A positive solution for a nonlinear Schrödinger equation on \mathbb{R}^{N}. *

Louis Jeanjean (\dagger) and Kazunaga Tanaka (\ddagger)

(\dagger) Equipe de Mathématiques (UMR CNRS 6623)
Université de Franche-Comté
16 Route de Gray, 25030 Besançon, France
jeanjean@math.univ-fcomte.fr
(\ddagger) Department of Mathematics
School of Science and Engineering
Waseda University
3-4-1 Ohkubo, Skinjuku-ku, Tokyo 169-8555, Japan
kazunaga@.waseda.jp

1 Introduction

In this paper we study the existence of positive solutions for Schrödinger type equations of the form:

$$
\begin{equation*}
-\Delta u+V(x) u=f(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.1}
\end{equation*}
$$

where $N \geq 2, f(u): \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear continuous function and $V(x) \in C(\mathbb{R}, \mathbb{R})$.
If the potential $V(x)$ is constant, namely if (1.1) is autonomous, Berestycki-Lions [1] (for $N=1$ and $N \geq 3$) and Berestycki-Gallouët-Kavian [2] (for $N=2$) provide an existence result for a very wide class of nonlinearities (see Theorem 2.1 below). In particular only conditions on $f(s)$ near 0 and ∞ are required. In contrast, when (1.1) is not autonomous, up to our knowledge, all existence results require some global conditions on $f(s)$. For

[^0]example, the following condition - called the global Ambrosetti-Rabinowitz superlinear condition - is often assumed.
$$
\exists \mu>2: 0<\mu \int_{0}^{s} f(\tau) d \tau \leq s f(s) \quad \text { for all } s \in \mathbb{R} \text {. }
$$

In this paper, we consider non autonomous cases and assuming a decay condition (v4) on $\nabla V(x)$ we derive an existence result which do not need global conditions on $f(s)$. More precisely, on the nonlinear term $f \in C\left(\mathbb{R}^{+}, \mathbb{R}\right)$, we assume
(f1) $f(0)=0$ and $f^{\prime}(0)$ defined as $\lim _{s \rightarrow 0^{+}} f(s) s^{-1}$ exists,
(f2) there is $p<\infty$ if $N=2, p<\frac{N+2}{N-2}$ if $N \geq 3$ such that $\lim _{s \rightarrow+\infty} f(s) s^{-p}=0$,
(f3) $\lim _{s \rightarrow+\infty} f(s) s^{-1}=+\infty$,
and on the potential $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$,
(v1) $f^{\prime}(0)<\inf \sigma(-\Delta+V(x))$, where $\sigma(-\Delta+V(x))$ denotes the spectrum of the selfadjoint operator $-\Delta+V(x): H^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$, i.e.,

$$
\inf \sigma(-\Delta+V(x))=\inf _{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x}{\int_{\mathbb{R}^{N}}|u|^{2} d x}
$$

(v2) $V(x) \rightarrow V(\infty) \in \mathbb{R}$ as $|x| \rightarrow \infty$,
(v3) $V(x) \leq V(\infty)$, a. e. $x \in \mathbb{R}^{N}$,
(v4) there exists a function $\phi \in L^{2}\left(\mathbb{R}^{N}\right) \cap W^{1, \infty}\left(\mathbb{R}^{N}\right)$ such that

$$
|x||\nabla V(x)| \leq \phi(x)^{2}, \forall x \in \mathbb{R}^{N}
$$

Our main result is the following:

Theorem 1.1 Assume $N \geq 2$ and (f1)-(f3), (v1)-(v4). Then (1.1) has a non trivial positive solution.

Remark 1.2 (i) In case where $V(x) \equiv V(\infty)$, namely when (1.1) is autonomous, Theorem 1.1 is contained in the result of [1]. See also [2].
(ii) Considering, for a constant $L \in \mathbb{R}, V+L$ and $f+L s$ instead of V and f, we may assume, without loss of generality that
(v5) $f \geq 0, f^{\prime}(0) \geq 0, \alpha_{0} \equiv \inf \sigma(-\Delta+V(x))>0$ and $0 \leq f^{\prime}(0)<\alpha_{0}$.

We shall make this assumption throughout the paper.
(iii) We remark that $\inf _{x \in \mathbb{R}^{N}} V(x) \leq \alpha_{0} \leq V(\infty)$.

Theorem 1.1 will be proved by a variational approach. Because we look for a positive solution, we may assume without restriction that $f(s)=0$ for all $s \leq 0$. We associate with (1.1) the functional $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x-\int_{\mathbb{R}^{N}} F(u) d x
$$

where $F(s)=\int_{0}^{s} f(t) d t$. We shall work on $H^{1}\left(\mathbb{R}^{N}\right) \equiv H$ with the norm

$$
\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x .
$$

We also use the notation:

$$
\|u\|_{p}=\left(\int_{\mathbb{R}^{N}}|u|^{p} d x\right)^{1 / p} \quad \text { for all } p \in[1, \infty)
$$

and remark that by the definition of α_{0},

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x \geq \alpha_{0}\|u\|_{2}^{2} \quad \text { for all } u \in H \tag{1.2}
\end{equation*}
$$

Under, (f1)-(f2) and (v2), (v5) I is a C^{1} functional and it is standard that any critical point of I is a nonnegative solution of (1.1).

First we shall prove that under (f1)-(f3) and (v2), (v5), I has a Mountain Pass geometry (a MP geometry in short). Namely, setting

$$
\Gamma=\{\gamma \in C([0,1], H), \gamma(0)=0 \text { and } I(\gamma(1))<0\}
$$

that $\Gamma \neq \emptyset$ and

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))>0
$$

For such geometry Ekeland's principle implies the existence of a Palais-Smale sequence (a PS sequence in short) at the Mountain Pass level c (the MP level in short) for I. Namely a sequence $\left\{u_{n}\right\} \subset H$ such that

$$
I\left(u_{n}\right) \rightarrow c \quad \text { and } \quad I^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

A crucial step to obtain the existence of a critical point is to show the boundedness of a sequence of this type. It is challenging under our assumptions. To overcome this difficulty we use an indirect approach developed in [4]. For $\lambda \in\left[\frac{1}{2}, 1\right]$ we consider the family of functionals $I_{\lambda}: H \rightarrow \mathbb{R}$ defined by

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x-\lambda \int_{\mathbb{R}^{N}} F(u) d x
$$

These functionals have a MP geometry and denoting c_{λ} the corresponding MP levels we deduce from [4] that there exists a sequence $\left\{\lambda_{j}\right\} \subset\left[\frac{1}{2}, 1\right]$ such that

- $\lambda_{j} \rightarrow 1$ as $j \rightarrow \infty$.
- $I_{\lambda_{j}}$ has a bounded PS sequence $\left\{u_{n}^{j}\right\}$ at level $c_{\lambda_{j}}$.

We can see that, for all $j \in \mathbb{N},\left\{u_{n}^{j}\right\}$ converges weakly to a non trivial critical point u_{j} of $I_{\lambda_{j}}$. If we can prove that the sequence $\left\{u_{j}\right\}$ is bounded, it will follows (arguing as in [4]) that it is a (bounded) PS sequence for I.

To show that $\left\{u_{j}\right\}$ is bounded we need condition (v4) on V. It allows us to make use of a Pohozaev type identity to derive, in Proposition 4.2, the boundedness of $\left\{u_{j}\right\}$. A key point which allows to use the identity is that $\left\{u_{j}\right\}$ is a sequence of exact critical points. It is because we need this property that we follow an approximation procedure to obtain a bounded PS sequence for I, instead of starting directly from an arbitrary PS sequence.

