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1. Introduction

In this paper we are concerned with H> functional calculus in the sense of the
construction introduced by Mclntosh [23] and developed recently by Cowling,
Doust, Mclntosh, and Yagi [8]. Given 6 in (0,w], we will use the notation
Ly = {z€ C\{0}: |argz| <6} to denote the open sector of angle 26 around the
half-line R,. Let X be a complex Banach space. Given a linear operator A on X
we denote by D(A), N(A) and R(A) the domain, the kernel and the range of A
respectively. We also denote by o(A) the spectrum of A and by p(A) the resolvent
set of A.

DEFINITION 1.1. Let w€ (0,7) and let A be a linear operator on X. We say
that A is pseudosectorial of type w if A is closed, D(A) is dense in X, the
spectrum o(A) is included in X, and

V0 € (w,m), IC >0 such that Vze C\I,, |z(4—-2) ' <C. (1.1)

If, moreover, N(A) = {0} and R(A) is dense, we simply say that A is sectorial of
type w.

The purpose of this paper is the study of a joint H> functional calculus for a
pair of sectorial operators A, B on X with commuting resolvents, that is, which
satisfy

VYAEp(A), VueoB), N=A)'(p-B)'=@-B)'A-4)". (12)

This joint functional calculus, which was first introduced by Albrecht [1], is a
natural two-variable analogue of MclIntosh’s H* functional calculus. Given two
sectorial operators A and B which are of types w and w’ respectively and satisfy
(1.2), and two numbers u € (w,7), u' € (w', ), it consists of defining a closed
and densely defined operator F(A,B) for any bounded analytic function
F: L, XX, — C, in a way that preserves reasonable algebraic and continuity
properties. This leads to the notion of bounded H® joint functional calculus for a
pair of commuting sectorial operators. See § 2 below for precise definitions and
basic properties.

The first problem addressed in this paper is the following: what are the Banach
spaces X for which (A, B) admits a bounded H® joint functional calculus as soon
as A and B each admit a bounded H* functional calculus? In [1], Albrecht proves
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that this is the case if X is an L”-space, with 1 < p < +00. We extend this result to
a class of Banach spaces containing, in particular, every Banach space having
local unconditional structure and also every quotient of subspaces of B-convex
Banach lattices.

Later in the paper we apply these results to the study of the sum and the
product of two commuting sectorial operators A and B. As usual, the operators
A + B and AB are here understood with their natural domains:

D(A + B) = D(A) N D(B), (1.3)
D(AB) = {x € D(B): Bx € D(A)}. (1.4)

We recall that the assumption (1.2) ensures that D(A + B) and D(AB) are dense
and that A + B and AB are closable operators (see, for example, [30]).

Assume now that the sum of the types of A and B is strictly less than 7. Then
a classical problem, which goes back at least to [9], is to determine conditions
under which A + B is closed. This problem turns out to be strongly related to
joint functional calculus. Indeed the closedness of A+ B is implied by the
boundedness of A(A+ B)~!, which is equivalent to boundedness of F(A,B),
where F(z,7') = z(z+2')"" (see Proposition 2.7 below). A remarkable theorem of
Dore and Venni [11] (completed by Priiss and Sohr [30]) asserts that A 4+ B is
closed under the following conditions:

(i) the Banach space X has the UMD property (that is, the Hilbert transform is
bounded on Lz(R;X)), and

(ii)) A and B each admit bounded imaginary powers and there exist four
positive constants K, K', u, u', such that p+pu' <7 and || A" < Ke"ls!,
| B¥|| < K'e*!*! for all s in R.

Furthermore, it is proved in [12, 30] that under these conditions, A + B and AB
actually admit bounded imaginary powers. We will obtain in § 4 the following
H® functional calculus analogue of the Dore—Venni—Priiss—Sohr theorem. Note
however that the geometric assumption on X in Theorem 1.2 is different from the
UMD property.

THEOREM 1.2. Let X be a Banach space. Assume that X is either a Banach
lattice or the quotient of two subspaces of a B-convex Banach lattice (for
instance, a quotient of subspaces of L, where 1 <p < +). Let A and B be two
sectorial operators on X, with commuting resolvents. Assume that A admits a
bounded H”(X,) functional calculus, B admits a bounded H™(X,) functional
calculus, and p+ p' < .

Then A + B is a sectorial operator (in particular, A + B is closed) and

() for any v>Max{u,u'}, A+ B admits a bounded H*(L,) functional

calculus,

(ii) for any v > u+ p', AB admits a bounded H* (L,) functional calculus.

In the last two sections of this paper, we study another variant of Mclntosh’s
functional calculus which also leads to the study of the boundedness of
A(A+ B)™" (for two commuting operators A and B) and discuss some connections
with the study of maximal regularity (in the L”-sense) for the Cauchy problem.
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Let A be a sectorial operator on a B-convex Banach lattice A (for example, A is
an LP-space with 1 < p < +00) and let .o/ be its natural extension to A(H), where
H is a Hilbert space. Assume that .o/ (or equivalently A) admits a bounded
H®(X,) functional calculus. The main result in §5 says that for any » > p, this
functional calculus extends in a natural way to a bounded Banach algebra
homomorphism from H*(Z,; B(H)) into B(A(H)).

Let us now recall the definition of maximal regularity, to which we apply this
result. Note that with the terminology introduced in Definition 1.1, a linear
operator B on a Banach space X is pseudosectorial of type strictly less than %7r if
and only if (—B) is the infinitesimal generator of a bounded holomorphic
semigroup on X; see, for example, [16].

DerFINITION 1.3. Let 7>0 and 1 <p<+o be two numbers. Let X be a
Banach space and let B be a pseudosectorial operator of type strictly less than %w
on X. Then B is said to have the maximal regularity property if there exists C >0
such that for any f in LP(0,7;X) there exists a unique function u in

W, (0,T;X) N LP(0,T; D(B)) satisfying

u'+Bu=f on[0,T) and |ul <C|rf].

It is well known that this property does not depend on 1< p <400 and
0 < T < +4o00. Moreover, if X is a Hilbert space, then any B as above has the
maximal regularity property. This is due to De Simon [10]. It is an open problem
to decide whether any pseudosectorial operator of type less than %w has the
maximal regularity property on L? for 1 <p # 2 < +co. However great progress
was made by Dore and Venni [11] (see also [30]) by means of their theorem
quoted above. Indeed they proved that if X is a UMD Banach space (in particular,
if X =L7, for 1 <p<+00), and if B admits bounded 1mag1nary powers which
satisfy || B"|| < K'e* 15! for some constants K’ >0 and 0 < p’ <1 5, then B has the
maximal regularity property.

In the following theorem, which will be proved in § 5, we obtain a sufficient
condition for maximal regularity which combines the results of De Simon and
Dore and Venni, at least to some extent.

THEOREM 1.4. Let (Q,m;) be a measure space and let 1 < g < +oo. Let H be
a Hilbert space and B an operator on LU(Qy,my) with a bounded H>(L,)
functional calculus for some p<i sm. Let C be any pseudosectorial operator of
type strictly less than 27r on H. Let B and C be the closures, which exist, of
B® Iy and 114 ® C respectively.

Then B+ C is a sectorial operator of type strictly less than 7r with the
maximal regularity property.

This result can be interpreted as follows. Let (T;),~( be a bounded holomorphic
semigroup on X = LY(Q;,m;H). Assume that (7,),~, is obtained as a tensor
product, that is, for any =0, 7, is the closure of U, ® V, where (U,),~, and
(V,)i=0 are two bounded holomorphic semigroups defined on L?(Q;,m;) and H
respectively. Then to obtain the maximal regularity property for the negative
generator of (T}),=, it suffices to know that, for some u< w, the negative
generator of (U,),=¢ has a bounded H™(X,) functional calculus on L(Q;,m;).
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2. Preliminaries

First, we introduce the main notation. For 6 in (0,7), we denote by I'y the
oriented contour defined by

0.
—te” if —co< =<0,
Ty(t) = { o

0 i 0<t< + oo,

We will also often use the function ¢ defined on C\ {—1} by ¢(z) = z/(1 + 2).
In order to study the boundedness of special operators such as A(A + B)~!, it
will be useful to use a variant of McIntosh’s one-variable H* functional calculus.
To define it, we replace scalar-valued holomorphic functions by operator-valued
holomorphic functions.
Given p € (0, 7) and a Banach space E, we will denote by H™(Z,; E) the Banach
space of bounded holomorphic functions f: X, — E, equipped with the norm

11 = Sup{ll f()llp: z €Ly}

Let A be a sectorial operator of type w (0 < w < ) on a complex Banach space X.
The commutant of A, denoted Ej, is defined to be the closed subalgebra of B(X),

E,={TeBX): T\A—A)"'=N-A)"'T, Ncp(A)}.

