i�1

ri hi


L1�I;L�H0��

< C

Z
I

Xn

i�1

ri �s�xi


L

ds � C

Xn

i�1

ri xi


L1�I;L�

;

whence the result follows by (5.1).

Proof of Theorem 5.2. Let a be such that q < m < a < 2aÿ m < n < p.
Consider g in H 1

0 �Sm� such that g � w2 with w in H 1
0 �Sm� and satisfying

$ K > 0 such that " s 2 R; Ãge�s�> Keÿa j s j;
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where ge 2 L1�R� is de®ned by ge�t� � g�et�. Such a g exists (see [8, Example
4.7]). We then obtain a constant C > 0 such that

" b 2 H 1
0 �Sn; B�H ��; $ b 2 L1�R�; B�H ��Ç L1 R�;

dt

t
; B�H �

� �
such that

kbkL1�R�; B�H �� < C kbkH 1�Sn; B�H �� and " z 2 Sm; b�z� �
Z 1

0
b�t�g�tz� dt

t
:

�5:5�
This result is proved in the scalar case (that is, for b 2 H 1

0 �Sn�) in the course of
the proof of Theorem 4.4 in [8]. It is easy to check that the same proof works as
well for vector-valued functions.

In the sequel, we simply denote by u the functional calculus map associated
with A and which is de®ned on H 1

0 �Sn; B�H �� by (2.1). For b 2 H 1
0 �Sn; B�H �� ,

v 2 �q; m� and x 2 L
 H, we have

u�b�x � 1

2pi

Z
Gv

�lÿ A�ÿ1 

Z 1

0
b�t�g�tl� dt

t

� �
x dl;

where b is given by (5.5). So, by Fubini's theorem,

u�b�x �
Z 1

0
�g�tA� 
 b�t��x dt

t
:

Let us consider �x; x�� 2 �L
 H � ´ �L� 
 H �. We can write x �Pn
i�1 xi 
 ei

and x� �Pn
i�1 x�i 
 ei, where fxign

i�1 Ì L, fx�i gn
i�1 Ì L� and feign

i�1 is an
orthonormal system of H. Then letting bi; j�t� � kb�t�ej; ei lH , we have

ku�b�x; x� l �
Z 1

0

X
1 < i; j < n

bi; j�t�kg�tA�xj; x�i lL;L�
dt

t

�
Z 1

0

X
1 < i; j < n

bi; j�t�kw�tA�xj;w�tA��x�i lL;L�
dt

t

�
Z

Q

Z 1

0

X
1 < i; j < n

bi; j�t��w�tA�xj��q��w�tA��x�i ��q�
dt

t
dq

by Fubini's theorem. Hence jku�b�x; x�lj is less thanZ
Q

Z 1

0
kb�t�kB�H �

�Xn

i�1

j�w�tA�xi��q�j2
�1=2�Xn

i�1

j�w�tA��x�i ��q�j2
�1=2 dt

t
dq

< kbkL1

Z
Q

�Z 1

0

Xn

i�1

j�w�tA�xi��q�j2
dt

t

�1=2�Z 1

0

Xn

i�1

j�w�tA��x�i ��q�j2
dt

t

�1=2

dq

(by the CauchyÿSchwarz inequality)

< K kbk
�Z 1

0

Xn

i�1

jw�tA�xij2
dt

t

�1=2
L

�Z 1

0

Xn

i�1

jw�tA��x�i j2
dt

t

�1=2
L�

:

The Banach lattice L is re¯exive because it is B-convex [21, Theorem 1.c.5].
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Therefore A� admits a bounded H 1�Sm� functional calculus on L�. Moreover,
w�tA�� � Äw�tA��, where Äw 2 H 1

0 �Sm� is de®ned by Äw�z� � w�z� for any z 2 Sm.
Hence applying Lemma 5.4 to A and A�, we obtain

jku�b�x; x� lj< KC 2kbk
�Xn

i�1

jxi j2
�1=2

L

�Xn

i�1

jx�i j2
�1=2

L�

� KC 2kbk kxkL �H�kx�kL��H�:
From the B-convexity of L, it follows that L�H �� is canonically identi®ed with
L��H �. Then by the density of L
 H in L�H� and L� 
 H in L��H �, we infer
from the above estimate that ku�b�k< KC 2kbk.

In order to apply Theorem 5.2, we need to extend to L�X � an operator B
de®ned on some Banach space X. The situation is simpler than in Proposition 5.1.

Lemma 5.5. Let B be a pseudosectorial operator of type q 0 on X and let
m 0 2 �q 0;p�.

(i) The operator IL 
 B, de®ned on L
 D�B�, is closable and its closure B is
pseudosectorial of type q 0. Moreover, D�B� � L�D�B��, where D�B� is equipped
with its graph norm kxkD�B� � kxkX � kBxkX.