To show that the bounded sequence $\left\{u_{j}\right\}$ converges weakly to a non trivial critical point of I, the "problem at infinity" plays an important role. It is known since the work of P.L. Lions [8]. Let $I^{\infty}: H \rightarrow \mathbb{R}$ be defined by

$$
I^{\infty}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(\infty) u^{2}\right) d x-\int_{\mathbb{R}^{N}} F(u) d x
$$

and set

$$
m^{\infty}=\inf \left\{I^{\infty}(u) ; u \neq 0, I^{\infty \prime}(u)=0\right\}
$$

We shall prove, that $\left\{u_{j}\right\}$ has a non trivial weak limit if $c<m^{\infty}$. In turn we derive that $c<m^{\infty}$ as a consequence of a general result on autonomous problem in \mathbb{R}^{N} establish in $[5,6]$. Roughly speaking we show in $[5,6]$ that under general assumptions on f, the MP value c^{∞} for I^{∞} coincides with the least energy level m^{∞}. Namely, one always have

$$
\begin{equation*}
c^{\infty}=m^{\infty} . \tag{1.3}
\end{equation*}
$$

Here

$$
c^{\infty}=\inf _{\gamma \in \Gamma^{\infty}} \max _{t \in[0,1]} I^{\infty}(\gamma(t))
$$

with $\Gamma^{\infty}=\left\{\gamma \in C([0,1], H), \gamma(0)=0\right.$ and $\left.I^{\infty}(\gamma(1))<0\right\}$. Moreover, in addition to (1.3), we show the existence of a path $\gamma_{0} \in \Gamma^{\infty}$ such that

$$
\max _{t \in[0,1]} I^{\infty}\left(\gamma_{0}(t)\right)=c^{\infty}\left(=m^{\infty}\right)
$$

with $\gamma_{0}(t)(x)>0$ for all $x \in \mathbb{R}^{N}, \forall t \in(0,1]$. At this point if we assume that $V(x) \leq V(\infty)$ for all $x \in \mathbb{R}^{N}$ but $V(x) \not \equiv V(\infty)$, we easily get that $c<m^{\infty}$ (if $V(x) \equiv V(\infty)$, we recall that Theorem 1.1 is contained in [1] (see also [2])). Having proved $c<m^{\infty}$ we derive that $u_{j} \rightharpoonup u \neq 0$ with $I^{\prime}(u)=0$ through a precise decomposition of the sequence, as a sum of translated critical points, in the spirit of the pioneering work [8]. Since we only require weak conditions on f, in particular f may not be C^{1}, we cannot use one of the many
decompositions of the literature (see [3] for example). This description being susceptible of others applications we place it in a self contained section.

The paper is organized as follows. In Section 2 we present the results on least energy solutions for autonomous problems which are crucial to insure the compactness of bounded PS sequences. In Section 3 we solve the approximating problems. Section 4 is devoted to the proof of Theorem 1.1. Finally the decomposition of the PS sequences is given in Section 5.

2 Some results on autonomous problems

In this section we recall some facts about autonomous equations of the form

$$
\begin{equation*}
-\Delta u=g(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{2.1}
\end{equation*}
$$

Here we state results not only for $N \geq 2$ but also for $N=1$.
A solution v of (2.1) is said to be a least energy solution if and only if

$$
\begin{equation*}
J(v)=m, \text { where } m=\inf \{J(u) ; u \in H \backslash\{0\} \text { is a solution of }(2.1)\} . \tag{2.2}
\end{equation*}
$$

Here $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ is the natural functional corresponding to (2.1)

$$
J(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\int_{\mathbb{R}^{N}} G(u) d x
$$

with $G(s)=\int_{0}^{s} g(\tau) d \tau$. The following results are due to Berestycki-Lions [1] for $N=1$ and $N \geq 3$ and Berestycki-Gallouët-Kavian [2] for $N=2$.

Theorem 2.1 Assume that

(g0) $g \in C(\mathbb{R}, \mathbb{R})$ is continuous and odd.

$$
\begin{gathered}
\text { (g1) }-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}=-\nu<0 \text { for } N \geq 3, \\
\lim _{s \rightarrow 0} \frac{g(s)}{s}=-\nu \in(-\infty, 0) \text { for } N=1,2 .
\end{gathered}
$$

(g2) When $N \geq 3, \lim _{s \rightarrow \infty} \frac{|g(s)|}{s^{N+2}}=0$.
When $N=2$, for any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$$
|g(s)| \leq C_{\alpha} e^{\alpha s^{2}} \quad \text { for all } s \geq 0
$$

(g3) When $N \geq 2$, there exists $\xi_{0}>0$ such that $G\left(\xi_{0}\right)>0$.
When $N=1$, there exists $\xi_{0}>0$ such that

$$
G(\xi)<0 \text { for all } \xi \in] 0, \xi_{0}\left[, \quad G\left(\xi_{0}\right)=0 \quad \text { and } \quad g\left(\xi_{0}\right)>0 .\right.
$$

Then J is well defined and of class C^{1}. Also $m>0$ and there exists a least energy solution ω of (2.1) which is a classical solution and satisfies $\omega>0$ on \mathbb{R}^{N}.

In $[5,6]$ the authors complemented this result in the following way:

Theorem 2.2 Assume (g0)-(g3). Then setting

$$
\Gamma_{J}=\left\{\gamma \in C\left([0,1], H^{1}\left(\mathbb{R}^{N}\right)\right), \gamma(0)=0 \text { and } J(\gamma(1))<0\right\}
$$

we have $\Gamma_{J} \neq \emptyset$ and $b=m$ with

$$
b=\inf _{\gamma \in \Gamma_{J}} \max _{t \in[0,1]} J(\gamma(t))>0 .
$$

Moreover for any least energy solution ω of (2.1) as given by Theorem 2.2 there exists a path $\gamma \in \Gamma$ such that $\gamma(t)(x)>0$ for all $(t, x) \in(0,1] \times \mathbb{R}^{N}, \omega \in \gamma([0,1])$ and

$$
\max _{t \in[0,1]} J(\gamma(t))=b
$$

Remark 2.3 In [5, 6] it is also proved that, under (g1)-(g2), there exists $c_{1}>0, \delta_{0}>0$ such that

$$
J(u) \geq c_{1}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \text { when }\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)} \leq \delta_{0} .
$$

3 Solutions for approximating problems

For $\lambda \in\left[\frac{1}{2}, 1\right]$ we consider the family of functionals $I: H \rightarrow \mathbb{R}$ defined by

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x-\lambda \int_{\mathbb{R}^{N}} F(u) d x .
$$

In Lemma 3.5 we show that for each $\lambda \in\left[\frac{1}{2}, 1\right], I_{\lambda}$ has a MP geometry. The corresponding MP level is denoted c_{λ}. The aim of the section is to prove that for almost every $\lambda \in\left[\frac{1}{2}, 1\right]$, I_{λ} possesses a non trivial critical point u_{λ} such that $I_{\lambda}\left(u_{\lambda}\right) \leq c_{\lambda}$.

A first step in this direction is to show that, for almost every $\lambda \in\left[\frac{1}{2}, 1\right], I_{\lambda}$ possesses a bounded Palais-Smale sequence (a BPS sequence for short) at the level c_{λ}. For this we shall use some abstract results of [4].

Theorem 3.1 Let X be a Banach space equipped with a norm $\|\cdot\|_{X}$ and let $J \subset \mathbb{R}^{+}$be an interval. We consider a family $\left(I_{\lambda}\right)_{\lambda \in J}$ of C^{1}-functionals on X of the form

$$
I_{\lambda}(u)=A(u)-\lambda B(u), \quad \forall \lambda \in J
$$

where $B(u) \geq 0, \forall u \in X$ and such that either $A(u) \rightarrow+\infty$ or $B(u) \rightarrow+\infty$ as $\|u\|_{X} \rightarrow \infty$. We assume there are two points v_{1}, v_{2} in X such that

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))>\max \left\{I_{\lambda}\left(v_{1}\right), I_{\lambda}\left(v_{2}\right)\right\} \quad \forall \lambda \in J,
$$

where

$$
\Gamma=\left\{\gamma \in C([0,1], X), \gamma(0)=v_{1}, \gamma(1)=v_{2}\right\} .
$$

Then, for almost every $\lambda \in J$, there is a sequence $\left\{v_{n}\right\} \subset X$ such that
(i) $\left\{v_{n}\right\}$ is bounded, (ii) $I_{\lambda}\left(v_{n}\right) \rightarrow c_{\lambda}$, (iii) $I_{\lambda}^{\prime}\left(v_{n}\right) \rightarrow 0$ in the dual X^{-1} of X.

Remark 3.2 This result which is Theorem 1.1 in [4] is reminiscient of Struwe's monotonicity trick (see [9]) and can be viewed as its generalization. Since [4], results in the same spirit, namely which establish the existence of BPS sequence for almost every value of a parameter, have been obtained for families of functionals enjoying other homotopy invariance. We mention, for example, $[10]$ for a linking type situation. Also it was subsequently proved in [7] that the condition $B(u) \geq 0, \forall u \in X$ can be removed. In this case there is no more a monotone dependence of c_{λ} upon $\lambda \in J$ (in contrast to Theorem 3.1 where the map $\lambda \rightarrow c_{\lambda}$ is non increasing).