It is easy to check that a bounded operator T on X belongs to E, as soon as it
commutes with (A —A)~" for one element \ in p(A).

Let > w and let E be a closed subalgebra of E,. We now consider Hy' (X,; E), the
space of all f in H oo(ZIM;E ) for which there exists s > 0 such that ¢ *f belongs to
H®(Z,;E). Let 0 be in (w,p). Then for any f in Hy (E,;E), we can define

ua(F) =~ [ FON—A) T an 2.1)

27i Jr,

I[,;

which is an integral converging in B(X) and whose value does not depend on the
choice of 0.

Now observe that the operator u,(¢) = ¢(A) = A(I+A)"? is one-to-one with
range D(A) "R(A), which is a dense subspace of X since A is a sectorial
operator; see [30]. Let f be any function in H °°():”;E ). The product function f¢
belongs to Hy"(L,; E). Hence it makes sense to define

us(f) = e(A)'us(fo) (2.2)
with domain given, via (1.4), by
D(ua(f)) = {x € X: us(fe)x € D(A) NR(A)}.

From the inclusion E cC E,, it follows easily that u, is an algebra homomorphism
from Hy (E,;E) into B(X). This implies that for any f in H*(X,;E), D(us(f))

ll,;
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contains R(¢(A)) = D(A) "R(A) and is therefore dense. Since ¢(A) is bounded,
uys(f) is a closed operator. Then, by the closed graph theorem, uy(f) is bounded
if and only if D(u,(f)) = X.

We say that A admits a bounded H*(X,;E) functional calculus if u,(f) is
bounded for any fe H™(E,;E). These definitions coincide with those in [8,
23] in the case when E = Span{lx}. As in that case, the fundamental proposition
is as follows.

PropPOSITION 2.1.  The following assertions are equivalent:
(1) A admits a bounded H Oo(EH;E ) functional calculus;
(ii) there exists C >0 such that for all f € Hy' (Z5E), [[ua(f)I< Cll fllg=z,:6)
(iil) there exists C>0 such that for all fe H*(E,:E), us(f)€B(X) and
lua(ON =< Cllf la=cs,:0)-
In this case, u, is a (bounded) homomorphism on H%(Z,;E).

Of course when E = Span{ly}, we merely speak of H™(Z,) functional calculus
instead of H*(Z,; E) functional calculus.

If A is pseudosectorial and if (ii) is satisfied, we will say that A admits a
bounded Hy' (I, E) functional calculus.

We now turn to the definition of the joint H® functional calculus. The
following construction was first introduced by Albrecht [1]. It is entirely parallel
to Mclntosh’s one-variable construction.

Given p, p' € (0,m), we denote by H*(Z, XX, ) the Banach algebra of all
bounded holomorphic scalar-valued functions on X, X X,/ and we define ¢ by

®(z,2') = 0(2)0(z') = 2

(14+2°(1+2)
Then we define

HE*(E, X L,) = {F € H®(E,xL,): 35>0, & °F € H*(L, xL,)}.

Let A and B be two sectorial operators on a Banach space X, of types w and «’
respectively, with commuting resolvents. For p>w, p'>w’, and F €
Hy (E, %X, ) one defines
1
4?
with (0,0) € (w,p) X (w’, ). This integral converges in B(X) and does not
depend on the choice of (6,8"). To define F(A,B) for general F we proceed as in
the one-variable case. For any F in H%(Z,xX,/), the function F® belongs to
Hy (E, % L,); hence we may set
F(A,B) = ®(A,B) ' (F®)(A, B). (2.4)
This makes sense since ®(A, B) is one-to-one.
As in the first situation, the calculus associated with (A,B) on X, XX, by the

formula (2.3) defines an algebra homomorphism from Hy’ (X, X E,/) into B(X). To
go further, we need the auxiliary functions ¢, and &, defined for all n =1 by

en(2z) =

F(A, B) ﬁ AN -A) TN BN (23)

n2Z

mro0Ta M e =el@al)
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LEMMA 22. For any k=1, we let R, = R(®*(A,B)). Then
(i) for all k=1 and all x € X, lim,_ ,, $X(A, B)x = x,
(i) for all k=1 and all n =1, R(®X(A,B)) =R,
(iii) for all k =1, Ry is dense in X,
@iv) forall k=1, qu(A,B) is a bounded, one-to-one operator with dense range.

Proof. 1t is well known that when A and B are sectorial, then, for any x in X,
lim, _, o ¢,(A)x = lim,,_, o, ¢, (B)x = x (see, for example, [29, §8.1]). Moreover
the sequences (¢,(A)),=1, (¢.(B)),>1 are bounded, whence the result (i) follows.
The rest of the lemma is then clear.

Let FEeHY(Z,xE,) and let F(A,B) be defined by (2.4). It is a closed
operator for the domain defined by D(F(A,B)) = {x € X: (F®)(A, B) € R, }. By the
homomorphism property, D(F(A,B)) contains R;; hence it is dense in X by
Lemma 2.2. Consequently, F(A,B) is bounded if and only if D(F(A,B)) =X.
Moreover the definitions (2.3) and (2.4) are consistent for F in H;" (Eu X Eﬂr).

We will now prove, for completeness, a useful convergence lemma, which is a
variant of the usual convergence lemma due to Mclntosh [23].

LEMMA 2.3. Let (F,),=1 be a bounded sequence in Hy (2, xE,) and F be in
H*”(E,xL,) such that (F,),= converges pointwise to F on E,xX,. Then:

(i) for all x e Ry, lim, _, » || F,(A,B)x — F(A,B)x|| = 0;
(ii) if, moreover, sup,= || F,(A, B)|| is finite, then F(A,B) is bounded.
Proof. Let us denote G = F® and G, = F,®. For x in R, there is y € X such
that x = ®(A, B)y. So
| F(A, B)x — F(A, B)x||
1
472

for some (0,0') € (w,p) X (w',n’). Now, (i) follows from Lebesgue’s dominated
convergence theorem and then (ii) is clear.

5

/F ) (G,(OMN) = GOMNY)(N=A) "N = B) 'ydnaN

/

We say that (A, B) admits a bounded H” (X, xE,/) joint functional calculus if

F(A,B) is a bounded operator for any F in H* (X, xE,/). By combining Lemma
2.3 and the closed graph theorem as in [23], one can transfer Proposition 2.1 to
the two-variable setting.

PrROPOSITION 2.4. The following assertions are equivalent:
(i) (A,B) admits a bounded H”(X,xX,/) joint functional calculus;
(ii) there exists C>0 such that for all FeH; (E,xE,), ||F(AB)| <
ClFllu=g,xx5,):
(i) there exists C >0 such that for all F € H* (X, xE,/), F(A,B) € B(X) and
| FAB)| = CI[Fllyos, s,
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In this case, the map Fw— F(A,B) is a (bounded) homomorphism on
HOO(EMXEMI).

Next we indicate how one can in a standard way extend this calculus to an
even larger class than H™ (X, x I,/), namely the class of all analytic functions of
polynomial growth on X, x E Let P be an analytic function on X, X E /; we say
that P is of polynomial growth if there is k in N such that P € HO (E XL,).
For such a function P, we define P(A,B) = ®(A,B) *(P®")(A,B). By the
homomorphism property, this definition does not depend on k such that
P& ¢ Hy (E,xZ,/) and by Lemma 2.2 we immediately obtain the following.

PrOPOSITION 2.5. Let A and B be two sectorial operators on X with respective
types w and w' and with commuting resolvents. Let (u,n') € (w, ) X (w', 7) and P
be an analytic function of polynomial growth on L,XE,. Then P(A,B) is a
closed operator whose domain is dense in X.

We will now state two propositions that will be very useful for our applications
to maximal regularity problems.

PropoSITION 2.6. Let A be a sectorial operator of type w and B a
pseudosectorial operator of type ', whose resolvents commute. Assume
w+ ' <. Then R(A + B) is dense in X and A + B is injective.

Now let w<p<w—w'. If we define f in H*(L,;E,) by f(2) =z(z+B)"!
then the following assertions are equivalent:

(i) ua(f) € B(X);
(i1) A + B is a closed operator and

3C >0 such that ¥V x € D(A) nD(B), ||Ax| < C||Ax+ Bx||. (2.5)

Proof. Let w<p<m—w'. Consider o and 7 in Hy" (Z,; E,) defined by
o(z) = (z+B)(1+B) '¢’(z) and 1(z) = (z+B) '¢’(2).

