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Abstract : We consider a class of equations of the form

−ε2∆u + V (x)u = f(u), u ∈ H1(RN ).

By variational methods, we show the existence of families of positive solutions
concentrating around local minima of the potential V (x), as ε → 0. We do not
require uniqueness of the ground state solutions of the associated autonomous
problems nor the monotonicity of the function ξ 7→ f(ξ)

ξ . We deal with asymp-
totically linear as well as superlinear nonlinearities.

0. Introduction

In this paper we study the existence of positive solutions of the equation

−ε2∆u + V (x)u = f(u), u ∈ H1(RN ). (0.1)

We assume f ∈ C1(R,R) and that V (x) is locally Hölder continuous and bounded below
away from 0, that is, there exists V0 > 0 such that

V (x) ≥ V0 > 0 for all x ∈ RN . (0.2)
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A basic motivation to study (0.1) stems from the nonlinear Schrödinger equation

ih̄
∂Φ
∂t

= − h̄2

2m
∆Φ + W (x)Φ− g(|Φ|)Φ. (0.3)

We are interested in standing wave solutions, namely solutions of the form Φ(x, t) =
u(x)e−

iEt
h̄ and it is easily observed that a Φ(x, t) of this form satisfies (0.3) if and only if

u(x) is a solution of (0.1) with V (x) = W (x)− E, ε2 = h̄2

2m and f(u) = g(u)u.
An interesting class of solutions of (0.1), sometimes called semi-classical states, are

families of solutions uε(x) which concentrate and develop a spike shape around one, or
more, special points in RN , while vanishing elsewhere as ε → 0.

The existence of single and multiple spike solutions was first studied by Floer and
Weinstein [FW]. In the one dimensional case and for f(u) = u3 they construct a single
spike solution concentrating around any given non-degenerate critical point of the potential
V (x). Oh [O1, O2] extended this result in higher dimension and for f(u) = |u|p−1u

(1 < p < N+2
N−2 ). He also constructs multiple spike solutions. The arguments in [FW,

O1, O2] are based on a Lyapunov-Schmidt reduction and rely on the uniqueness and
non-degeneracy of the ground state solutions of the autonomous problems :

−∆v + V (x0)v = f(v) in H1(RN ) (x0 ∈ RN ). (0.4)

We remark that if we introduce a rescaled (around x0 ∈ RN ) function v(y) = u(εy + x0),
(0.1) becomes −∆v + V (x0 + εy)v = f(v) and (0.4) appears as a limit as ε → 0.

Subsequently reduction methods were also found suitable to find solutions of (0.1)
concentrating around possibly degenerate critical points of V (x), when the ground state
solutions of the limit problems (0.4) are unique and non-degenerate. In [ABC] Ambrosetti,
Badiale and Cingolani consider concentration phenomena at isolated local minima and
maxima with polynomial degeneracy and in [YYL] Y. Li deals with C1-stable critical
points of V . See also Grossi [Gr] and Pistoia [P] for related results. Finally we mention
the work of Kang-Wei [KW] where is establish the existence of positive solutions with any
prescribed number of spikes clustering around a given local maximum point of V (x).

We remark that the uniqueness and non-degeneracy of the ground state solutions of
(0.4) are, in general, rather difficult to prove. They are known, by means of ODE analysis,
only for a rather restricted class of nonlinearities f(ξ) (including f(ξ) = |ξ|p−1ξ (1 < p <
N+2
N−2 )) so far. To attack the existence of positive solutions of (0.1) without assumptions
on uniqueness and non-degeneracy, the variational approach, initiated by Rabinowitz [R],
will proved to be successful. In [R] he proves, by a mountain pass argument, the existence
of positive solutions of (0.1), for ε > 0 small, whenever

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x).
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The assumptions on f(ξ) are roughly (f0)–(f4) as given below but no uniqueness nor non-
degeneracy conditions on the ground state solutions of (0.4) are required. Later Wang [W]
showed that these solutions concentrate at global minimum points of V (x).