Remark 3.3 In Lemma 2.3 of [4] it is also proved that, under the assumptions of Theorem 3.1, the map $\lambda \rightarrow c_{\lambda}$ is continuous from the left.

We shall use Theorem 3.1 with $X=H,\|\cdot\|_{X}=\|\cdot\|_{H^{1}\left(\mathbb{R}^{N}\right)}, J=\left[\frac{1}{2}, 1\right]$. First we remark

Lemma 3.4 For any $\varepsilon>0$ there exists a $c_{\varepsilon}>0$ such that

$$
c_{\varepsilon}\|\nabla u\|_{2}^{2}+\left(\alpha_{0}-\varepsilon\right)\|u\|_{2}^{2} \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x \quad \text { for all } u \in H .
$$

In particular under (v2),(v5)

$$
\|u\|^{2}=\int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x
$$

is equivalent to the norm $\|\cdot\|_{H^{1}\left(\mathbb{R}^{N}\right)}$.

Proof. For $\delta \in(0,1)$ we consider the following minimizing problem:

$$
\mu_{\delta}=\inf _{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}(1-\delta)|\nabla u|^{2}+V(x) u^{2} d x}{\|u\|_{2}^{2}} .
$$

We remark that $\mu_{\delta} \geq \int_{x \in \mathbb{R}^{N}} V(x)>-\infty$ for all $\delta \in(0,1)$. To prove the lemma it is sufficient to show that $\lim _{\delta \rightarrow 0} \mu_{\delta} \geq \alpha_{0}$. By definition of μ_{δ}, there exists $u_{\delta} \in H$ with $\left\|u_{\delta}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}=1$ such that

$$
\begin{equation*}
(1-\delta)\left\|\nabla u_{\delta}\right\|_{2}^{2}+\int_{\mathbb{R}^{N}} V(x) u_{\delta}^{2} d x \leq\left(\mu_{\delta}+\delta\right)\left\|u_{\delta}\right\|_{2}^{2} \tag{3.1}
\end{equation*}
$$

From (1.2) it follows that

$$
\alpha_{0}\left\|u_{\delta}\right\|_{2}^{2}-\delta\left\|\nabla u_{\delta}\right\|_{2}^{2} \leq\left(\mu_{\delta}+\delta\right)\left\|u_{\delta}\right\|_{2}^{2}
$$

that is,

$$
\left(\alpha_{0}-\mu_{\delta}-\delta\right)\left\|u_{\delta}\right\|_{2}^{2} \leq \delta\left\|\nabla u_{\delta}\right\|_{2}^{2} \leq \delta \rightarrow 0 \quad \text { as } \delta \rightarrow 0
$$

Thus if $\lim _{\delta \rightarrow 0} \mu_{\delta}<\alpha_{0}$, we have $\left\|u_{\delta}\right\|_{2} \rightarrow 0$ and thus by (3.1) $\left\|\nabla u_{\delta}\right\|_{2} \rightarrow 0$. This is in contradiction with $\left\|u_{\delta}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}=1$ and thus it holds that $\lim _{\delta \rightarrow 0} \mu_{\delta} \geq \alpha_{0}$.
The following lemma ensures that I_{λ} has MP geometry.

Lemma 3.5 Assume that (f1)-(f3), (v1)-(v3) and (v5) hold. Then
(i) there exists a $v \in H \backslash\{0\}$ with $I_{\lambda}(v) \leq 0$ for all $\lambda \in\left[\frac{1}{2}, 1\right]$.
(ii)

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))>\max \left\{I_{\lambda}(0), I_{\lambda}(v)\right\} \quad \text { for all } \lambda \in\left[\frac{1}{2}, 1\right] \text {. }
$$

Here

$$
\Gamma=\{\gamma \in C([0,1], H) ; \gamma(0)=0, \gamma(1)=v\}
$$

Proof. We have for any $u \in H, \lambda \in\left[\frac{1}{2}, 1\right], I_{\lambda}(u) \leq I_{1 / 2}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x-$ $\frac{1}{2} \int_{\mathbb{R}^{N}} F(u) d x$. Also, by (f3) it is standard to find a $v \in H \backslash\{0\}$ such that $I_{1 / 2}(v) \leq 0$. Thus we have (i).

For (ii) we choose $\varepsilon_{0}>0$ such that $\alpha_{0}-\varepsilon_{0}>f^{\prime}(0)$. By Lemma 3.4, there exists $c_{\varepsilon_{0}}>0$ such that

$$
\begin{aligned}
I_{\lambda}(u) & =\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x-\lambda \int_{\mathbb{R}^{N}} F(u) d x \\
& \geq \frac{1}{2} c_{\varepsilon_{0}}\|\nabla u\|_{2}^{2}+\frac{1}{2}\left(\alpha_{0}-\varepsilon_{0}\right)\|u\|_{2}^{2}-\int_{\mathbb{R}^{N}} F(u) d x .
\end{aligned}
$$

By Remark 2.3,

$$
J_{0}(u)=\frac{1}{2} c_{\varepsilon_{0}}\|\nabla u\|_{2}^{2}+\frac{1}{2}\left(\alpha_{0}-\varepsilon_{0}\right)\|u\|_{2}^{2}-\int_{\mathbb{R}^{N}} F(u) d x
$$

satisfies

$$
\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J_{0}(\gamma(t))>0
$$

Thus we have

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t)) \geq \inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J_{0}(\gamma(t))>0 .
$$

Remark 3.6 It is standard under (f1)-(f2) and (v1) that there exists a $\delta_{0}>0$ independent of $\lambda \in\left[\frac{1}{2}, 1\right]$ such that

$$
\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)} \geq \delta_{0} \quad \text { for any non trivial critical point } u \text { of } I_{\lambda} .
$$

$I_{\lambda}(u)=\frac{1}{2}\|u\|^{2}-\lambda \int_{\mathbb{R}^{N}} F(u) d x=A(u)-\lambda B(u)$ satisfies $A(u) \rightarrow \infty$ as $\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)} \rightarrow \infty$, $B(u) \geq 0$ for all $u \in H$. Thus from Lemma 3.5 and Theorem 3.1 we get that I_{λ} has a BPS sequence, at the level c_{λ} for almost every $\lambda \in\left[\frac{1}{2}, 1\right]$. On the convergence of BPS sequences we have the following result:

Lemma 3.7 Assume that (f1)-(f3), (v2),(v3),(v5) hold and let $\lambda \in\left[\frac{1}{2}, 1\right]$ be arbitrary but fixed. Then any bounded Palais-Smale sequence $\left\{u_{n}\right\}$ for I_{λ} satisfying $\lim \sup _{n \rightarrow \infty} I_{\lambda}\left(u_{n}\right) \leq$ c_{λ} and $\left\|u_{n}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$, after extracting a subsequence, converges weakly to a non trivial critical point u_{λ} of I_{λ} with $I_{\lambda}\left(u_{\lambda}\right) \leq c_{\lambda}$.

Proof. Since $\left\{u_{n}\right\}$ is bounded, from Theorem 5.1 (see also Remark 5.2) which is establish in Section 5 we know that,

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right) \rightarrow I_{\lambda}\left(u_{0}\right)+\sum_{k=1}^{l} I_{\lambda}^{\infty}\left(w_{\lambda}^{k}\right), \tag{3.2}
\end{equation*}
$$

with $\ell \geq 0, u_{0}$ a critical point of I_{λ} and $I_{\lambda}^{\infty}: H \rightarrow \mathbb{R}$ given by

$$
I_{\lambda}^{\infty}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(\infty) u^{2}\right) d x-\lambda \int_{\mathbb{R}^{N}} F(u) d x .
$$

The w_{λ}^{k}, for $k=1, . ., l$ are non-trivial critical points of I_{λ}^{∞}. Since any solution of

$$
\begin{equation*}
-\Delta u+V(\infty) u=\lambda f(u), \quad u \in H \tag{3.3}
\end{equation*}
$$

is non negative we can we can regard it as a solution of (2.1) with

$$
g(s)= \begin{cases}-V(\infty) s+\lambda f(s), & \text { for } s \geq 0 \\ -g(-s), & \text { for } s<0\end{cases}
$$