The homomorphism property yields (1 4 B) ™ '¢*(A) = uy(0)u,(7). Since uy(0) =
(A+B)(1+B)"! (A), we deduce that R((1+ B)'¢*(A)) C R(A + B). Consider
now x= (1 +B) y in D(B). Since (1+B) '¢n(A)y —x, we see that

R((1+B)~'¢*(A)) is dense in D(B) and therefore dense in X. Consequently
R(A+B) is dense in X.

Now let x be in N(A+ B). There exists a sequence (x,) in D(A) N D(B)
such that x, — x and (A + B)x, — 0. Passing to the limit in the equality
(1+ B) '¢*(A)x, = uy(0)us(7)x,, one obtains (1 + B) '¢*(A)x = 0, and therefore
x = 0. This proves the first part of the proposition.

Turning to the second part, we will now show that

VxeDA)ND(B), us(fe)(A+B)x=p(A)Ax. (2.6)
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So let x € D(A) N D(B); then given 6 in (w,u), we have

wr(£6°)(A + B =5 / VAN +B) (A= A) (A + Bxd\  (by .1))
i Jt,

1

- 27i 27

/Mz()\)(x—A)—lxdx—L_/ Ao* (N (N + B) 'xdn
Ty Ty

= Ag? (A)x (by Cauchy’s theorem).

Since x € D(A), we obtain ¢(A)us(fe)(A + B)x = ¢*(A)Ax. Then (2.6) follows
from the injectivity of ¢(A).

Let us show that (i) implies (ii). We assume that u,(f) is bounded. Then it
follows again from the injectivity of ¢(A) that for any x& D(A) N D(B),
us(f)(A + B)x = Ax. This clearly implies (2.5) and the closedness of A 4+ B can
then be deduced in the usual way.

Assume now that the assertion (ii) is satisfied. From (2.6) it follows that

Vyee(A)(RA+B)), |ua(f)yll=Clyll-

So we can conclude our proof by showing that ¢(A)(R(A + B)) is dense in X.
Since R(A+ B) =X, it is enough to prove that ¢(A)(R(A+ B)) is dense in
R(A + B). This relies on the following standard arguments: let x = (A + B)y in
R(A + B); then x, = ¢,(A)x — x and x, € ¢(A)(R(A + B)).

With essentially the same proof, we obtain the following result.

ProposITION 2.7. Let A and B be two sectorial operators with commuting
resolvents and respective types w and '. Assume w + o' < wandlet o <p <7 — &'
and o' <p' <m—p. Define F in H*(E,XX,) by F(z,2') =z/(z+72") for any
(z,7') € L, X E,.. Then the following assertions are equivalent:

(i) F(A,B) € B(X);
(i1)) A + B is a closed operator and

3C >0 such that Vxe€ D(A)ND(B), ||Ax||<C||Ax+ Bx||.

We will continue this section by fixing some notation and recalling some
definitions related to the general geometric properties of the Banach spaces that
we will consider in this paper.

DErFINITION 2.8. Let X be a Banach space and denote by r,(7)=
sign(sin(2"xt)), for n =1, the Rademacher functions on the interval I = [0, 1].

(1) We say that X is of fype p, for 1 < p <2, if there is a constant C such that
for all finite subsets {xi,...,x,} of X,

n 1/p
sc(Z |xiup) .

i=1

n

E riXi

i=1

LY (I;X)

(i) We say that X is of cotype ¢, for 2 < g < +o0, if there is a constant C
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such that for all finite subsets {x;,...,x,} of X,

n 1/q
(Z ||xl-||q) =c
i=1

(iii)) We say that a Banach space X is B-convex if it is of type p, for some p > 1.

n

E riX;

i=1

L‘(I;X).

Finally, we recall an interpolation theorem of Carleson. For convenience,
we will transpose to X, the statement that can be found in [15] for the upper
half plane.

THEOREM 2.9 (Carleson). Let (z;);=1 be a sequence in Y., Then the
following conditions are equivalent:

(i) there is 6 >0 such that
vi=1, []
j#k
(ii) there exist a sequence (f;)j=y in H”(Ey,) and a constant M >0 such that
Viz=1, fi(g) =1, Yk#j, fi(z) =0

and Yz €Ly, Z 152 =M.

j=1

| P (2.7)

Zk“ij

(2.8)

Such a sequence (z;);= is called an interpolating sequence in I./,. Indeed, let
Y be a Banach space and (y;);=; a bounded sequence in Y. Then the function f
defined on X/, by f(z) = > ;= f;(z)y; satisfies the following properties:

fGHOO(Ew/z;Y), ||f||H°°(E7r/z:Y) $M$ull’ Hy/H and Vj=1, f(Zj) =) (2'9)
j=

3. On Banach spaces with the joint calculus property

In this section we describe large classes of Banach spaces having the following
property.

DErFINITION 3.1. We say that a Banach space X has the joint calculus property
if whenever A and B are sectorial operators on X with commuting resolvents,
which are of types w and «’ respectively and admit a bounded H oo(ZJM) or
H>(Z,) respectively, functional calculus (where 0 <w < p and 0 <w’ < p’), then
(A, B) admits a bounded H> (I x Lg/) joint functional calculus for any (8,8') in

(s ) X (', 7).

Let us first mention that there exist Banach spaces without the joint calculus
property. For example, it can be deduced from [24] that the Banach space of all
compact operators on €, does not have this property. As we mentioned in our
introduction, Albrecht [1] proved that L”-spaces, with 1 <p < oo, have the joint
calculus property. Recently, Franks and McIntosh [14] obtained a simpler proof
of Albrecht’s theorem based on a decomposition result for analytic functions.
Since this decomposition will be an important tool in this section, we now recall
it precisely.
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Franks and Mclntosh [14, §3] proved the following: for any (u,u’) in
(0,7) x (0,7) and any (8,8) in (u,m)x (', ), there are a constant C >0 and
sequences (¥;);=o, (V;)i=0 in Hy (Z,), and (¢;);=0, (&;);j=0 in Hy (Z,/) such that

Vp>0. sy |yl sup D097 sup 3 [gl”, and

L, i=0 L, i=0 L j=0

(3.1)

sup g |@;|” are finite,
E/ ]>0

and for all he H*(EgxLZg), there exists (o)) € CV such that for all ¢ =
(g_l’ g‘Z) GEMXEM”

h(¢) = Z Oli,jl//i(fl)Jﬁ(fl)ﬁ”j(fz)@j(fz),
h=0 (3.2)
with SUP i j| =< Cllhllg=(s,xx,)-
,j=0

A complete reference for the notions of geometry of Banach spaces that we will
use can be found in [20, 21, 28]. However, we will recall a few definitions. We
say that a Banach space X has a local unconditional structure (l.u.st.) if there is a
constant A such that for any finite-dimensional subspace F of X, there is a space
E with an unconditional basis (e,) and there are operators A € B(F,E) and
B€B(E,X) such that BA is the canonical embedding of F into X and
| (e,). Any
Banach lattice has this property and it is even known (see [13]) that a Banach
space has l.u.st. if and only if its bidual is isomorphic to a complemented
subspace of a Banach lattice. We will also consider the following class of Banach
spaces, introduced by Pisier [25]: a Banach space X has property (o) if there
exists a constant C > 0 such that the inequality

‘ Z oy j(r; @ 1)x;

1<ij<n L(IX1;X)
<C sup oy Z (ri @ ry)x; (o)
I<ij<n 1<ij<n LX(IXI;X)

2 2
is satisfied for every integer n and every choice of (e;;) in C" and (x;;) in X"
(where (r,) denotes the sequence of Rademacher functions on 7 = [0, 1]).
The main results of this section are the following.

THEOREM 3.2. Every Banach space with a local unconditional structure has
the joint calculus property.

THEOREM 3.3. Let X be a Banach space such that X or X* has property (o).
Then X has the joint calculus property.

Before proceeding with the proofs of these theorems we need to introduce a
technical intermediate property: we say that a Banach space X satisfies property

(A) if there is a constant C >0 such that, for any n in N, (e, ;) in C"z, (x;;) in
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2

X" and (xi;) in (X*)",

< *
CINACINIRIN

=C sup |ai,j|

I1<ij<n 1<ij<sn
X E (rl ®r])xl,j
1<ij<n LP(IXL;X)
*
x| Yo (e, - (A)
1<ij<n LZ(IXI;X*)

Then the proofs of both Theorems 3.2 and 3.3 rely on the following.

ProrosiTION 3.4. If a Banach space X satisfies property (A), then it has the
Jjoint calculus property.