In 1996, del Pino and Felmer [DF1] by introducing a penalization approach, so called
local mountain pass, managed to handle the case of a, possibly degenerate, local minimum
of V (x). More precisely, they assume that an open bounded set Λ ⊂ RN satisfies

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x)

and they show the existence of a single spike solution concentrating around minimizer of
V (x) in Λ. Very recently they extended their result to the existence of multiple spike solu-
tions in a, possibly degenerate, saddle point setting [DF3]. In [DF3] stronger conditions
than in [DF1] are required but no assumptions on the uniqueness or the non-degeneracy
of solutions of (0.4) are made. As results in between [DF1] and [DF3] we mention [DF2,
Gu].

In the present paper we focus on the existence of solutions of (0.1) concentrating in a
given set of local minima of V (x). We introduce new techniques which permit to extend
the result of del Pino-Felmer [DF1] to a wider class on nonlinearities f(ξ) ∈ C1(R,R). In
[DF1] the assumptions on f(ξ) are the following :

(f0) f(ξ) ∈ C1(R,R).
(f1) f(ξ) = o(ξ) as ξ ∼ 0.
(f2) For some s ∈ (1, N+2

N−2 ) if N ≥ 3 and for some s ∈ (1,∞) if N = 1, 2

f(ξ)
ξs

→ 0 as ξ →∞.

(f3) There exists µ > 2 such that

0 < µF (ξ) ≤ f(ξ)ξ for all ξ > 0,

where

F (ξ) =
∫ ξ

0

f(τ) dτ.

(f4) The function ξ 7→ f(ξ)
ξ ; (0,∞) → R is nondecreasing.

Under (f0)–(f3), the functional Iε(u) corresponding to (0.1)

Iε(u) =
1
2

∫

RN

ε2|∇u|2 + V (x)u2 dx−
∫

RN

F (u) dx
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has a mountain pass geometry.
In the proofs of [DF1] the assumptions (f3) and (f4) play important roles. (f3) is

called the global Ambrosetti-Rabinowitz’s condition. It ensures the boundedness of Palais-
Smale sequences for Iε. We also remark that (f3) implies that f(ξ) is superlinear, namely
that

f(ξ)
ξ

→∞ as ξ →∞.

The condition (f4) guarantees the following properties for Iε; for any u 6= 0, the real func-
tion defined on (0,∞) → R by t 7→ Iε(tu), takes a unique local (hence global) maximum.
This enables to make use of the Nehari manifold M = {u ∈ H1(RN ) \ {0}; I ′ε(u)u = 0}
and to show that a mountain pass critical point for Iε(u) is a least energy solution of (0.1).

We will show that the result of [DF1] holds without the assumption (f4). We also
introduce a new condition (f5) which can replace (f3) to ensure the boundedness of Cerami
sequences and enables to consider asymptotically linear problems. Our main result is the
following :

Theorem 0.1. Suppose N ≥ 2 and assume that f(ξ) satisfies (f0)–(f2) and either (f3) or

(f5) (i) There exists a ∈ (0,∞] such that

f(ξ)
ξ

→ a as ξ →∞. (0.5)

(ii) There exists a constant D ≥ 1 such that

F̂ (s) ≤ DF̂ (t) for all 0 ≤ s ≤ t, (0.6)

where

F̂ (ξ) =
1
2
f(ξ)ξ − F (ξ).

Let Λ ⊂ RN be a bounded open set satisfying

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x) (0.7)

and, in case a < ∞ in (f5),
inf
x∈Λ

V (x) < a. (0.8)

Then there exists an ε0 > 0 such that for any ε ∈ (0, ε0], (0.1) has a solution uε(x)
satisfying

1◦ uε(x) has unique local maximum (hence global maximum) in RN at xε ∈ Λ.
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2◦ V (xε) → infx∈Λ V (x).
3◦ There exist constants C1, C2 > 0 such that

uε(x) ≤ C1 exp
(
−C2

|x− xε|
ε

)
for x ∈ RN .