We observe that a least energy solution for (2.1) - which we may assume positive - is also a least energy solution of (3.3) and the converse is also true.
Thus, from Theorem 2.1, we see that any non trivial critical point w_{λ} of I_{λ}^{∞} satisfies $I_{\lambda}^{\infty}\left(w_{\lambda}\right)>0$ and all we have to do to prove the lemma is to show that $u_{0} \neq 0$. Since $\left\|u_{n}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$ we deduce from Theorem 5.1 that if $u_{0}=0$, then $\ell>0$ and

$$
c_{\lambda}=\sum_{k=1}^{\ell} I_{\lambda}^{\infty}\left(w_{\lambda}^{k}\right) \geq m_{\lambda}=\inf \left\{I_{\lambda}^{\infty}(u) ; u \neq 0, I_{\lambda}^{\infty \prime}(u)=0\right\} .
$$

In turn we can observe that

$$
\begin{equation*}
c_{\lambda}<m_{\lambda} . \tag{3.4}
\end{equation*}
$$

To see (3.4) let ω_{λ} be a least energy solution of

$$
-\Delta u+V(\infty) u=\lambda f(u)
$$

as provided by Theorem 2.1. Applying Theorem 2.2 to the functional I_{λ}^{∞} we can find a path $\gamma(t) \in C([0,1], H)$ such that $\gamma(t)(x)>0, \forall x \in \mathbb{R}^{N}, \forall t \in(0,1], \gamma(0)=0$, $I_{\lambda}^{\infty}(\gamma(1))<0, \omega_{\lambda} \in \gamma([0,1])$ and

$$
\max _{t \in[0,1]} I_{\lambda}^{\infty}(\gamma(t))=I_{\lambda}^{\infty}\left(\omega_{\lambda}\right)
$$

Without restriction we can assume that $V \not \equiv V(\infty)$ in (v3) (otherwise there is nothing to prove). Thus

$$
\left.\left.I_{\lambda}(\gamma(t))<I_{\lambda}^{\infty}(\gamma(t)) \text { for all } t \in\right] 0,1\right]
$$

and it follows from the definition of c_{λ}, that

$$
c_{\lambda} \leq \max _{t \in[0,1]} I_{\lambda}(\gamma(t))<\max _{t \in[0,1]} I_{\lambda}^{\infty}(\gamma(t))=m_{\lambda} .
$$

Combining Lemmas 3.5, 3.7, Theorem 3.1 and the observation (see Remark 3.6) that $\forall \lambda \in\left[\frac{1}{2}, 1\right], I_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda} \neq 0$ implies $\left\|u_{n}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$, we deduce that I_{λ} has a non trivial critical point for almost every $\lambda \in\left[\frac{1}{2}, 1\right]$. We point out that this result is valid without using condition (v4). As a special case we obtain the existence of a sequence $\left\{\left(\lambda_{j}, u_{j}\right)\right\} \subset\left[\frac{1}{2}, 1\right] \times H$ with $\lambda_{j} \rightarrow 1$ and $u_{j} \neq 0$ satisfying $I_{\lambda_{j}}^{\prime}\left(u_{j}\right)=0$ and $I_{\lambda_{j}}\left(u_{j}\right) \leq c_{\lambda_{j}}$.

4 Proof of Theorem 1.1

The idea of the proof is to show that the sequence $\left\{u_{j}\right\}$ of critical points of $I_{\lambda_{j}}$ obtained in Section 3 is bounded and that it is a Palais-Smale sequence for I satisfying
$\limsup _{j \rightarrow \infty} I\left(u_{j}\right) \leq c$ and $\left\|u_{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$. Then applying Lemma 3.7 we obtain a non trivial critical point of I and this completed the proof of Theorem 1.1.

To show the boundedness of $\left\{u_{j}\right\} \subset H$ we shall make use of the following Pohozaev type identity. Since its proof is standard we do not provide it. (See for example [1]).

Proposition 4.1 Let $u(x)$ be a critical point of I_{λ} with $\lambda \in\left[\frac{1}{2}, 1\right]$ arbitrary, then $u(x)$ satisfies

$$
\begin{equation*}
\frac{N-2}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x+\frac{N}{2} \int_{\mathbb{R}^{N}} V(x) u^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} \nabla V(x) x u^{2} d x-N \lambda \int_{\mathbb{R}^{N}} F(u) d x=0 . \tag{4.1}
\end{equation*}
$$

Now we apply the above proposition to $\left\{\left(\lambda_{j}, u_{j}\right)\right\} \subset\left[\frac{1}{2}, 1\right] \times H$ obtained in the previous section.

Proposition 4.2 Assume that (f1)-(f3), (v1)-(v5) hold. Then $\left\{u_{j}\right\} \subset H$ is bounded.
Proof. Since $I_{\lambda_{j}}\left(u_{j}\right) \leq c_{\lambda_{j}} \leq c_{\frac{1}{2}}$ we deduce, from Proposition 4.1, that

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2} d x \leq \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla V(x)||x| u_{j}^{2} d x+c_{\frac{1}{2}} N .
$$

Thus taking (v4) into account

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2} d x \leq \frac{1}{2} \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x+c_{\frac{1}{2}} N . \tag{4.2}
\end{equation*}
$$

Also since $I_{\lambda_{j}}^{\prime}\left(u_{j}\right)\left(\phi^{2} u_{j}\right)=0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u_{j} \nabla\left(\phi^{2} u_{j}\right) d x+\int_{\mathbb{R}^{N}} V(x) u_{j}^{2} \phi^{2} d x=\lambda_{j} \int_{\mathbb{R}^{N}} f\left(u_{j}\right) u_{j} \phi^{2} d x . \tag{4.3}
\end{equation*}
$$

Now it follows from (f3) that for any $L>0$ there exists $C(L)>0$ such that

$$
f(s) s \geq L s^{2}-C(L) \quad \text { for all } s \geq 0
$$

We deduce that, for a $\tilde{C}(L)>0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f\left(u_{j}\right) u_{j} \phi^{2} d x \geq L \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x-C(L) \int_{\mathbb{R}^{N}} \phi^{2} d x=L \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x-\tilde{C}(L) . \tag{4.4}
\end{equation*}
$$

We also have, for a $C>0$, using (4.2)

$$
\begin{align*}
\left|\int_{\mathbb{R}^{N}} \nabla u_{j} \nabla\left(\phi^{2} u_{j}\right) d x\right| & \leq \int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2} \phi^{2} d x+2 \int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|\left|u_{j}\right||\phi||\nabla \phi| d x \\
& \leq \int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2} \phi^{2} d x+\int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2}|\nabla \phi|^{2} d x+\int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x \\
& \leq\left(\|\phi\|_{\infty}^{2}+\|\nabla \phi\|_{\infty}^{2}\right) \int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2} d x+\int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x \\
& \leq\left(\|\phi\|_{\infty}^{2}+\|\nabla \phi\|_{\infty}^{2}\right)\left(\frac{1}{2} \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x+c_{\frac{1}{2}} N\right)+\int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x \\
& \leq C \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x+C . \tag{4.5}
\end{align*}
$$

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} V(x) u_{j}^{2} \phi^{2} d x \leq V(\infty) \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x \tag{4.6}
\end{equation*}
$$

Finally, combining (4.3)- (4.6), we get,

$$
\begin{equation*}
L \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x-\tilde{C}(L) \leq(C+V(\infty)) \int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x+C . \tag{4.7}
\end{equation*}
$$

Taking $L>0$ large enough this shows that

$$
\int_{\mathbb{R}^{N}} u_{j}^{2} \phi^{2} d x
$$

is bounded and thus, by $(4.2), \int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2} d x$ is bounded.
Next we show that

$$
\left\|u_{j}\right\|_{2}^{2}=\int_{\mathbb{R}^{n}} u_{j}^{2} d x
$$

stays bounded as $j \rightarrow \infty$. We argue indirectly and assume

$$
r_{j} \equiv\left\|u_{j}\right\|_{2}^{2 / N} \rightarrow \infty
$$

We set

$$
\tilde{u}_{j}(x)=u_{j}\left(r_{j} x\right) .
$$

Then we have

$$
\begin{equation*}
\left\|\nabla \tilde{u}_{j}\right\|_{2}^{2}=r_{j}^{2-N}\left\|\nabla u_{j}\right\|_{2}^{2}, \quad\left\|\tilde{u}_{j}\right\|_{2}^{2}=1 . \tag{4.8}
\end{equation*}
$$