(ii) If B is sectorial of type q 0, so is B.

(iii) If B admits a bounded H 1�Sm 0 � functional calculus, so does B.

Proof. Let �xn�1n�1 be a sequence in L
 D�B� such that xn ! 0 and
�IL 
 B�xn ! y. Then there is a subsequence �x 0n�1n�1 of �xn�1n�1 such that for
almost all q in Q, x 0n�q� ! 0 and B�x 0n�q�� ! y�q�. Since B is closed, we have
y � 0 and therefore IL 
 B is closable. Then our description of D�B� is a
straightforward consequence of the de®nition of L�D�B��. The operator B is
pseudosectorial on account of the following fact:

r�B� Ì r�B� and " l 2 r�B�; �lÿB�ÿ1 � IL 
 �lÿ B�ÿ1: �5:6�
The assertion (ii) is then clear. From (5.6), it follows that for any f in H 1

0 �Sm 0 �,
f �B� � IL 
 f �B�, which yields (iii).

Then, as an application of Theorem 5.2 and Proposition 2.6, we have the
following.

Corollary 5.6. Let A be an operator on a B-convex Banach lattice L
admitting a bounded H 1�Sm� functional calculus and let B be a pseudosectorial
operator of type q 0 on a Hilbert space H. Denote by A and B the extensions
described above of A and B to L�H � and assume that m� q 0 < p.

Then A�B is a closed one-to-one operator on L�H � with dense range and

$ C > 0 such that " x 2 D�A�Ç D�B�; kAxk< Ck�A�B�xk: �5:7�

Proof of Theorem 1.4. Under the assumptions of Theorem 1.4, the fact that
B
 IH and ILq 
 C are closable follows from Proposition 5.1 and Lemma 5.5.

We let ÄB � B
 IH and ÄC � ILq 
 C. Then by Corollary 5.6, ÄB� ÄC is a closed
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one-to-one operator with a dense range. The fact that ÄB� ÄC is actually sectorial
of type less than 1

2
p can be easily deduced from Theorem 5.2 but also follows

from the estimates given in [9, § 3].
Now let T > 0 and 1 < p < 1. Consider A � d=dt on Lp�0; T � with domain

W
1;p

0 �0; T � and let
L � Lp�0; T; Lq�Q1��:

Then A
 IL q�Q1� is closable in L and A
 IL q�Q1� admits a bounded H 1�Sh�
functional calculus for any h > 1

2
p (see [11]). The space L is a B-convex Banach

lattice and it is easy to check that L�H � can be identi®ed with Lp�0; T ; Lq�Q1; H ��
and that the closure of A
 IL q�Q1� 
 IH , provided by Proposition 5.1, is A � d=dt

on Lp�0; T; Lq�Q1; H �� with domain W
1;p

0 �0; T; Lq�Q1; H ��.
We denote by B and C, respectively, the closures of IL p�0;T � 
 ÄB and

IL p�0;T � 
 ÄC in L�H �. On the other hand, by Lemma 5.5, IL p�0;T � 
 B is closable
on L and its closure admits a bounded H 1�Sm� functional calculus. It can easily

be checked that B is the closure of IL p�0;T � 
 B
 IH . We also have that C is the
closure of IL 
 C and is a sectorial operator of type q 0 on L�H �.

By Theorem 3.2, �A
 IL q�Q1�; IL p�0;T � 
 B� admits on L a bounded H 1�Sa ´ Sb�
joint functional calculus, for any �a; b� in

ÿ
1
2
p;p� ´ �m;p� and, by Proposition 5.1, so

does �A;B�. By Proposition 2.7, this implies that there exists C1 > 0 such that

" x 2 D�A�Ç D�B�; kAxk< C1k�A�B�xk: �5:8�
Now let S � A
 IL q�Q1� � IL p�0;T � 
 B. Then by Corollary 4.3, S admits a
bounded H 1�Sn� functional calculus, for any n > 1

2
p. It is standard to verify that

S
 IH �A�B. Then, in view of Corollary 5.6, there exists C2 > 0 such that

" x 2 D�A�Ç D�B�Ç D�C�; k�A�B�xk< C2k�A�B� C�xk: �5:9�
From (5.8) and (5.9), it follows of course that A�A�B� C�ÿ1 is bounded. As
is well known, this is equivalent to the maximal regularity of ÄB� ÄC.