In Section 1, we will see that (f4) implies (f5) with D = 1. Thus as a special case of
Theorem 0.1 we have

Theorem 0.2. Assume that f(ξ) satisfies (f0)–(f2) and either (f3) or (f4). Then the

conclusion of Theorem 0.1 holds.

Remark 0.3. (i) In [DF1] del Pino-Felmer showed the existence of a solution uε(x)
satisfying 1◦–3◦ in the statement of Theorem 0.1 under the conditions (f0)–(f2) and both
(f3) and (f4). Thus our theorem generalizes their result. In Section 1 we give some examples
of nonlinearities that our result now permit to consider.
(ii) When N = 1, the existence of solutions concentrating in a bounded open set Λ ⊂ R
satisfying (0.7) can be shown under weaker conditions, namely, under (f0), (f1) and :

(f6) There exists ξ0 > 0 such that

− σ

2
ξ2 + F (ξ) < 0 for ξ ∈ (0, ξ0),

− σ

2
ξ2
0 + F (ξ0) = 0,

− σξ0 + f(ξ0) > 0,

where σ = infx∈Λ V (x).

For the proof we follow [DFT] where a broken geodesic type argument is developed for
1-dimensional nonlinear Schrödinger equations. See also [NaT] for a related argument for
1-dimensional spatially inhomogeneous phase transition problems.

Concerning the removal of (f4) one of the keys of our proof is to use our recent work
[JT2] on autonomous nonlinear scalar field equations in RN , where we show that under
the same conditions which guarantee the existence of a least energy solution (see [BL],
[BGK]) these solutions possess a mountain pass characterization. Without assuming (f4)
such property do not hold for Iε(u), and in particular our solutions uε(x) may not be
least energy solutions. However, to prove Theorem 0.1 we just use the mountain pass
characterization on the limit equations (0.4).

To get Theorem 0.1 without assuming (f3) we have to overcome the problems of
proving the boundedness of Palais-Smale sequences (or at least of Cerami sequences). For
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this we take advantage of some techniques introduced by Jeanjean [J] and further extended
in Jeanjean-Tanaka [JT1]. Our condition (f5) do not force f(ξ) to be superlinear and we
manage to handle cases where it is asymptotically linear. To our knowledge there does
not exist other existence result for such nonlinearities (without assumptions on uniqueness
and non-degeneracy of solutions of (0.4)).

To end this introduction we mention that equations of the form of (0.1) set on a
bounded domain of RN under Dirichlet or Neumann boundary conditions have also drawn
considerable attention these last years, starting with the works of Ni-Takagi [NT1, NT2]
and Ni-Wei [NW]. Motivated by mathematical models in biology, the existence of single
and multiple spike solutions is studied. We suspect that the techniques we develop in this
paper could induce new progress in this direction.

The proof of Theorem 0.1 consists of several steps. In Section 1, influenced by the
work of del Pino-Felmer [DF1], we introduce a modified functional for any ε > 0 and show
it has a mountain pass geometry. Next, in Section 2, we study the boundedness of Cerami
sequences for the modified functionals. We give two types of boundedness results; one when
ε > 0 is fixed, the other one to obtain uniform boundedness when ε goes to 0. In Section
3, we study the behavior of bounded Cerami sequences. We develop parameter-dependent
concentration-compactness type argument, which may be regarded as a generalization of
Proposition 2.2 of Gui [Gu], and we believe that it could be useful in other situations. In
Section 4, we study the limit equations (0.4). Finally in Section 5, we end the proof of
Theorem 0.1, showing that the critical points of the modified functionals satisfies, after a
rescaling, the original problem (0.1).
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1. Setting the modified problems

In this section we give some preliminaries for the proof of Theorem 0.1. Since we seek
positive solutions, we can assume that

f(ξ) = 0 for all ξ ≤ 0. (1.1)

First we summarize some basic properties of f(ξ).

Lemma 1.1. Assume (f0)–(f2). Then

(i) For any δ > 0 there exists Cδ > 0 such that

|f(ξ)| ≤ δ|ξ|+ Cδ|ξ|s for all ξ ∈ R . (1.2)

(ii) If (f3) is satisfied, f(ξ) ≥ 0 for all ξ ≥ 0.