In particular, $\left\{\tilde{u}_{j}\right\}$ is a bounded sequence in $H^{1}\left(\mathbb{R}^{N}\right)$. We can also observe that $\tilde{u}_{j}(x)$ satisfies

$$
\begin{equation*}
-\frac{1}{r_{j}^{2}} \Delta \tilde{u}_{j}+V\left(r_{j} x\right) \tilde{u}_{j}=\lambda_{j} f\left(\tilde{u}_{j}\right) \quad \text { in } \mathbb{R}^{N} . \tag{4.9}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{N}}\left\|\tilde{u}_{j}\right\|_{L^{2}\left(B_{1}(x)\right)}^{2} \equiv \sup _{x \in \mathbb{R}^{N}} \int_{B_{1}(x)} \tilde{u}_{j}^{2} d x \rightarrow 0 \quad \text { as } j \rightarrow \infty \tag{4.10}
\end{equation*}
$$

where $B_{1}(x)=\left\{y \in \mathbb{R}^{N} ;|y-x| \leq 1\right\}$. In fact, it sufficies to show

$$
\begin{equation*}
\tilde{u}_{j}\left(x+y_{j}\right) \rightarrow 0 \quad \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right) \tag{4.11}
\end{equation*}
$$

for any sequence $\left\{y_{j}\right\} \subset \mathbb{R}^{N}$. Assume $\tilde{u}_{j}\left(x+y_{j}\right) \rightarrow \tilde{u}(x)$ weakly in $H^{1}\left(\mathbb{R}^{N}\right)$ after extracting a subsequence. We remark that it follows from (v2) that $V\left(r_{j} x+y_{j}\right) \rightarrow V(\infty)$ a.e. in \mathbb{R}^{N}. Then by (4.9) we have

$$
V(\infty) \tilde{u}=f(\tilde{u}) \quad \text { in } \mathbb{R}^{N}
$$

Since $\tilde{u}(x) \in H^{1}\left(\mathbb{R}^{N}\right)$ and $\xi=0$ is an isolated solution of $V(\infty) \xi=f(\xi)$, we have $\tilde{u} \equiv 0$. This implies (4.11) and thus (4.10). Now we use the following lemma.

Lemma 4.3 (see [8]) Assume that $\left\{v_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$ and that

$$
\sup _{z \in \mathbb{R}^{N}} \int_{B_{1}(z)}\left|v_{n}\right|^{2} d x \rightarrow 0
$$

Then $\left\|v_{n}\right\|_{r} \rightarrow 0$ for $\left.r \in\right] 2, \frac{2 N}{N-2}[$ when $N \geq 3$ and for $r \in] 2, \infty[$ when $N=1,2$. Here $B_{1}(z)=\left\{y \in \mathbb{R}^{N},|y-z| \leq 1\right\}$.

End of the proof of Proposition 4.2. By Lemma 4.3, for p given in (f2) it follows

$$
\left\|\tilde{u}_{j}\right\|_{p+1} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

By (f1)-(f2), we have for any $\delta>0$ there exists $C_{\delta}>0$ such that

$$
\left|f(\xi)-f^{\prime}(0) \xi\right||\xi| \leq \delta \xi^{2}+C_{\delta}|\xi|^{p+1} \quad \text { for all } \xi \in \mathbb{R}
$$

Thus we have

$$
\left|\int_{\mathbb{R}^{N}}\left(f\left(\tilde{u}_{j}\right)-f^{\prime}(0) \tilde{u}_{j}\right) \tilde{u}_{j} d x\right| \leq \delta\left\|\tilde{u}_{j}\right\|_{2}^{2}+C_{\delta}\left\|\tilde{u}_{j}\right\|_{p+1}^{p+1} \rightarrow \delta \quad \text { as } j \rightarrow \infty .
$$

Since $\delta>0$ is arbitrary, we have $\int_{\mathbb{R}^{N}}\left(f\left(\tilde{u}_{j}\right)-f^{\prime}(0) \tilde{u}_{j}\right) \tilde{u}_{j} d x \rightarrow 0$. We remark that $f^{\prime}(0)<$ $V(\infty)$ follows from (v 5) and Remark 1.2 (iii). Multiplying \tilde{u}_{j} to (4.9) and itegrating, we have from (4.8) that

$$
\begin{aligned}
\frac{1}{r_{j}^{2}}\left\|\nabla \tilde{u}_{j}\right\|_{2}^{2} & =-\int_{\mathbb{R}^{N}}\left(V\left(r_{j} x\right)-\lambda_{j} f^{\prime}(0)\right) \tilde{u}_{j}^{2} d x+\lambda_{j} \int_{\mathbb{R}^{N}}\left(f\left(\tilde{u}_{j}\right)-f^{\prime}(0) \tilde{u}_{j}\right) \tilde{u}_{j} d x \\
& =-\left(V(\infty)-f^{\prime}(0)\right)\left\|\tilde{u}_{j}\right\|_{2}^{2}+o(1) \rightarrow-\left(V(\infty)-f^{\prime}(0)\right)<0
\end{aligned}
$$

as $j \rightarrow \infty$. This is a contradiction and $\left\|\tilde{u}_{j}\right\|_{2}^{2}$ is bounded as $j \rightarrow \infty$.
Remark 4.4 When $N \geq 3$, we can show the boundedness of $\left\|u_{j}\right\|_{2}^{2}$ directly. In fact, we observe that $I_{\lambda_{j}}^{\prime}\left(u_{j}\right) u_{j}=0$. Namely that

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2}+V(x) u_{j}^{2} d x=\lambda_{j} \int_{\mathbb{R}^{N}} f\left(u_{j}\right) u_{j} d x
$$

By (f1)-(f2), for any $\delta>0$ there exist $C_{\delta}>0$ such that

$$
f(s) \leq\left(f^{\prime}(0)+\delta\right) s+C_{\delta} s^{\frac{N+2}{N-2}} \text { for all } s \geq 0
$$

Thus, by (1.2)

$$
\begin{aligned}
\alpha_{0} \int_{\mathbb{R}^{N}} u_{j}^{2} d x & \leq \int_{\mathbb{R}^{N}}\left|\nabla u_{j}\right|^{2}+V(x) u_{j}^{2} d x \\
& \leq \int_{\mathbb{R}^{N}} f\left(u_{j}\right) u_{j} d x \\
& \leq\left(f^{\prime}(0)+\delta\right) \int_{\mathbb{R}^{N}} u_{j}^{2} d x+C_{\delta} C\left\|\nabla u_{j}\right\|_{2}^{\frac{2 N}{N-2}} .
\end{aligned}
$$

Choosing $f^{\prime}(0)+\delta<\alpha_{0}=\inf \sigma(-\Delta+V(x))$, this shows that $\left\|u_{j}\right\|_{2}^{2}$ is bounded.

Lemma 4.5 Assume that (f1)-(f3), (v1)-(v5) hold. Then the sequence $\left\{u_{j}\right\} \subset H$ is a Palais-Smale sequence for I satisfying $\lim \sup _{j \rightarrow \infty} I\left(u_{j}\right) \leq c$ and $\left\|u_{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$.

Proof. The fact that $\left\|u_{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$ follows from Remark 3.6. Now we have

$$
\begin{equation*}
I\left(u_{j}\right)=I_{\lambda_{j}}\left(u_{j}\right)+\left(\lambda_{j}-1\right) \int_{\mathbb{R}^{N}} F\left(u_{j}\right) d x . \tag{4.12}
\end{equation*}
$$

Since $\left\{u_{j}\right\} \subset H$ is bounded, $\int_{\mathbb{R}^{N}} F\left(u_{j}\right) d x$ stays bounded as $j \rightarrow \infty$. Also we recall that $I_{\lambda}\left(u_{j}\right) \leq c_{j}$ and that, by Remark 3.3, $\lim _{j \rightarrow \infty} c_{j}=c$. Thus (4.12) gives

$$
\limsup _{j \rightarrow \infty} I\left(u_{j}\right) \leq c
$$

Also, in the dual of H,

$$
I^{\prime}\left(u_{j}\right)=I_{\lambda_{j}}^{\prime}\left(u_{j}\right)+\left(\lambda_{j}-1\right) f\left(u_{j}\right)
$$

and thus $\lim _{j \rightarrow \infty} I^{\prime}\left(u_{j}\right)=0$.

Proof of Theorem 1.1:

By Proposition 4.2 and Lemma 4.5, $\left\{u_{j}\right\} \subset H$ satisfy the assumptions of Lemma 3.7 for $\lambda=1$. Thus I possesses a non trivial critical point and this proves Theorem 1.1.

We end this section showing the existence of a least energy solution in the setting of Theorem 1.1.