6. A characterization of Hilbert spaces in terms of functional calculi

Let X be a Banach space, p 2 �1;�1� and let T � fz 2 C: jz j � 1g. We will
start with the study of the ®rst derivation operator on Lp�T; X �. So consider
A � iz�d=dz� on Lp�T� with domain D�A� � W 1;p�T�, and A � iz�d=dz� on
Lp�T; X � with domain D�A� � W 1;p�T; X � which is also the closure of A
 IX

in Lp�T; X �. It is known that A is pseudosectorial of type 1
2
p and that, for any m

in
ÿ

1
2
p;p

�
, A admits a bounded H 1

0 �Sm� functional calculus if and only if X is a
UMD space [11, 29].

We recall (see § 5), that B�X � is canonically identi®ed with a closed subalgebra
of EA. Then we have the following characterization.

Theorem 6.1. Let 1
2
p < m < p. The operator A admits a bounded H 1

0 �Sm; B�X ��
functional calculus if and only if X is isomorphic to a Hilbert space.

Proof. The `if ' part is a consequence of Theorem 5.2. So let us assume that
A admits a bounded H 1

0 �Sm; B�X �� functional calculus. We denote as usual by

uA: H 1
0 �Sm; B�X �� ! B�Lp�T; X ��

the induced bounded homomorphism. Then we will show that X is of type 2 and
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of cotype 2 (see De®nition 2.8). This, by Kwapien's theorem [18], will yield
the conclusion.

Let us prove ®rst that X is of type 2. So let fxkgn
k�1 be a ®nite subset of X and

®x �e; e�� in X ´ X � with ke; e� l � kekX � ke�kX � � 1.
The sequence

ÿ �����
2k
p

ei�p=4��k > 1 satis®es the condition (i) of Theorem 2.9 (the
veri®cation is left to the reader). Then using the transformation z 7! z2, we obtain
a sequence � fk�k > 1 in H 1�Sp� and a constant M > 0 such that

" k > 1; fk�i2k� � 1; " j 6� k; fj�i2k� � 0; and " z 2 Sp;
X
k > 1

j fk�z�j< M:

Now, consider, for 1 < k < n, Tk 2 B�X � de®ned by Tk x � e��x��xk =kxkk� for all
x 2 X (we may assume xk 6� 0). For z in Sp, de®ne f �z� �Pk > 1 fk�z�Tk. Then

f 2 H 1�Sp; B�X ��, k f kH 1�Sp; B�X �� < M, and for all k 2 f1; . . . ; ng; f �i2k� � Tk:

We also consider P in Lp�T; X � de®ned as follows: for all z 2 T, P�z� �ÿPn
k�1 kxkkz2k�

e.
Let «k be de®ned on T by «k�z� � z2k

. It is known (see [26]) that there is a
constant C > 0 such that, for any y1; . . . ; yn in a Banach space Y ,

Cÿ1

Xn

k�1

«k yk


L p�T; Y �

<

Xn

k�1

rk yk


L1�I; Y �

< C

Xn

k�1

«k yk


L p�T; Y �

: �6:1�

In particular, this yields (with Y � C)

kPkL p�T; X � < C

�Xn

k�1

kxkk2

�1=2

: �6:2�

Now, we need to introduce the auxiliary functions de®ned, for N in N and l 2 Sm, by

yN�l� �
1

1� l =N
ÿ 1

1� l N
:

For any N > 0, yN 2 H 1
0 �Sm� and kyNkH 1�Sm� < Cm, where Cm does not depend on

N. Using the Cauchy Residue Theorem, one obtains

" z 2 T; �uA�yN f �P��z� �
Xn

k�1

yN�i2k�z2k

xk:

This, combined with (6.1) and (6.2), implies thatXn

k�1

rk yN�i2k�xk


L1�I; X �

< C 2Cm MkuAk
�Xn

k�1

kxkk2

�1=2

: �6:3�

Finally, for any z in Sm, limN!�1 yN�z� � 1. Thus, passing to the limit in (6.3),
we see that X is of type 2.

In order to prove that X is of cotype 2, we follow the same steps, after
exchanging the Tk with the operators de®ned by, for all x 2 X, Sk x � x�k�x�e,
where x�k 2 X �, kx�kkX � � 1 and x�k�xk� � kxkk.

We will now show how to use transference methods in order to obtain the same
characterization if we replace T by R. So let X be a Banach space, 1 < p < �1,
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A0 � d=dt on Lp�R� with domain W 1;p�R�, and A0 � d=dt on Lp�R; X � with
domain W 1;p�R; X �. We have a similar result.

Theorem 6.2. Let 1
2
p < m < p. The operatorA0 admits a bounded H 1�Sm; B�X ��

functional calculus if and only if X is isomorphic to a Hilbert space.

Proof. Notice ®rst that ÿA0 and ÿA generate groups of translations in
Lp�R; X � and Lp�T; X �, which we denote by �eÿtA0�t2R and �eÿtA�t2R.