Proof. We keep the notation introduced in Definition 3.1 and apply the
analytic decomposition given by (3.1) and (3.2).

To any h in H*(Zgx LZg/), we associate the partial sums of its decomposition
given by (3.2), namely, i, = > <; i<, ; ;(¥;¥; ® ¢;@;) for all n=1. By Lemma
2.3, in order to show that (A,B) admits a bounded H*(EgxZEg) functional
calculus, it is enough to find a constant K > 0 such that

Vhe H”(EgxEg), Vn=1,  |[h(AB)| < K|l hlg=g,xz,)  (3.3)

So, let x € X and x* € X*. Then

(1 (A, B)x, )| =

Z a; j(¥i(A)g;(B)x, Yi(A) @;(B)"x*

1<ij<n

Y. (nen)¥A)e(B)x

I1<ij<n

< CllAlla=(g,xx, ) 2(1%1:X)

L2(IXI;X)

1<ijsn

by (3.2) and property (A) for X. Now, fix (s,7) € I xI. Using the fact that A and
B admit a bounded H® functional calculus on L, and L, respectively, we have

Y ()i (A)g; (B)x .

1=<ij<n
= r,-<s>¢,-<A>' (1)) (B H ]
2 ol 22, 1Bl
<K r; ($)Y; ri(t)e; X
1 1slz<n ® H>(Z,) 1;,1 J( ) e (., I

<K|x|| by 3.1).
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Therefore
ST (5@ )¥ilA)g(B)x < K x|
I<ij<n L2(IXI;X)
Similarly
S (@ r)i(A) 3(B) Y < K|
L2(IxI;X*)

1<ijsn

whence (3.3) follows.

It follows rather easily from Goldstine’s Lemma that if a Banach space X has
property (A), so does its dual. Since the converse implication is obvious, we can
state the following.

LEMMA 3.5. Let X be a Banach space. Then X has property (A) if and only if
its dual X™ has property (A).

Proof of Theorem 3.2. Applying Proposition 3.4, we wish to show that any
Banach space with a local unconditional structure satisfies property (A). We know
that a Banach space has l.u.st. if and only if its bidual is isomorphic to a
complemented subspace of a Banach lattice [13]. Moreover, it is clear that if X
satisfies property (A), so does any complemented subspace of X. By Lemma 3.5,
it is therefore enough to show that any Banach latztice satisﬁes2 property (A).

Let X be a Banach lattice. Then for any (o, ;) € C", (x;;) € X" and (x};) € (X*)",

<Z |x‘ '|2)1/2 (Z |x7k .|2>1/2
i,j L]
X

Let us say a word about the meaning of this inequality. If the reader is not a
specialist in Banach lattices, a good way to get some intuition is to imagine X
(and then X*) as a function lattice on a measure space Q. Then, the quantity
20172 .
(> [xij(@)]?) " makes sense for almost every w in © and turns out to define an
element of X. The above inequality is thus a consequence of the pointwise
application of the Cauchy—Schwarz inequality. A meaning can also be given to
(> |x j\z)l/z in general Banach lattices (see [21] for complete details) and the
previous inequality holds true as well.
The following two-variable version of Khintchine’s inequality is well known:

2 172
3C such that V (ai’j)l <ij<n (S Cn , (Z |a,-,j |2) SCHZ ai,jri (%9 rj

This can be viewed as a particular case of Kahane’s inequality (sge, for example,
[21, p.74]). The latter inequality implies that, for any (x; ;) in X",

(St =] . [Srmom

12
(S, <o

The inequalities (3.4) and (3.5) yield the desired property (A) for X.

(3.4)

‘Z O‘i,j<xi,jaxzj>‘ < sup|a|
X

‘L'(le)'

dsdt

X
whence

L2(I%X)
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Proof of Theorem 3.3. Assume, for instance, that X has property (a) and let
us show property (A). With the above notation we have

Z Oll ]<xl ]7

l<ij<n

‘/ <Z°‘u )7 (s lj’zrk )re(s) ng>dsdt
IxI Y
= HZ%U

i.j

2(IXI;X)

Z (ri @ ry)x;

iJ

L2(1><1;X*')

Z (r; @ r)xi;

ij

iJ

Csup|a,j|

L2(IXL;X) L2(IXI;X*)
by the (o) property of X. When X has property (o), we just have to modify this
proof in an obvious manner.

In [25], Pisier exhibited several classes of Banach spaces with property (o).
From his results and Theorem 3.3, we deduce the next result.

COROLLARY 3.6. Let E be a Banach space with Lu.st. (or merely the Gordon—
Lewis property).

(1) If E has a finite cotype, then every subspace of E has the joint calculus
property.

(ii) If E* has a finite cotype, then every quotient of E has the joint calculus
property.

(iii) If E and E* have finite cotype, then every quotient of subspaces of E has

the joint calculus property.

We refer the reader to [28] for information on the Gordon—Lewis property.
From (i) it follows that every subspace of L' has the joint calculus property and
from (iii) that every quotient of subspaces of a B-convex Banach lattice (or
equivalently a Banach lattice with a finite cotype and such that its dual has a
finite cotype) has the joint calculus property. We mention for completeness that
Bourgain [3] constructed a B-convex Banach lattice which is not a UMD space. In
order to describe the field of application of our results, let us finally notice that
for any measure space (,X,u) and any 1 < p < 400, if a Banach space X enjoys
property (a), so does L”(Q;X).

We will now study the joint calculus property for a few Banach spaces that are
typical for their lack of unconditional structure.

Let T={ze€C: |z|] =1} and D={z€C: |z|<1}. We let L” =L"(T) for
I<p<o, where T is equipped with its Haar measure. Let H” =
{feL’ VYn<0, [} f(z)"dz =0} be the usual Hardy spaces over D. Lastly we
denote by A(D) the disk algebra which is the space of continuous functions on
T belonging to H*. We denote by P the quotient mapping from L' onto L'/H'.
We can now state together our positive results about these spaces.
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THEOREM 3.7. The spaces LYYH', H*®, and A(D) enjoy the joint calculus
property.

Proof. We will show that these spaces satisfy (A). We start with LYH'. In [4]
Bourgain proved that L'/H' is a Grothendieck space of cotype 2 or, equivalently
(see [28]), that it satisfies the following lifting property. There is a constant C > 0
such that, for any subset {x;,...,x,} of L'/H', there is a subset {y,...,y,} of L'
such that

n

Z TiYi

i=1

n

E riX;

i=1

Vie{l,...,n}, Py;=x; and '
LA(ILYH)

sc'

12(I;LY)

A thorough examination of the proof given in [6] (see also [28, Chapter 6])
yields the following lifting property with two variables. There is a constant C > 0
such that, for any subset {x; ;} <; j<, of L'/H", there is a subset {yijhi=ij<n of
L' such that

|

Since L' satisfies property (A), it follows clearly from (3.6) that L'/H" also enjoys
property (A) and therefore the joint calculus property by Proposition 3.4.

Notice now that H™ is isometric to (L1/H l)*. So H® has property (A) by
Lemma 3.5. Recall finally that the dual of A(D) is isometric to the €;-sum
LYH' P Li, where le denotes the space of all singular measures on T. We have
already seen that L'/H" has property (A). Since it is a Banach lattice, so does L..
Therefore A(D)", and thus A(D), have property (A).

Vlﬁz,]Sn, Pyl-’j:x,-,j

and

Z (ri @ rp)yij

l<ij<n

(3.6)

2J :
L2(IXI;L") L2(IXLLYH")

I<ijsn

REMARK 3.8. In fact it is possible to deduce from (3.6) that L'/H' has
property («). Moreover, using similar arguments as in the proof of Theorem 3.7,
one obtains that for any reflexive subspace R of an Ll—space L' (Q), the quotient
space L'(Q)/R has the joint calculus property. More generally, if X is a Banach
space with property (A) and if ¥ ©X is a subspace, then X/Y has property (A)
(and thus the joint calculus property) as soon as Y is B-convex (see [27, 28]).

We will conclude this section with a counter-example to bounded joint
functional calculus on Schatten spaces. Let S, be the Banach space of all
compact operators on €,. For 1 <p < oo, the Schatten space S, is defined as the
space of all T in S, such that |T|” has a finite trace. It can be equipped with the
norm o, (7T) = (tr| T|P)"7, for which it is a Banach space.

THEOREM 3.9. For all 1 <p < oo, with p#2, the space S, fails to have the
joint calculus property.