Theorem 4.6 Under the assumptions of Theorem 1.1, (1.1) has a least energy solution. Namely there exists a solution $w \in H$ such that $I(w)=m$ where

$$
m=\inf \left\{I(u) ; u \neq 0, I^{\prime}(u)=0\right\}
$$

Proof. Let $\left\{u_{n}\right\} \subset H$ be a sequence of non trivial critical points of I satisfying $I\left(u_{n}\right) \rightarrow$ m. From the proof of Proposition 4.2 we see, since $\left\{I\left(u_{n}\right)\right\}$ is bounded from above, that $\left\{u_{n}\right\} \subset H$ is bounded. Also by Remark 3.6, $\left\|u_{n}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \nrightarrow 0$.
Thus in particular $m>-\infty$ and $\left\{u_{n}\right\} \subset H$ is a PS sequence of I. Applying Theorem 5.1 we get that

$$
\begin{equation*}
I\left(u_{n}\right) \rightarrow I\left(u_{0}\right)+\sum_{k=1}^{l} I^{\infty}\left(w^{k}\right), \tag{4.13}
\end{equation*}
$$

with $l \geq 0$ and u_{0} a critical point of I. Now let m_{∞} be the least energy level for I^{∞}. As in the proof of Lemma 3.7 we assume $V \not \equiv V(\infty)$, thus, we have $m<m^{\infty}$. Since $I^{\infty}\left(w^{k}\right) \geq m^{\infty}>0$ for each k, we deduce $u_{0} \neq 0$ and $\ell=0$ from (4.13). Thus there exists a solution $w(x)$ such that $I(w)=m$.

5 Decomposition of bounded Palais-Smale sequences

We consider functionals $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ of the form

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x-\int_{\mathbb{R}^{N}} F(u) d x .
$$

We assume $f \in C(\mathbb{R})$ and that $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ satisfy (v2) and
(f1') $f(0)=0$ and $\lim _{s \rightarrow 0^{+}} \frac{f(s)}{s}=0$,
(f2') there is $p<\infty$ if $N=1,2$ and $p<\frac{N+2}{N-2}$ if $N \geq 3$ such that $\lim _{s \rightarrow \infty} f(s)|s|^{-p}=0$,
$\left(\mathrm{v} 1^{\prime}\right) \alpha_{0}=\inf \sigma(-\Delta+V(x))>0$,
The aim of the section is to derive a description of the bounded Palais-Smale sequences of I in the spirit of $[8]$. We work on $H \equiv H^{1}\left(\mathbb{R}^{N}\right)$ with the norm

$$
\|u\|^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x
$$

which is equivalent to the standard $H^{1}\left(\mathbb{R}^{N}\right)$ norm (see Lemma 3.4). Our result is:

Theorem 5.1 Assume that (f1')-(f2'), (v1'), (v2) hold and let $\left\{u_{n}\right\}$ be a bounded PalaisSmale sequence for I. Then there exists a subsequence of $\left\{u_{n}\right\}$, still denoted $\left\{u_{n}\right\}$, an integer $l \in \mathbb{N} \cup\{0\}$, sequences $\left\{y_{n}^{k}\right\} \subset \mathbb{R}^{N}$, $w^{k} \in H$ for $1 \leq k \leq l$ such that,
(i) $u_{n} \rightharpoonup u_{0}$ with $I^{\prime}\left(u_{0}\right)=0$,
(ii) $\left|y_{n}^{k}\right| \rightarrow \infty$ and $\left|y_{n}^{k}-y_{n}^{k^{\prime}}\right| \rightarrow \infty$ for $k \neq k^{\prime}$,
(iii) $w^{k} \neq 0$ and $I^{\infty \prime}\left(w^{k}\right)=0$ for $1 \leq k \leq l$,
(iv) $\left\|u_{n}-u_{0}-\sum_{k=1}^{l} w^{k}\left(\cdot-y_{n}^{k}\right)\right\| \rightarrow 0$,
(v) $I\left(u_{n}\right) \rightarrow I\left(u_{0}\right)+\sum_{k=1}^{l} I^{\infty}\left(w^{k}\right)$,
where we agree that in the case $l=0$ the above holds without $w^{k},\left\{y_{n}^{k}\right\}$.

Remark 5.2 The decomposition provided by Theorem 5.1 is still true assuming just that $\alpha_{0}>f^{\prime}(0)$. To see this it suffices to write I in the form

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\left(V(x)-f^{\prime}(0)\right) u^{2} d x-\int_{\mathbb{R}^{N}}\left(F(u)-\frac{1}{2} f^{\prime}(0) u^{2}\right) d x
$$

Remark 5.3 It is standard under (f1')-(f2') and ($\mathrm{v} 1^{\prime}$) that there exists a $\rho_{0}>0$ such that for any non trivial critical point u of $I,\|u\| \geq \rho_{0}$.

Proof of Theorem 5.1 The proof consists of several steps:
Step 1: Extracting a subsequence if necessary we can assume that $u_{n} \rightharpoonup u_{0}$ weakly in H with u_{0} a critical point of I.

Indeed, since $\left\{u_{n}\right\}$ is bounded we may assume that, up to a subsequence, $u_{n} \rightharpoonup u_{0}$ weakly in H. Let us prove that $I^{\prime}\left(u_{0}\right)=0$. Noting that $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in H, it suffices to check that $I^{\prime}\left(u_{0}\right) \varphi=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. But we have,

$$
\begin{aligned}
I^{\prime}\left(u_{n}\right) \varphi-I^{\prime}\left(u_{0}\right) \varphi & =\int_{\mathbb{R}^{N}} \nabla\left(u_{n}-u_{0}\right) \nabla \varphi d x+\int_{\mathbb{R}^{N}} V(x)\left(u_{n}-u_{0}\right) \varphi d x \\
& -\int_{\mathbb{R}^{N}}\left(f\left(u_{n}\right)-f\left(u_{0}\right)\right) \varphi d x \rightarrow 0,
\end{aligned}
$$

since $v_{n} \rightharpoonup v$ weakly in H and strongly in $L_{l o c}^{q}\left(\mathbb{R}^{N}\right)$ for $q \in\left[2, \frac{2 N}{N-2}[\right.$ if $N \geq 3, q \geq 2$ if $N=1,2$. Thus recalling that $I^{\prime}\left(u_{n}\right) \rightarrow 0$ we indeed have $I^{\prime}\left(u_{0}\right)=0$.

Now we set $v_{n}^{1}=u_{n}-u_{0}$.
Step 2: Suppose

$$
\sup _{z \in \mathbb{R}^{N}} \int_{B_{1}(z)}\left|v_{n}^{1}\right|^{2} d x \rightarrow 0 .
$$

Then $u_{n} \rightarrow u_{0}$ and Theorem 5.1 holds with $l=0$.
We compute

$$
\begin{aligned}
I^{\prime}\left(u_{n}\right) v_{n}^{1} & =\int_{\mathbb{R}^{N}} \nabla u_{n} \nabla v_{n}^{1} d x+\int_{\mathbb{R}^{N}} V(x) u_{n} v_{n}^{1} d x-\int_{\mathbb{R}^{N}} f\left(u_{n}\right) v_{n}^{1} d x \\
& =\int_{\mathbb{R}^{N}} \nabla v_{n}^{1} \nabla v_{n}^{1} d x+\int_{\mathbb{R}^{N}} \nabla u_{0} \nabla v_{n}^{1} d x+\int_{\mathbb{R}^{N}} V(x)\left|v_{n}^{1}\right|^{2} d x \\
& +\int_{\mathbb{R}^{N}} V(x) u_{0} v_{n}^{1} d x-\int_{\mathbb{R}^{N}} f\left(u_{n}\right) v_{n}^{1} d x .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|v_{n}^{1}\right\|^{2}=\int_{\mathbb{R}^{N}}\left|\nabla v_{n}^{1}\right|^{2}+V(x)\left|v_{n}^{1}\right|^{2} d x & =I^{\prime}\left(u_{n}\right) v_{n}^{1}-\int_{\mathbb{R}^{N}} \nabla u_{0} \nabla v_{n}^{1} d x \\
& -\int_{\mathbb{R}^{N}} V(x) u_{0} v_{n}^{1} d x+\int_{\mathbb{R}^{N}} f\left(u_{n}\right) v_{n}^{1} d x
\end{aligned}
$$

and, since $I^{\prime}\left(u_{0}\right) v_{n}^{1}=0$, it follows that

$$
\left\|v_{n}^{1}\right\|^{2}=I^{\prime}\left(u_{n}\right) v_{n}^{1}+\int_{\mathbb{R}^{N}} f\left(u_{n}\right) v_{n}^{1} d x-\int_{\mathbb{R}^{N}} f\left(u_{0}\right) v_{n}^{1} d x
$$