(iii) If (f5) is satisfied, f(ξ) ≥ 0, F̂ (ξ) ≥ 0, d
dξ

(
F (ξ)
ξ2

)
≥ 0 for all ξ ≥ 0.

(iv) If f(ξ) satisfies (f4), then (f5) holds with D = 1.

Proof. (i), (ii) are trivial. To show (iii) we set s = 0 in (0.6). We get

F̂ (t) ≥ 0 for all t ≥ 0. (1.3)

Thus
d

dt

(
F (t)
t2

)
=

2F̂ (t)
t3

≥ 0. (1.4)

(1.4) implies under (f1) that

F (t)
t2

≥ lim
t→0

F (t)
t2

= 0 for all t > 0. (1.5)

Finally combining (1.3) and (1.5), we have

1
2
f(t)t = F̂ (t) + F (t) ≥ 0 for all t ≥ 0.

(iv) For 0 < s < t we have

F̂ (t)− F̂ (s) =
1
2
(f(t)t− f(s)s)− (F (t)− F (s))

=
∫ t

0

f(t)
t

τ dτ −
∫ s

0

f(s)
s

τ dτ −
∫ t

s

f(τ)
τ

τ dτ

=
∫ t

s

(
f(t)

t
− f(τ)

τ

)
τ dτ +

∫ s

0

(
f(t)

t
− f(s)

s

)
τ dτ

≥ 0.
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Thus (f5) with D = 1 follows.

Here are some examples of nonlinearities which satisfies our conditions.

Examples.

(i) f(ξ) = ξ log(1 + ξ) satisfies (f0)–(f2), (f5) with a = ∞, D = 1 but not (f3).
(ii) f(ξ) = ξ2

1+kξ (k > 0) satisfies (f0)–(f2), (f5) with a = 1
k , D = 1.

(iii) For an example satisfying (f0)–(f2), (f5) with D > 1, we claim that we can re-construct
f(ξ) from F̂ (ξ). Indeed under (f1), (f5) it holds :

(i) F̂ (ξ) = O(ξ3) at ξ = 0. (1.6)
(ii) F̂ (ξ) ≥ 0 for all ξ > 0. (1.7)
(iii) (0.6) holds if and only if

sup
0<s<t

F̂ (s)

F̂ (t)
< ∞. (1.8)

(Here we regard F̂ (s) = 0 if F̂ (t) = 0).

Now for a given function F̂ (ξ) ∈ C([0,∞),R) satisfying (1.6)–(1.8), we set

F (ξ) = 2ξ2

∫ ξ

0

F̂ (τ)
τ3

dτ.

We can easily check that 1
2F ′(ξ)ξ−F (ξ) equals to the given F̂ (ξ). Thus for a given F̂ (ξ) ∈

C([0,∞),R) satisfying (1.6)–(1.8), we can re-construct f(ξ). For example for a function
satisfying (1.6), (1.7), f ′(ξ) ≥ 0 near ξ = 0 and 0 < lim infξ→∞ F̂ (ξ) ≤ lim supξ→∞ F̂ (ξ) <

∞, we can find f(ξ) which satisfies (f0)–(f2), (f5).

(a) Modification of the nonlinearity f(ξ)

To find a solution uε(x) concentrating in a given set Λ, we modify the nonlinearity f(ξ).
Here we follow an approach inspired by del Pino-Felmer [DF1].

Let f(ξ) be a function satisfying (f0)–(f2) and V0 < a = limξ→∞
f(ξ)

ξ ∈ (0,∞]. We
choose a small number ν ∈ (0, V0

2 ) and we set

f(ξ) =
{

min{f(ξ), νξ} for ξ ≥ 0,
0 for ξ < 0.

(1.9)

By (f1) we can see that there exists a small rν > 0 such that

f(ξ) = f(ξ) for |ξ| ≤ rν .