Proof. Let 1 <p < oo with p #2. We denote by (e;);~ the canonical basis of
€,. For any i,j=1, we let E;; be the rank 1 operator on €, defined by
E; jx =(x,e;)e; for every x in €,. Let K, be the linear span of the operators E; ;.
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We consider it as equipped with the S,-norm. For every family a = (g, ;); j= of
complex numbers, we denote by M,: K,y — Ko the so-called Schur multiplier
defined by M,(E;;) = a; ;E; . When M, is bounded, we say that it is a bounded
Schur multiplier on S,,.

We identify elements of §, with their infinite matrices with respect to the
canonical basis of €,. Let (o;)i~; and (B;)i=; be two sequences of positive
numbers. Let A, and Ap be the two diagonal matrices

531 0 B] 0
A, = - o and Ay = - 5
0 0

(3.7)

Then, one can define two sectorial operators A and B of type O (that is, of type
w for any w>0) on S, as follows: let D(A) ={T €S,: A,T<S,} and for
T € D(A), A(T) = A,T. Similarly, D(B) = {T € S,: TAz€S,} and for T € D(B),
B(T) = TAg. For any p in (0,7), A and B admit a bounded H*(Z,) functional
calculus. Indeed, for any f in H °°(EM), and any 7T in S,, we have

FANT) =f(A4)T and f(B)(T) = Tf(Ap)

where

flen) 0 f(B81) 0

f(aq) = and  f(Ap) =

flew)
0 0
Now let p and g’ be in (0,7) and F € H*(Z, X Z,/). Then for every i, j =1, E;;
belongs to D(F(A,B)) and F(A,B)(E; ;) = F(«a;,;)E; ;. We deduce that

F(A,B) is bounded <= M(p(4,p,)) is a bounded Schur multiplier on S,. (3.8)

f(B)

We now fix (o)== (B)i=1 = (2");=, and assume that (A,B) admits a
bounded H> (X, x L,) functional calculus. It can be easily checked that (2');~, is
an interpolating sequence in X (that is, (\/E)l =1 satisfies (2.7)). So by Theorem
2.9, there exist M >0 and (f;);=; < H”(X,) such that

Vi=1, f(2)=1, Vk#i fi(2")=0, and VzeI, Y |f@)I=M.

i=1

Let a = (a;;); j=1 be any bounded family of complex numbers. We may define F,
in H*(Z, xE;) by F,(z.2') =Y i;=1a:,f(2) fi(z'). Clearly F,(2',2) =a,; for
every I, j = 1. Hence, by (3.8), M, is a bounded Schur multiplier on S,,. But the
fact that this holds for all bounded a is false, as can be seen in [28, proof of
Corollary 8.20].

REMARK 3.10. MclIntosh and Yagi used the operators considered above in [24]
and showed that A + B is not closed in S,. On the other hand, if 1 <p <oo, §, is
a UMD space (see [S]) and therefore, the theorem of Dore and Venni ensures that
A + B is closed. The Schatten spaces S, for 1 <p < oo and p # 2, provide, to our
knowledge, the first examples of UMD spaces that fail the joint calculus property.
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4. Functional calculus for analytic functions of polynomial growth

Throughout this section we consider two sectorial operators A and B on a
Banach space X with respective types w and ' and with commuting resolvents.
We also consider P, an analytic function of polynomial growth on ¥, X X,:, where
(o ') € (w0, ) X (w’, 7). Our main purpose will be to study the functional
calculus associated with the closed densely defined operator P(A,B) (see
Proposition 2.5), when (A,B) admits a bounded H* joint functional calculus.
Our general result is the following.

THEOREM 4.1. In the above setting, assume moreover that (A,B) admits a
bounded H* (L, XX, joint functional calculus and P(Z,XE,)CE, for some
n € (0, 7). Then:

(i) P(A,B) is pseudosectorial of type n;

(ii) if we assume moreover that P(A, B) is one-to-one and has a dense range, then

P(A, B) is sectorial of type 1 and admits a bounded H® (E,) functional calculus
forany v € (n, 7); furthermore, we have the following composition property:

VfEH™(L,). f(P(A.B))=(f°P)AB).

Proof. Let keN such that P& € Hy’ (E,XE, ). Let us first notice that for
any n= 1, ®f ¢ Hy (E,xE,) and satisfies

VyeX, P(A B)®(A,B)y=(P®)(A,B)y.

Let us consider A € C\Z,. For (z,z') €L, x I, we set F(z,z') = /(A= P(z,2")).
Clearly F\ € H*(Z, xL,/). Since (A,B) admits a bounded H*(E, xL,/) func-
tional calculus, Fy (A, B) € B(X ). Observe that (A" — P®*)F, = & on L, xX,.So,
using the homomorphism property and the previous remark, we obtain
VxeX, (A—P(A B))®:(A, B)F\(A,B)x = ®.(A,B)x.

Then as n tends to oo, we obtain, by point (i) of Lemma 2.2 and by the
closedness of P(A,B),

VxeX, F\(A,B)xeD(P(A,B)) and (A—P(A,B))F\(A,B)x=x. (4.1)

On the other hand, we have F)(A,B)(\— P(A,B))®"(A,B) = & (A,B), which
yields, for all x € Ry, F)\(A,B)(N — P(A, B))x = x. Therefore, by the closedness of
P(A,B) and the boundedness of F)(A,B),

VxeD(P(A,B)), Fyx(A,B)(N\—P(A,B))x =x. (4.2)
The identities (4.1) and (4.2) assert that N\ € p(P(A, B)) and that
(A\—P(A,B))"' = F,(A,B). (4.3)

For N C\I,, we put Gy = \F,. Obviously Gy(A,B) = N(\ — P(A,B))"". Now,
for any » € (9, 7), {Gx: A€ C\L,} is a bounded subset of H*(X, xL,/). Since
(A, B) admits abounded H* (X, x /) functional calculus, {Gy\ (A, B): A€ C\L,}isa
bounded subset of B(X). This concludes point (i).

In order to prove (ii), we will show that the composition property is satisfied by
any f in Hy (X,). Then the full statement will clearly follow. Note that we do not
need to assume that P(A,B) is one-to-one and has dense range in the following
computation.
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/Let]/‘ b/e in HO (E,,), and set F=foP in H*(Z,xE,). We fix 0 € (w,p),
0' € (w',p') and 0" 6(17, . By (2.3),

FABe)oB) = [ [ oo P-4 -5y e
27rz T, JTy
By Cauchy’s formula we have, for any A, € En,
_1 N
fho) =5~ L dX.
Therefore
F(A,B)p(A ) (B)
/ / / FVF\(z.2")(z—A) ' (z' = B) ' dzde' AN
27Tl Ty JTyr JTyn
e FON(N = P(A,B)) "' o(A)e(B)d\  (by (4.3))
71'1) Ty

=f(P(A,B))¢(A)e(B).

Since F(A,B) and f(P )
we obtain F(A,B) = f(P(A,

A, B)) are bounded and since ¢(A)p(B) has a dense range,
A,B)).

/-\/\

In order to apply statement (ii) of Theorem 4.1, we need to have the following
proposition at our disposal.

ProrosiTION 4.2. Under the assumptions of Theorem 4.1, if we assume
moreover that 1/P is of polynomial growth on ¥, XX, then P(A,B) is injective
and has a dense range and therefore admits a bounded H(L,) functional
calculus, for all v > .

Proof. Let k be a positive integer such that P® and ®‘/P belong to
H; (E, % Z,). From the homomorphism property it follows that

Vx € D(P(A,B)), G)) (A, B)®* (A, B)P(A, B)x = ®* (A, B)x.
Since ®%(A, B) is injective, P(A, B) is injective. Similarly,
P(A,B)®"(A, B) (%{) (A,B) = *(A,B).
Then, it follows from Lemma 2.2 that R(P(A,B)) is dense in X.
From now until the end of § 4, we will assume that the couple (A, B) introduced
at the beginning of this section admits a bounded H °°(EM X X,/) joint functional

calculus. We now study in detail a few typical examples of functions of
polynomial growth on X, X E,.

ExampLE 1. Let Pi(z,z') =z+7 and assume p+pu' <. Then P, and 1/P,
are of polynomial growth on X, XX, and P;(Z,xE,/) = LMax{u,p/}- Let us show
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now that P;(A,B)=A+B. Since (A,B) admits a bounded H*(EZ,xLZ,)
functional calculus, it follows from Proposition 2.7 that A + B is closed. The
function P;®* belongs to Hy (E,xZ,) and (P;®*)(A,B) has an integral
representation from which it can easily be shown that P,(A,B) and A+ B
coincide on R, = R(®*(A,B)). Now, for any x in D(A) ND(B), (X,)n=1=
(®2(A,B)x),=; is a sequence in R, such that x, — x, Ax, — Ax, Bx, — Bx (see
Lemma 2.2). Similarly, for any y in D(P,(A,B)), (yy)u=1 = (Po(A,B)y),=, is
included in R,, y, — y and P;(A,B)y, — P;(A, B)y. Thus the closedness of A + B
and P, (A, B) implies that they are equal.