Now $I^{\prime}\left(u_{n}\right) v_{n}^{1} \rightarrow 0$ since $\left\{v_{n}^{1}\right\}$ is bounded. Also by (f1')-(f2'), for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
|f(s)| \leq \varepsilon|s|+C_{\varepsilon}|s|^{p} \quad \text { for all } s \geq 0
$$

Thus, from Hölder inequality,

$$
\left|\int_{\mathbb{R}^{N}} f\left(u_{n}\right) v_{n}^{1} d x\right| \leq \varepsilon\left\|u_{n}\right\|_{2}\left\|v_{n}^{1}\right\|_{2}+C_{\varepsilon}\left\|u_{n}\right\|_{p+1}^{p}\left\|v_{n}^{1}\right\|_{p+1}
$$

and since by Lemma 4.3, $\left\|v_{n}^{1}\right\|_{p+1} \rightarrow 0$ this shows that

$$
\int_{\mathbb{R}^{N}} f\left(u_{n}\right) v_{n}^{1} d x \rightarrow 0
$$

In a similar way, we have $\int_{\mathbb{R}^{N}} f\left(u_{0}\right) v_{n}^{1} d x \rightarrow 0$. Thus $v_{n}^{1} \rightarrow 0$ and Step 2 is completed.
Step 3: Suppose $\exists\left\{z_{n}\right\} \subset \mathbb{R}^{N}$ such that, for a $d>0$,

$$
\int_{B_{1}\left(z_{n}\right)}\left|v_{n}^{1}\right|^{2} d x \rightarrow d>0
$$

Then, after extracting a subsequence if necessary, we have for a $w \in H$,

$$
\text { (i) } \quad\left|z_{n}\right| \rightarrow \infty, \quad(i i) \quad u_{n}\left(\cdot+z_{n}\right) \rightharpoonup w \neq 0, \quad(i i i) \quad I^{\infty \prime}(w)=0
$$

Clearly (i),(ii) are standard and the point is to show (iii). We define $\tilde{u}_{n}(\cdot)=u_{n}\left(\cdot+z_{n}\right)$ and observe that, as in Step 1, for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
I^{\infty \prime}\left(\tilde{u}_{n}\right) \varphi-I^{\infty \prime}(w) \varphi \rightarrow 0
$$

Thus to prove that $I^{\infty^{\prime}}(w)=0$ it suffices to show that $I^{\infty^{\prime}}\left(\tilde{u}_{n}\right) \varphi \rightarrow 0$, for any fixed $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. We have

$$
\begin{aligned}
I^{\prime}\left(u_{n}\right) \varphi\left(\cdot-z_{n}\right) & =\int_{\mathbb{R}^{N}} \nabla u_{n}(x) \nabla \varphi\left(x-z_{n}\right) d x+\int_{\mathbb{R}^{N}} V(x) u_{n}(x) \varphi\left(x-z_{n}\right) d x \\
& -\int_{\mathbb{R}^{N}} f\left(u_{n}(x)\right) \varphi\left(x-z_{n}\right) d x
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
I^{\prime}\left(u_{n}\right) \varphi\left(\cdot-z_{n}\right) & =\int_{\mathbb{R}^{N}} \nabla u_{n}\left(y+z_{n}\right) \nabla \varphi(y) d y+\int_{\mathbb{R}^{N}} V\left(y+z_{n}\right) u_{n}\left(y+z_{n}\right) \varphi(y) d y \\
& -\int_{\mathbb{R}^{N}} f\left(u_{n}\left(y+z_{n}\right)\right) \varphi(y) d y
\end{aligned}
$$

Thus, since $I^{\prime}\left(u_{n}\right) \varphi\left(\cdot-z_{n}\right) \rightarrow 0$, from the definition of \tilde{u}_{n} it follows that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla \tilde{u}_{n}(y) \nabla \varphi(y) d y+\int_{\mathbb{R}^{N}} V\left(y+z_{n}\right) \tilde{u}_{n}(y) \varphi(y) d y-\int_{\mathbb{R}^{N}} f\left(\tilde{u}_{n}(y)\right) \varphi(y) d y \rightarrow 0 . \tag{5.1}
\end{equation*}
$$

Also, since $\left|z_{n}\right| \rightarrow \infty$, and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(V\left(y+z_{n}\right)-V(\infty)\right) \tilde{u}_{n}(y) \varphi(y) d y \rightarrow 0 \tag{5.2}
\end{equation*}
$$

Thus we obtain from (5.1), (5.2),

$$
\begin{aligned}
I^{\prime \prime}\left(\tilde{u}_{n}\right) \varphi & =\int_{\mathbb{R}^{N}} \nabla \tilde{u}_{n}(y) \nabla \varphi(y) d y+\int_{\mathbb{R}^{N}} V(\infty) \tilde{u}_{n}(y) \varphi(y) d y \\
& -\int_{\mathbb{R}^{N}} f\left(\tilde{u}_{n}(y)\right) \varphi(y) d y \rightarrow 0
\end{aligned}
$$

and Step 3 is completed.
Step 4: Assume there exists $m \geq 1,\left\{y_{n}^{k}\right\} \subset \mathbb{R}^{N}$, $w^{k} \in H$ for $1 \leq k \leq m$ such that

$$
\begin{gathered}
\left|y_{n}^{k}\right| \rightarrow \infty, \quad\left|y_{n}^{k}-y_{n}^{k^{\prime}}\right| \rightarrow \infty \quad \text { if } \quad k \neq k^{\prime} \\
u_{n}\left(\cdot+y_{n}^{k}\right) \rightarrow w^{k} \neq 0, \quad \forall 1 \leq k \leq m, \\
I^{\infty}\left(w^{k}\right)=0, \quad \forall 1 \leq k \leq m .
\end{gathered}
$$

Then

1) If $\sup _{z \in \mathbb{R}^{N}} \int_{B_{1}(z)}\left|u_{n}-u_{0}-\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right|^{2} d x \rightarrow 0$ then

$$
\left\|u_{n}-u_{0}-\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right\| \rightarrow 0
$$

2) If $\exists\left(z_{n}\right) \subset \mathbb{R}^{N}$ such that, for a $d>0$,

$$
\int_{B_{1}\left(z_{n}\right)}\left|u_{n}-u_{0}-\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right|^{2} d x \rightarrow d>0
$$

then, after extracting a subsequence if necessary, the following holds

$$
\begin{aligned}
& \text { (i) } \quad\left|z_{n}\right| \rightarrow \infty, \quad\left|z_{n}-y_{n}^{k}\right| \rightarrow \infty, \text { for all } 1 \leq k \leq m, \\
& \text { (ii) } \quad u_{n}\left(\cdot+z_{n}\right) \rightharpoonup w^{m+1} \neq 0, \quad \text { (iii) } \quad I^{\infty \prime}\left(w^{m+1}\right)=0 .
\end{aligned}
$$

Assume that (1) holds. Then setting $\xi_{n}=u_{n}-u_{0}-\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)$ we have $\xi_{n} \rightarrow 0$ in $L^{p+1}\left(\mathbb{R}^{N}\right)$ and we compute

$$
\begin{aligned}
I^{\prime}\left(u_{n}\right) \xi_{n} & =\int_{\mathbb{R}^{N}} \nabla \xi_{n} \nabla \xi_{n} d x+\int_{\mathbb{R}^{N}} \nabla u_{0} \nabla \xi_{n} d x+\int_{\mathbb{R}^{N}} \nabla\left(\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right) \nabla \xi_{n} d x \\
& +\int_{\mathbb{R}^{N}} V(x) \xi_{n}^{2} d x+\int_{\mathbb{R}^{N}} V(x) u_{0} \xi_{n} d x \\
& +\int_{\mathbb{R}^{N}} V(x)\left(\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right) \xi_{n} d x-\int_{\mathbb{R}^{N}} f\left(u_{n}\right) \xi_{n} d x .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|\xi_{n}\right\|^{2} & =I^{\prime}\left(u_{n}\right) \xi_{n}-\int_{\mathbb{R}^{N}} \nabla u_{0} \nabla \xi_{n} d x-\int_{\mathbb{R}^{N}} V(x) u_{0} \xi_{n} d x-\int_{\mathbb{R}^{N}} \nabla\left(\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right) \nabla \xi_{n} d x \\
& -\int_{\mathbb{R}^{N}} V(x)\left(\sum_{k=1}^{m} w\left(\cdot-y_{n}^{k}\right)\right) \xi_{n} d x+\int_{\mathbb{R}^{N}} f\left(u_{n}\right) \xi_{n} d x .
\end{aligned}
$$