Lemma 6.3. For any k in L1�R; B�X ��,Z
R

eÿtAk�t� dt

 
B�L p�T; X ��

<

Z
R

eÿtA0k�t� dt

 
B�L p�R; X ��

:

In the case when k belongs to L1�R�, this result follows from some well-known
work of Calderon on transference, using the group action of R on T by translation
(see, for example, [7, Chapters 1 and 2]). This extension to the B�X �-valued case
is straightforward and left to the reader.

Suppose now that uA0
: H 1

0 �Sm; B�X �� ! B�Lp�R; X �� is bounded. Let R0 be
the algebra of all rational functions, belonging to H 1

0 �Sm�, with poles outside Sm.
Clearly R0 is a subalgebra of H 1

0 �Sm�. Any f in R0 is the Laplace transform of
some k in L1�R��. More precisely,

" z 2 Sp=2; f �z� �
Z 1

0
eÿtzk�t� dt: �6:4�

This inspired the so-called Phillips functional calculus and it is known that for
any f in R0, uA0

� f � is equal to
R1

0 eÿtA0 k�t � dt, where k is given by (6.4). This
can be extended in the following way. For any f in R0 
 B�X �, there exists k in
L1�R�; B�X �� such that

" z 2 Sp=2; f �z� �
Z 1

0
eÿtzk�t� dt and uA0

� f � �
Z 1

0
eÿtA0 k�t� dt:

This is also true for uA . So, by Lemma 6.3, uA is bounded on R0 
 B�X � and

$ K > 0 such that " f 2R0 
 B�X �; kuA� f �k< K k f kH 1�Sm; B�X ��: �6:5�
Now consider f in H 1

0 �Sm� 
 B�X �. For « > 0 and z in C n fÿ�1=«�g, we set
g«�z� � �«� z�=�1� «z�. Notice that g«�Sm� is a compact subset of Sm. Hence it is
not hard to deduce from Runge's theorem that there is a sequence � fn�n > 1 in
R0 
 B�X � such that fn ± g« converges to f ± g« uniformly on Sm. Now ®x m 2N.
It follows from (6.5) that

" « > 0; " m > 0; " n > 0;

kuA�Jm� fn ± g«��k< KkJmkH 1�Sm�k fn ± g«kH 1�Sm; B�X ��:

Since �Jm�m > 1 is uniformly bounded in H 1�Sm�, there is a constant K 0 > 0
such that

" « > 0; " m > 0; kuA�Jm� f ± g«��k< K 0k f kH 1�Sm; B�X ��:
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By Lebesgue's dominated convergence theorem, we have

" x 2 X; lim
«! 0

uA�Jm� f ± g«��x � uA� f �Jm�A�x:

Therefore, letting m tend to �1 we obtain kuA� f �k< K 0k f kH 1�Sm; B�X ��. Finally,
notice that it follows from the proof of Theorem 6.1 that the boundedness of uA
restricted to H 1

0 �Sm� 
 B�X � actually implies that X is isomorphic to a Hilbert space.

Remark 6.4. Let 1 < p < 1 and let A0 � d=dt on Lp�R� as above. The
classical proof of the fact that for any m > 1

2
p, A0 admits a bounded H 1�Sm�

functional calculus relies on Mihlin's multiplier theorem on Lp�R�. The arguments
involved in this proof can be adapted to the operator-valued framework; hence it
is possible to derive a direct proof of Theorem 5.2 for A0 from Mihlin's theorem
on Lp�R; H � for B�H �-valued multipliers [2, Theorem 6.1.6]. In the same manner,
if we assume that for a given Banach space X, Mihlin's theorem holds on
Lp�R; X � for B�X �-valued multipliers, then one can show that A0 admits a
bounded H 1�Sm; B�X �� functional calculus on Lp�R; X � for any m > 1

2
p. Thus as a

consequence of Theorem 6.2, we obtain that X is necessarily isomorphic to
Hilbert space. The fact that the operator-valued Mihlin multiplier theorem only
holds on Hilbert spaces has been known for a long time and goes back to G.
Pisier (unpublished).

Remark 6.5. Given a sectorial operator A which admits a bounded H 1�Sm�
functional calculus on a Banach space X, a natural question is: does A
automatically admit a bounded H 1�Sm; EA� functional calculus? This holds true
when X is a Hilbert space. This result is implicit in [19] and its proof relies upon
techniques from [23]. We were informed by Albrecht and McIntosh that they have
also obtained this result (paper in preparation). When we leave Hilbert spaces, the
situation turns out to be much more complicated. Indeed, Theorem 6.2 shows that
on Lp-spaces (1 < p < 1, p 6� 2), the boundedness of H 1�Sm� functional calculus
for an operator A does not imply the boundedness of H 1�Sm; EA� functional
calculus.
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