EXAMPLE 2. Let P,(z,z') = zz' and assume u + p’ < 7. Again P, and 1/P, are
of polynomial growth on X, XX, and P,(X,xX,) =X, , . Using the integral
representation of (P2<I>2)(A B) = PZ(A B)(I)Z(A B) one can easily check that
P,(A,B) and AB coincide on R,. Then we can use the sequence (®2(A,B)) as in
Example 1 and it therefore follows from the closedness of P,(A,B) that
P,(A,B) = AB.

If we combine Examples 1 and 2, Theorem 4.1 and Proposition 4.2 we
immediately obtain the following.

COROLLARY 4.3. If (A,B) admits a bounded H* (L, XL, ) joint functional
calculus, with p+ p' <, then:

(i) A + B is a sectorial operator of type Max{p,p'};

(i) for all v>Max{u,u'}, A+ B admits a bounded H®(L,) functional
calculus;

(iii) AB is a sectorial operator of type p—+ p';
(iv) for all v>p+ u', AB admits a bounded H* (L,) functional calculus.

Proof of Theorem 1.2. Combine Corollary 4.3, Theorem 3.2 and Corollary 3.6.

5. The H*(X,;B(H)) functional calculus on A(H );
applications to maximal regularity

Throughout this section, A will denote a B-convex Banach lattice, or
equivalently, a Banach lattice with a finite cotype, whose dual A* has a finite
cotype. We recall that for 1 <p < oo, LP-spaces are B-convex. We will use the
following result of Maurey [22] (see also [21, pp.49-50]). If A is a Banach lattice
with a finite cotype, then there is a constant K >0 such that, for every subset

{xi}?:l of A,
n 5 12 n 5 12
|xi|) <1<H( |xi|)
(X Snf) ],

Since A is B-convex, it is order continuous and therefore A and A* can be
represented as function lattices on the same measure space (Q,X,u) (see [21, l.a,
1.b] for details). Moreover, the duality is described by

V (x,x") € AXAT, (x,f}z[zx(w)x*(w)du(w).

n

E riX;
LY(I;A

i=1

=

=

A

(5.1)
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Now let X be a Banach space. We introduce the following classical definition:
AX)={f: @— X: f strongly measurable and || f(-)|x € A}.

Note that A(X) equipped with || f|[yx) = || Il (- )HXHA is a Banach space and the
B-convexity of A implies that A ® X is dense in A(X). As a typical example,
notice that if A = L”(Q, ) for some p € (1,400), then A(X) = L”(Q, u; X) is the
classical Bochner X-valued L”-space.

For every S in B(X), Iy ® S extends to a bounded operator [, ® S on A(X),
with [Ty ® S||gax)) = IS|lsx)- This allows us to consider B(X) as a closed
subalgebra of B(A(X)). Now let A be a sectorial operator on A. Assume that
A ® Iy, defined on D(A) ® X, is closable in A(X) and that its closure .o/ is also
sectorial. Then B(X) is actually a subalgebra of E,; thus we have

B(X) CE., c B(A(X)).

It then makes sense to study the functional calculus u., (see (2.1), (2.2)) on the
Banach algebra H*(X,; B(X)). It will be shown in § 6 that this functional calculus
is not always bounded when A has a bounded H® functional calculus. The
purpose of this section is to establish positive results in the Hilbert space case and
to apply them to maximal regularity. The following introductory proposition deals
with the extension to A(H), where H is a Hilbert space, of a bounded or of a
sectorial operator on A.

ProrosITION 5.1. Let H be a Hilbert space and 0 < w < .

(i) There exists a constant C >0 such that for every T in B(A), TQ Iy is
bounded on A ® H and satisfies ||T @ Iy|| < C||T||. Moreover, if T is injective
then its extension 7 =T ® Iy to A(H) is injective.

@i1) If A is a sectorial operator of type w on A, then A Iy, defined on
D(A) ® H, is a closable operator, whose closure o/ is sectorial of type w on
A(H). If moreover A admits a bounded H™(X,) functional calculus, so does of.

Proof. We start with the proof of (i). Let T € B(A) and let y be in A® H.
Then y = > i x; ® e;, where {x;};—; C A and (¢;)j=; is an orthonormal system.
We have (T ® Iy)y = > ;-1 Tx; ® e;. Hence to obtain |7 ® I|| < C||T|| it suffices

to have
12 n 21/2
Txl gCT X;
(S = (57,

Such an inequality is actually true for any Banach lattice A by a result of Krivine [17]
(see also [21, p.93]). Note however that under our assumption of B-convexity, it
can be proved directly as a consequence of (5.1). Indeed, we clearly have

n
‘ Z}’iTxi =
L' (I;A)

i=1

ljor any h€eH and any y€A(H), we may define the element of A,
h(y) = (h,y(+)). Suppose now that T is injective and let y be in A(H) such that
Fy=0. Then for any he H, T(h(y)) = h(7y)=0. Hence h(y)=0, that is,

ri X
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(h,y(w)) = 0 for almost every w in Q. Since A is B-convex, the essential image of
y is separable (see [21, Proposition 1.a.9]) and therefore we obtain y = 0.

Let us now prove (ii). We give ourselves a sectorial operator A of type w on
A. Let us consider a sequence (y,),—; in D(A)® H such that y, — 0 and
(A®1Iy)y, — y in A(H). By point (i) proved above, we can set

R=I+A)"@1I; inB(AH)).

We let z=2y. Clearlly, Z(A®1Iy)y, = (I—I+A)"")®Iy)y, —z. Since
(I—(I+A)"")®I is bounded, z=0. But (i) implies that # is injective, so
y =0. The operator A ® I is therefore closable. Moreover .« = A ® Iy clearly
has dense range and domain and is injective, for the same reasons as in (i).

In order to conclude this proof we show that p(A) = p(./) and

VAep(Ad), A=) '=N-A)"QIy. (5.2)

The inclusion p(.</) cp(A) is obvious, so consider N in p(A). Then N — .o/ is
injective, so it is enough to prove that

VzeAH), y=(N-A)"'@Iy)zeD(#) and (N\—.o)y=1z
Let ze A(H) and (z,) be in A ® H such that z, — z. Let y, = (A —A)"' @ Iy) z,.
Since (A — A) ™' ® I; is bounded, (,) is a Cauchy sequence included in D(A) ® I;. So
¥, converges to y, for some y in A(H). Moreover .«/y, = Ny, — z, — Ay — z. Thus
yeD(),(N—)y=zandy = (A—A)"' @1I)z.

As an obvious consequence of (5.2) and (i), we see that .o/ is sectorial of
type w.

Assume finally that A admits a bounded H*(L,) functional calculus. Then it
follows from (5.2) and (2.1) that for any f in H*(Z,), f(«/) = f(A) ® Iy. Thus
point (i) and Proposition 2.1 imply that ./ admits a bounded H™(Z,)
functional calculus.

THEOREM 5.2. Let O<w<u < If A is a sectorial operator of type w on A
and admits a bounded H™(E,) functional calculus, then, for any v in (p, ), o/
admits a bounded H”(X,; B(H)) functional calculus.

Let us start with a few preliminary lemmas. The first is an extended version of
the quadratic estimates of [8].

LEMMA 5.3. Let x€ A and ¥ € Hy (Z,). Then for almost all w in Q, the
Sunction h(w): t— (Y(tA)x)(w) belongs to the Hilbert space Hy=
L*((0,00),17V dr) and h is an element of A(Hy).

Moreover, for a given  in H(§’° (EM), there is a constant C >0 such that, for
any x in A, || h|z@y) < C|lx]|a.

Proof. Let us fix ¢ in Hy' (L,). Since D(A) N R(A) is dense in A, it suffices to
show that this lemma holds for any x in D(A) " R(A). So let x belong to
D(A) "R(A); we can write x = ¢(A)y with y in A. Then, by Fubini’s theorem, the
map f: t— y(e'A)x belongs to L'(R;A) and, for all 7 in R, f(t) = ¢,(¢)A"x,
where ¢, € L'(R) is defined by (1) = y(e'). Then, for almost every w in ,
fur t— (Y(e'A)x)(w) is in L'(R) and, for all s in R, £,(s) = ¥, (s)(A"x)(w). Now,
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by Plancherel’s theorem, we find that, w-almost everywhere, h(w) € H, and

@, = ([ @ @Pas) (53)

Finally, following the proof of Theorem 6.6 in [8], we find that the right-hand
side of (5.3) defines an element of A whose norm is less than C||x||,, where C is
a constant independent of x.