Since $I^{\prime}\left(u_{0}\right) \xi_{n}=0$ it follows that

$$
\begin{aligned}
\left\|\xi_{n}\right\|^{2} & =I^{\prime}\left(u_{n}\right) \xi_{n}-\int_{\mathbb{R}^{N}} f\left(u_{0}\right) \xi_{n} d x-\sum_{k=1}^{m} \int_{\mathbb{R}^{N}} \nabla\left(w^{k}\left(\cdot-y_{n}^{k}\right)\right) \nabla \xi_{n} d x \\
& -\sum_{k=1}^{m} \int_{\mathbb{R}^{N}} V(\infty) w^{k}\left(\cdot-y_{n}^{k}\right) \xi_{n} d x+\sum_{k=1}^{m} \int_{\mathbb{R}^{N}}(V(\infty)-V(x)) w^{k}\left(\cdot-y_{n}^{k}\right) \xi_{n} d x \\
& +\int_{\mathbb{R}^{N}} f\left(u_{n}\right) \xi_{n} d x,
\end{aligned}
$$

or equivalently, since $I^{\infty^{\prime}}\left(w^{k}\right)=0$,

$$
\begin{aligned}
\left\|\xi_{n}\right\|^{2} & =I^{\prime}\left(u_{n}\right) \xi_{n}-\sum_{k=1}^{m} \int_{\mathbb{R}^{N}} f\left(w^{k}\right) \xi_{n}\left(\cdot+y_{n}^{k}\right) d x \\
& +\sum_{k=1}^{m} \int_{\mathbb{R}^{N}}(V(\infty)-V(x)) w^{k}\left(\cdot-y_{n}^{k}\right) \xi_{n} d x+\int_{\mathbb{R}^{N}}\left(f\left(u_{n}\right)-f\left(u_{0}\right)\right) \xi_{n} d x
\end{aligned}
$$

and using repeatedly the fact that $\left\|\xi_{n}\right\|_{p+1} \rightarrow 0$ we deduce that $\left\|\xi_{n}\right\| \rightarrow 0$.
Now we assume that (2) hold. Clearly (i),(ii) hold. To show (iii) we set $\tilde{u}_{n}=u_{n}\left(\cdot+z_{n}\right)$ and observe that for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
I^{\infty^{\prime}}\left(u_{n}\right) \varphi-I^{\infty \prime}\left(w^{m+1}\right) \varphi \rightarrow 0
$$

Thus we just have to prove that $I^{\infty^{\prime}}\left(u_{n}\right) \varphi \rightarrow 0$ and this is done as in Step 1.

Step 5: Conclusion

By Step 1 we know that $u_{n} \rightharpoonup u_{0}$ with $I^{\prime}\left(u_{0}\right)=0$ and this is (i) of Theorem 5.1. If the assumption of Step 2 holds, then $u_{n} \rightarrow u_{0}$ and Theorem 5.1 hold with $l=0$. Otherwise the assumption of Step 3 holds. We set $\left\{y_{n}^{1}\right\}=\left\{z_{n}\right\}$ and $w^{1}=w$. Now if 1) of Step 4 holds with $m=1$ this proves (ii)-(iv) of Theorem 5.1. If not, 2) of Step 4 must hold and setting $\left\{y_{n}^{2}\right\}=\left\{z_{n}\right\}$ and $w^{2}=w^{2}$ we iterate Step 4. Clearly all we have to do to end the proof of (i)-(iv) is to show that 1) of Step 4 must occur after a finite number of iterations. But we observe, on one hand, that by the properties of the weak convergence, $\forall m \geq 1$

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}-\left\|u_{0}\right\|^{2}-\sum_{k=1}^{m}\left\|w^{k}\right\|^{2}=\lim _{n \rightarrow \infty}\left\|u_{n}-u_{0}-\sum_{k=1}^{m} w^{k}\left(\cdot-y_{n}^{k}\right)\right\|^{2} \geq 0
$$

On the other hand, by Remark 5.3, there is a $\rho_{0}>0$ such that $\|w\| \geq \rho_{0}$ for any non trivial critical point of I^{∞}. Thus at one point, say for $l \in \mathbb{N}, 1$) of Step 4 will occur.

To complete the proof of Theorem 5.1 we just have to show that

$$
I\left(u_{n}\right) \rightarrow I\left(u_{0}\right)+\sum_{k=1}^{l} I^{\infty}\left(w^{k}\right) .
$$

Writing $u_{n}=u_{0}+\left(u_{n}-u_{0}\right)$ we first prove that

$$
\begin{equation*}
I\left(u_{n}\right) \rightarrow I\left(u_{0}\right)+I^{\infty}\left(u_{n}-u_{0}\right) . \tag{5.3}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
I\left(u_{n}\right) & =\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n}-u_{0}\right)\right|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} \nabla u_{0} \nabla\left(u_{n}-u_{0}\right) d x \\
& +\frac{1}{2} \int_{\mathbb{R}^{N}} V(x) u_{0}^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x)\left(u_{n}-u_{0}\right)^{2} d x \\
& +\int_{\mathbb{R}^{N}} V(x) u_{0}\left(u_{n}-u_{0}\right) d x-\int_{\mathbb{R}^{N}} F\left(u_{n}\right) d x
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
I\left(u_{n}\right) & =I\left(u_{0}\right)+I^{\infty}\left(u_{n}-u_{0}\right)+\int_{\mathbb{R}^{N}} \nabla u_{0} \nabla\left(u_{n}-u_{0}\right) d x \\
& +\frac{1}{2} \int_{\mathbb{R}^{N}}(V(x)-V(\infty))\left(u_{n}-u_{0}\right)^{2} d x+\int_{\mathbb{R}^{N}} V(x) u_{0}\left(u_{n}-u_{0}\right) d x \\
& +\int_{\mathbb{R}^{N}} F\left(u_{n}-u_{0}\right) d x+\int_{\mathbb{R}^{N}} F\left(u_{0}\right) d x-\int_{\mathbb{R}^{N}} F\left(u_{n}\right) d x .
\end{aligned}
$$

Thus all we have to show to prove (5.3) is that

$$
\int_{\mathbb{R}^{N}}\left[F\left(u_{n}-u_{0}\right)+F\left(u_{0}\right)-F\left(u_{n}\right)\right] d x \rightarrow 0 .
$$

But under (f1')-(f2') this is classical (see [3] for example). Now one proves that

$$
I^{\infty}\left(u_{n}-u_{0}\right) \rightarrow \sum_{k=1}^{l} I^{\infty}\left(w^{k}\right)
$$

in the same way and using the observation that I^{∞} is autonomous.

References

[1] Berestycki H. and Lions P.L., Nonlinear scalar field equations I, Arch. Rat. Mech. Anal. 82 (1983), 313-346.
[2] Berestycki H. , Gallouët T. and Kavian O., Equations de Champs scalaires euclidiens non linéaires dans le plan. C.R. Acad. Sci; Paris Ser. I Math. 297 (1983), 5, 307-310.
[3] Coti Zelati V. and Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on \mathbb{R}^{N}, Comm. Pure and Applied Math., Vol. XIV (1992), 1217-1269.
[4] Jeanjean L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^{N}, Proc. Roy. Soc. Edinburgh, 129A, (1999), 787-809.
[5] Jeanjean L., Tanaka K., A remark on least energy solutions in \mathbb{R}^{N}, Proc Amer. Math. Soc. 131, (2003), 2399-2408.
[6] Jeanjean L., Tanaka K., A note on a mountain pass characterization of least energy solutions, Preprint.
[7] Jeanjean L. and Toland J. F., Bounded Palais-Smale Mountain-Pass sequences, C. R. Acad. Sci. Paris, t. 327, 1, 1998, 23-28.
[8] Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II., Ann. Inst. H. Poincaré, Anal. non-lin., 1 (1984), 109-145 and 223-283.
[9] Struwe M., Variational methods, 2nd edn (New York: Springer, 1996).
[10] Szulkin A. and Zou W., Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187, (2001), 1, 25-41.

[^0]: *Primary: 35J60, Secondary: 58E05
 (\ddagger) Partially supported by Waseda University Grant for Special Research Project.