Moreover there holds
f(ξ) = νξ for large ξ ≥ 0,

f(ξ) = 0 for ξ ≤ 0.
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For technical reasons, we choose ν in the following way :

1◦ Under (f3), we choose ν > 0 so that

ν

2V0
<

1
2
− 1

µ
. (1.10)

2◦ Under (f5), we choose ν ∈ (0, V0
2 ) so that ν is a regular value of ξ 7→ f(ξ)

ξ :
(0,∞) → R. Since limξ→0

f(ξ)
ξ = 0 and limξ→∞

f(ξ)
ξ = a > V0 > ν, if ν is a

regular value of f(ξ)
ξ , we can see that

kν ≡ #{ξ ∈ (0,∞); f(ξ) = νξ} < ∞. (1.11)

Next, let Λ ⊂ RN be a bounded open set satisfying (0.7). We may assume that the
boundary ∂Λ is smooth. We choose an open subset Λ′ ⊂ Λ with a smooth boundary ∂Λ′

and a function χ(x) ∈ C∞(RN ,R) such that

inf
x∈Λ\Λ′

V (x) > inf
x∈Λ

V (x),

min
x∈∂Λ′

V (x) > inf
x∈Λ′

V (x) = inf
x∈Λ

V (x),

χ(x) = 1 for x ∈ Λ′,

χ(x) ∈ (0, 1) for x ∈ Λ \ Λ′,

χ(x) = 0 for x ∈ RN \Λ.

In what follows we assume, without loss of generality, that

0 ∈ Λ′ and V (0) = inf
x∈Λ

V (x). (1.12)

Finally we define

g(x, ξ) = χ(x)f(ξ) + (1− χ(x))f(ξ) for (x, ξ) ∈ RN ×R (1.13)

and we write F (ξ) =
∫ ξ

0
f(τ) dτ , G(x, ξ) =

∫ ξ

0
g(x, τ) dτ = χ(x)F (ξ) + (1− χ(x))F (ξ).

From now on we try to find a solution of the following problem :

−ε2∆u + V (x)u = g(x, u) in RN . (1.14)

We will find a solution uε(x) of (1.14) via a mountain pass argument and besides other
properties we will show that the mountain pass solution uε(x) satisfies for small ε > 0

|uε(x)| ≤ rν for x ∈ RN \Λ′, (1.15)

that is, uε(x) also solves the original problem (0.1).
We give some fundamental properties of f(ξ).
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Lemma 1.2. (i) f(ξ) = 0, F (ξ) = 0 for all ξ ≤ 0.

(ii) f(ξ) ≤ νξ, F (ξ) ≤ F (ξ) for ξ ≥ 0.

(iii) f(ξ) ≤ f(ξ) for ξ ≥ 0.

(iv) If f(ξ) satisfies either (f3) or (f5), then it holds that f(ξ) ≥ 0 for all ξ ∈ R.

(v) If f(ξ) satisfies (f5), then f(ξ) also satisfies (f5). In particular, F̂ (ξ) ≥ 0 for all ξ ≥ 0.

Proof. (i)–(iv) are trivial from the definition of f(ξ). For (v), we recall that ν is taken so
that (1.11) holds. First we consider the case

f(ξ) = f(ξ) in [s, t]. (1.16)

Then

F̂ (t) ≥ 1
2
f(t)t−

∫ t

0

f(τ) dτ =
1
2
f(t)t− F (t) + F (s)− F (s)

= F̂ (t) + F (s)− F (s).

Since f(ξ) satisfies (f5) and F (s)− F (s) ≥ 0, we have

≥ 1
D

F̂ (s) +
1
D

(F (s)− F (s)) =
1
D

(
1
2
f(s)s− F (s)

)

=
1
D

F̂ (s).

Next if
f(ξ) = νξ in [s, t], (1.17)

we have

F̂ (t) =
1
2
νt2 −

∫ t

s

ντ dτ −
∫ s

0

f(τ) dτ

=
1
2
νs2 −

∫ s

0

f(τ) dτ = F̂ (s) ≥ 1
D

F̂ (s).