Next, we generalize Lemma 5.3 to the case of finite sequences in A.

LEMMA 5.4. Let y be in Hy (E,). There exists a constant C >0 such that, for

any finite subset {x;}i_; of A,
n A\
C X;
()],

o) n 2@ 12 _
](/ > vy t) =

Proof. By Lemma 5.3 and by the properties of the Banach lattices, both
quantities in the inequality (5.4) make sense. So let {x;}/_; c A and define
h; € A(Hy) as above by h; (w): t+— (Y(tA)x;)(w). Then, for any fixed w € Q,

([ Z|wa| ””) (Znh ||H0)m

n

Z rihi(w)

i=1

Zrh(w

by Kahane’s inequality (see, for example, [21, p.74]). By convexity we then have

() 3 wesr )],

But we can write

(5.4)

L2(I;Hy)

I, Hy)

n

Zrihi

i=1

< K,

L1 A(Hy)

n n AN
S -/ ( [ e Y- s ) s,
i=1 LY(I:A(Hy)) /1 i=1 A
Hence applying Lemma 5.3 to >_ r; (s)x,» for all s in I, we obtain
rih; s)X; ds =C TiX; ,
DILL] W © 2" o

whence the result follows by (5.1).

Proof of Theorem 52. Let a be such that w<pu<a<2a—p<v<m.
Consider v in Hy°(Z,) such that v = ¢ with ¢ in H;°(E,) and satisfying

3K >0 such that VseR, ,(s) = Ke |,
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where vy, € L'(R) is defined by 7,(t) = y(e'). Such a 7 exists (see [8, Example
4.7]). We then obtain a constant C > 0 such that

dt

VbeH(L,;B(H)), 38 L®(R,;B(H)) N L (R+, 7;B(H)) such that

0 dt
1B8ll=w,:8()) < CIbllg=x,pm)y and VzeL,, b(z) _/) /3(f)7(f2)7

(5.5)

This result is proved in the scalar case (that is, for b € Hy (L,)) in the course of
the proof of Theorem 4.4 in [8]. It is easy to check that the same proof works as
well for vector-valued functions.

In the sequel, we simply denote by u the functional calculus map associated
with .o/ and which is defined on Hy (E,; B(H)) by (2.1). For b€ Hy (X,; B(H)),
0 € (w,pu) and x € A ® H, we have

u(b)x = L (()\—A)_1®

27

N B(#)v(t\) ?)xd)\,

where 8 is given by (5.5). So, by Fubini’s theorem,

0

u(b)x = A " (1) ® B(1))x .

Let us consider (x,x") € (AQH)x (A" ®H). We can write x =) [ X; ® e
and x" =) xi ®e;, where {x}i_;cA, {x}_;cA® and {¢}’; is an
orthonormal system of H. Then lettlng Bi;(t) = (B( )ej. e )y, we have

by = [1 3 B0 T

I<ij<n

:/000 Z Bi,j(l‘)<¢(IA)xj,¢(tA) X %

I1<ij<n

. %% dt
:AA Z Bi,j(t)(¢(tA)xj)(w)(x,b(tA) xl-)(w) 7d0)

I<ijsn

by Fubini’s theorem. Hence |(u(b)x,x")| is less than

L 1Bt (3 Iy ) (Zl DAY |)”2dfd
<0ale [ (73 1o ‘”)(/ wears@r?) a

(by the Cauchy—Schwarz inequality)

o ([ St ([ et

The Banach lattice A is reflexive because it is B-convex [21, Theorem 1.c.5].

A*.
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Therefore A* admits a bounded H®(Z,) functional calculus on A*. Moreover,

Y(tA)" = J(tA"), where ¢ € Hy"(L,) is defined by ¥(z) = §(z) for any z€ I,
Hence applying Lemma 5.4 to A and A®, we obtain

n ) 12 n ) 12
(30r) 1L (35 )
i=1 A i=1

= KC|[b ] 1| a ¢ 16" | e a1)-

Ku(b)x,x")| < KC?|b|

A*

From the B-convexity of A, it follows that A(H)* is canonically identified with
A"(H). Then by the density of A® H in A(H) and A" ® H in A*(H), we infer
from the above estimate that || u(b)|| < KC?|b||.

In order to apply Theorem 5.2, we need to extend to A(X) an operator B
defined on some Banach space X. The situation is simpler than in Proposition 5.1.

LEMMA 5.5. Let B be a pseudosectorial operator of type ' on X and let
p' € (o, ).

(i) The operator Iy @ B, defined on A @ D(B), is closable and its closure % is
pseudosectorial of type w'. Moreover, D(%) = A(D(B)), where D(B) is equipped
with its graph norm ||x||p) = ||x[[x + || Bx||x-

(i) If B is sectorial of type w', so is A.

(iil) If B admits a bounded H™(E,) functional calculus, so does 2.

Proof. Let (x,),—; be a sequence in A®D(B) such that x, — 0 and
(Iy ® B)x, — y. Then there is a subsequence (x,)n_; of (x,),—; such that for
almost all w in Q, x,(w) — 0 and B(x,(w)) — y(w). Since B is closed, we have
y=0 and therefore Iy ® B is closable. Then our description of D(#) is a
straightforward consequence of the definition of A(D(B)). The operator % is
pseudosectorial on account of the following fact:

p(B)cp(#) and VYNepB), AN—=28)"'=I,oA-=B)"".  (5.6)

The assertion (i) is then clear. From (5.6), it follows that for any f in Hy' (Z,/),
f(#) =1, ® f(B), which yields (iii).

Then, as an application of Theorem 5.2 and Proposition 2.6, we have the
following.

COROLLARY 5.6. Let A be an operator on a B-convex Banach lattice A
admitting a bounded H oO(ZIM) functional calculus and let B be a pseudosectorial
operator of type w' on a Hilbert space H. Denote by ./ and # the extensions
described above of A and B to A(H) and assume that p+ o' < .

Then o/ + A is a closed one-to-one operator on A(H) with dense range and

3C >0 such that Y xeD(4) AD(AB), | #x|<C|(+B)x|. (57

Proof of Theorem 1.4. Under the assumptions of Theorem 1.4, the fact that
B® Iy and I;4 ® C are closable follows from Proposition 5.1 and Lemma 5.5.

We let B=B®1I, and C =1I;, ® C. Then by Corollary 5.6, B+ C is a closed
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one-to-one operator with a dense range. The fact that B 4+ C is actually sectorial
of type less than %71' can be easily deduced from Theorem 5.2 but also follows
from the estimates given in [9, § 3].

Now let T>0 and 1<p<oo. Consider A=d/dt on L”(0,T) with domain

W,7(0,T) and let

A=L"(0,T;L(Q))).
Then A ® I,y is closable in A and A ® I 4, admits a bounded H>(Z,)
functional calculus for any 5 > %7r (see [11]). The space A is a B-convex Banach
lattice and it is easy to check that A(H ) can be identified with L”(0,7;L(Q;; H))
and that the closure of A ® I14(q,) ® Iy, provided by Proposition 5.1, is .o/ = d/dt
on LP(0,T;LY(Q; H)) with domain W,"”(0,T;L(Qy; H)).

We denote by # and ¥, respectively, the closures of Irrr)® B and
I1r(0r)® C in A(H). On the other hand, by Lemma 5.5, I;»(7) ® B is closable
on A and its closure admits a bounded H*(E,) functional calculus. It can easily
be checked that 4 is the closure of /;»7) ® B ® Iy. We also have that ¢ is the
closure of I, ® C and is a sectorial operator of type ' on A(H).

By Theorem 3.2, (A ® I (q,), I1r(0.,r) ® B) admits on A a bounded H ™ (E, x Zg)
joint functional calculus, for any (o, 3) in (%w ) X (u, 7) and, by Proposition 5.1, so
does (<7, #). By Proposition 2.7, this implies that there exists C; >0 such that

VxeD(d)ND(B), |x|<Cll(+B)x|. (5.8)

Now let S=A®I14(Q) + o) ®@B. Then by Corollary 4.3, S admits a
bounded H*(E,) functional calculus, for any » > 1. It is standard to verify that
S® Iy = .o/ + 2. Then, in view of Corollary 5.6, there exists C, > 0 such that

VxeD(d)ND(B)ND®), |(4+B)x|<Cl|(s+B+E)x|. (59)

From (5.8) and (5.9), it follows of course that .o/ (.«/ + % + %):] is bounded. As
is well known, this is equivalent to the maximal regularity of B + C.