Thus in the general case, we can find a sequence s = α0 < α1 < α2 < · · · < αn−1 < αn = t

such that f(αj) = ναj (j = 1, 2, · · · , n− 1) and in each interval [αj , αj+1], (1.16) or (1.17)
holds. We use the above fact repeatedly and obtain

F̂ (s) ≤ DF̂ (α1) ≤ D2F̂ (α2) ≤ · · · ≤ Dn−1F̂ (αn−1) ≤ DnF̂ (t).

By (1.11), n is bounded by kν and we get

F̂ (s) ≤ Dkν F̂ (t) for all 0 ≤ s ≤ t.

Replacing D with Dkν , this is the desired result.
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Corollary 1.3. (i) g(x, ξ) ≤ f(ξ), G(x, ξ) ≤ F (ξ) for all (x, ξ) ∈ RN ×R.

(ii) g(x, ξ) = f(ξ) if |ξ| < rν .

(iii) For any δ > 0 there exists Cδ > 0 such that

|g(x, ξ)| ≤ δ|ξ|+ Cδ|ξ|s+1 for all (x, ξ) ∈ RN ×R .

(iv) If f(ξ) satisfies (f5)–(ii), then g(x, ξ) also satisfies

Ĝ(x, s) ≤ Dkν Ĝ(x, t) for 0 ≤ s ≤ t,

where Ĝ(x, ξ) = 1
2g(x, ξ)ξ −G(x, ξ), D ≥ 1 is given in (f5)–(ii) and kν is given in (1.11).

Proof. By the definition of g(x, ξ) in (1.13), (i)–(iv) follow easily from Lemma 1.2.

(b) The modified functional

Introducing the re-scaled function v(y) = u(εy) we can rewrite (1.14) as

−∆v + V (εy)v = g(εy, v) in RN . (1.18)

We shall mainly deal with (1.18) instead of (1.14).
The functional corresponding to (1.18) is

Jε(v) =
1
2

∫

RN

|∇v|2 + V (εy)v2 dy −
∫

RN

G(εy, v) dy.

We consider Jε(v) on the following function space :

Hε = {v ∈ H1(RN );
∫

RN

V (εy)v2 dy < ∞}

equipped with norm

‖v‖2Hε
=

∫

RN

|∇v|2 + V (εy)v2 dy.

We shall make use the following notation :

‖u‖r
r =

∫

RN

|u|r dy for r ∈ [1,∞),

‖u‖∞ = ess sup
x∈RN

|u(x)|,

‖u‖2H1(RN ) =
∫

RN

|∇v|2 + V0v
2 dy.
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Here V0 > 0 is the constant appearing in (0.2) and thus ‖·‖H1(RN ) is equivalent to the
standard H1(RN )-norm. Since

‖v‖H1(RN ) ≤ ‖v‖Hε , (1.19)

we have Hε ⊂ H1(RN ) and Hε can be embedded into Lr(RN ) (2 ≤ r ≤ 2N
N−2 for N ≥ 3,

2 ≤ r < ∞ for N = 2) continuously, i.e., there exists C ′r > 0 such that

‖v‖r ≤ C ′r‖v‖H1(RN ) for all v. (1.20)

Proposition 1.4. Jε(v) ∈ C1(Hε,R) and it has a Mountain Pass Geometry that is uni-

form with respect to ε in the following sense :

1◦ Jε(0) = 0.

2◦ There are constants ρ0 > 0 and δ0 > 0 independent of ε ∈ (0, 1] such that

Jε(v) ≥ δ0 for all ‖v‖H1(RN ) = ρ0

and

Jε(v) > 0 for all 0 < ‖v‖H1(RN ) ≤ ρ0.

3◦ There is a v0(x) ∈ C∞0 (RN ) and ε0 > 0 such that

Jε(v0) < 0 for all ε ∈ (0, ε0].