6. A characterization of Hilbert spaces in terms of functional calculi

Let X be a Banach space, p € (I,+00) and let T = {z€ C: |z| = 1}. We will
start with the study of the first derivation operator on L”(T;X). So consider
A =iz(dldz) on LP(T) with domain D(A) = W"’(T), and ./ = iz(d/dz) on
LP(T;X) with domain D(.«7) = W"P(T;X) which is also the closure of A ® Iy
in L?(T;X). It is known that .o/ is pseudosectorial of type 5« and that, for any p
in (%71-, 7r), o/ admits a bounded Hy"(Z,) functional calculus if and only if X is a
UMD space [11, 29].

We recall (see §5), that B(X) is canonically identified with a closed subalgebra
of E . Then we have the following characterization.

THEOREM 6.1. Let 3 < p < m. The operator ./ admits a bounded Hy' (Z,; B(X))
functional calculus if and only if X is isomorphic to a Hilbert space.

Proof. The ‘if’ part is a consequence of Theorem 5.2. So let us assume that
</ admits a bounded Hy (Z,;B(X)) functional calculus. We denote as usual by

uy: Hy (Z,;B(X)) — B(LP(T;X))

W

the induced bounded homomorphism. Then we will show that X is of type 2 and
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of cotype 2 (see Definition 2.8). This, by Kwapien’s theorem [18], will yield
the conclusion.
Let us prove first that X is of type 2. So let {x;};—; be a finite subset of X and
fix (e,e’) in X xX* w1th (e ey =|lellx =€
The sequence (\/“ e )k21 satisfies the condition (i) of Theorem 2.9 (the
verification is left to the reader). Then using the transformation z — Z*, we obtain
a sequence (fi)r=; in H*(Z,) and a constant M > 0 such that

Vk=1, fi(i2) =1 Vj#k £(i2)=0; and VzeZL, Y [filI<M
k=1

Now, consider, for 1 <k <n, T, € B(X) defined by Tyx = e"(x)(x;/||x||) for all
x€X (we may assume x; #0). For z in X, define f(z) = > x=1fi(2)Tk. Then
feH®(ZX;B(X)), | flle=(x,.8x)) <M, and for all k € {1,.. n},f(iZk) =T,

We also consider P in LP(T;X) defined as follows: for all zeT, P(z) =
(i ).

Let &, be defined on T by g(z) =z . It is known (see [26]) that there is a
constant C > 0 such that, for any y;,...,y, in a Banach space Y,

x =1L

n

Z Sk Yk

k=1

n

Z Tk Yk

k=1

n

z Ek Yk

k=1

c' < <C (6.1)

LP(T;Y) L\(I;Y) LP(T;Y)

In particular, this yields (with Y = C)

o ( > s ) . (62)

Now, we need to introduce the auxiliary functions defined, for N in N and A € L, by

1P|

1 1

BN =TSN T

For any N >0, £y € Hy (E,) and l&nllz=(z,) < Cy where C, does not depend on
N. Using the Cauchy Residue Theorem, one obtains

VzeT, (uy(tnf)P Zg,v (1297 x.

This, combined with (6.1) and (6.2), implies that

n 1/2
sczc,tM||uﬁr|(2||xk||2) L (63
k=1

n

Z Ty fN(i2k)xk

k=1

L'(I;X)

Finally, for any z in E,, limy_, ;o £y(z) = 1. Thus, passing to the limit in (6.3),
we see that X is of type 2.

In order to prove that X is of cotype 2, we follow the same steps, after
exchanging the T, with the operators defined by, for all x € X, S;x = x;(x)e,
where x; € X7, ||x¢|lx- = 1 and x;(x;) = [|x¢]|.

We will now show how to use transference methods in order to obtain the same
characterization if we replace T by R. So let X be a Banach space, 1 <p < 400,
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Ao =dldt on LF(R) with domain W"?(R), and ./, = d/dt on L’(R;X) with
domain W"?(R;X). We have a similar result.

THEOREM 6.2. Let i < p < w. The operator o/, admits a bounded H” (Z,;; B(X))
functional calculus if and only if X is isomorphic to a Hilbert space.

Proof. Notice first that —.o/, and —./ generate groups of translations in
LP(R;X) and LP(T;X), which we denote by (¢ "“*),cg and (e "), cg.

LEMMA 6.3. For any k in L'(R; B(X)),

‘/e"“’k(t)dt /em/“k(t)dt
R R

In the case when k belongs to L' (R), this result follows from some well-known
work of Calderon on transference, using the group action of R on T by translation
(see, for example, [7, Chapters 1 and 2]). This extension to the B(X)-valued case
is straightforward and left to the reader.

Suppose now that u, :Hy (Z,;B(X)) — B(L”(R,X)) is bounded. Let %, be
the algebra of all rational functions, belonging to Hy' (Z,), with poles outside I,.
Clearly %, is a subalgebra of HOW(EM). Any f in %, is the Laplace transform of
some k in L'(R.). More precisely,

<

=

B(LP(T;X))

BLI(R:X))

VZ c Eﬂ-/z, f(Z) - Aw eitzk(l) dt. (64)

This inspired the so-called Phillips functional calculus and it is known that for
any f in R, u.,(f) is equal to [¢" e "“°k()dt, where k is given by (6.4). This
can be extended in the following way. For any f in %, ® B(X), there exists k in
L'(R,;B(X)) such that

[e e}

ViE€T,,, flo) = / k() dr and u,(f) = / k(1) d.
0 0
This is also true for u . So, by Lemma 6.3, u, is bounded on %, ® B(X) and
3K >0 such that Vfe R @BX), [uy(f)Il<K|flz=c,sx)- (6.5)
Now consider f in Hy (E,) ® B(X). For £¢>0 and z in C\{—(l/e)}, we set
8:(2) = (e +2)/(1 + ez). Notice that g.(X,) is a compact subset of I,. Hence it is
not hard to deduce from Runge’s theorem that there is a sequence (f,),>; in

Ay @ B(X) such that f, o g, converges to f o g, uniformly on I,. Now fix m € N.
It follows from (6.5) that

YVe>0, Vm>0, Vn>0,

| ter(@m(fu © 8l =< Kl Omllr=(z,)ll o © &ellr=(x,:8x))-

Since (¢,)n=1 is uniformly bounded in H™(X,), there is a constant K'>0
such that

Ve>0, Vm>0, |uy(en(fog))l<K'llfllu=(,s0x)-
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By Lebesgue’s dominated convergence theorem, we have

VxeX, limuy(pn(f o ge))x =ty (f)em(A)x.

Therefore, letting m tend to +oo we obtain ||u,(f)]| < K/Hf||H°°(Eu;B(X))~ Finally,
notice that it follows from the proof of Theorem 6.1 that the boundedness of u,
restricted to H0°°(E”) ® B(X) actually implies that X is isomorphic to a Hilbert space.

REMARK 6.4. Let 1<p<oo and let Ay =d/dt on LP(R) as above. The
classical proof of the fact that for any ,u>%7r, Ay admits a bounded H OO().T,L)
functional calculus relies on Mihlin’s multiplier theorem on L”(R). The arguments
involved in this proof can be adapted to the operator-valued framework; hence it
is possible to derive a direct proof of Theorem 5.2 for A, from Mihlin’s theorem
on L?(R; H) for B(H )-valued multipliers [2, Theorem 6.1.6]. In the same manner,
if we assume that for a given Banach space X, Mihlin’s theorem holds on
LP(R;X) for B(X)-valued multipliers, then one can show that .7, admits a
bounded H*(Z,; B(X)) functional calculus on L(R;X) for any p > 1. Thus as a
consequence of Theorem 6.2, we obtain that X is necessarily isomorphic to
Hilbert space. The fact that the operator-valued Mihlin multiplier theorem only
holds on Hilbert spaces has been known for a long time and goes back to G.
Pisier (unpublished).

REMARK 6.5. Given a sectorial operator A which admits a bounded H*(Z,)
functional calculus on a Banach space X, a natural question is: does A
automatically admit a bounded H*(Z,;E,) functional calculus? This holds true
when X is a Hilbert space. This result is implicit in [19] and its proof relies upon
techniques from [23]. We were informed by Albrecht and Mclntosh that they have
also obtained this result (paper in preparation). When we leave Hilbert spaces, the
situation turns out to be much more complicated. Indeed, Theorem 6.2 shows that
on LP-spaces (1 <p < oo, p#2), the boundedness of H*(L,) functional calculus
for an operator A does not imply the boundedness of H oo(ZJM;EA) functional
calculus.
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