Proof. Since Jε(v) = 1
2‖v‖2Hε

− ∫
RN G(εy, v) dy, it is clear that Jε(v) ∈ C1(Hε,R). 1◦ is

also trivial. To show 2◦, using (1.2), (1.19), (1.20), we compute

Jε(v) =
1
2
‖v‖2Hε

−
∫

RN

χ(εy)F (v) + (1− χ(εy))F (v) dy

≥ 1
2
‖v‖2Hε

−
∫

RN

F (v) dy

≥ 1
2
‖v‖2H1(RN ) −

V0

4
‖v‖22 − CV0/2‖v‖s+1

s+1

≥ 1
4
‖v‖2H1(RN ) − CV0/2C

′
s+1‖v‖s+1

H1(RN )
.

Thus we can find constants ρ0, δ0 > 0 such that the statement 2◦ holds.
To show 3◦, we choose v0 ∈ C∞0 (RN ) such that

1
2

∫

RN

|∇v0|2 + V (0)v2
0 dy −

∫

RN

F (v0) dy < 0.
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Recall that V (0) < limz→∞
f(z)

z . Then the existence of such v0 ∈ C∞0 (RN ) follows from
Proposition 4.2, where it is proved that v → 1

2

∫
RN |∇v0|2 + V (0)v2

0 dy− ∫
RN F (v0) dy has

a mountain pass geometry. Since we are assuming 0 ∈ Λ′, we observe that

Jε(v0) → 1
2

∫

RN

|∇v0|2 + V (0)v2
0 dy −

∫

RN

F (v0) dy < 0 as ε → 0.

Thus we get 3◦ for sufficiently small ε > 0

By Proposition 1.4, we can define the mountain pass value. For ε ∈ (0, ε0] we set

bε = inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t)), (1.21)

Γε = {γ ∈ C([0, 1],Hε); γ(0) = 0, Jε(γ(1)) < 0}. (1.22)

In what follows, we will show that for ε small, bε is a critical value of Jε(v) and the
corresponding critical point has — after re-scaling — exactly one peak in Λ.

By the above Proposition 1.4, we have the following a priori bound for the mountain
pass value bε.

Corollary 1.5. There are constants m1, m2 > 0 such that for ε ∈ (0, ε0]

m1 ≤ bε ≤ m2. (1.23)

Proof. Since
γ([0, 1]) ∩ {v ∈ Hε; ‖v‖H1(RN ) = ρ0} 6= ∅

for any γ ∈ Γε, by Proposition 1.4, we have

max
t∈[0,1]

Jε(γ(t)) ≥ inf
‖v‖H1(RN )=ρ0

Jε(v) ≥ δ0.

On the other hand, taking a path γ(t) = tv0, where v0 ∈ C∞0 (RN ) is given in Proposition
1.4, we have

bε ≤ sup
ε∈(0,ε0]

max
t∈[0,1]

Jε(γ0(t)) ≡ m2.

Thus we get (1.23) with m1 = δ0 and m2 given in the above formula.

In the following sections, we will discuss the boundedness of Cerami sequence corre-
sponding to bε. We will also discuss “uniform boundedness” with respect to ε ∈ (0, ε0].
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2. Boundedness of Cerami sequences

From Proposition 1.4 and Ekeland’s principle, for any ε ∈ (0, ε0] there exists a Cerami
sequence (vj)∞j=1 ⊂ Hε at level bε :

Jε(vj) → bε,

(1 + ‖vj‖Hε)‖J ′ε(vj)‖H∗
ε
→ 0 as j →∞.

We will show under the assumptions (f3) or (f5) that (vj)∞j=1 is bounded in Hε and has a
convergent subsequence. Thus Jε(v) has a critical point vε satisfying

J ′ε(vε) = 0,

Jε(vε) = bε.

Also we show that (vε) is bounded in the sense that

lim sup
ε→0

‖vε‖Hε < ∞. (2.1)

This type of boundedness is important in our argument. More precisely we show :

Proposition 2.1. Assume that f(ξ) satisfies (f0)–(f2) and either (f3) or (f5). Then there

exists ε1 ∈ (0, ε0] such that for any ε ∈ (0, ε1] and for any sequence (vj) ⊂ Hε satisfying

Jε(vj) → c > 0, (2.2)

(1 + ‖vj‖Hε)‖J ′ε(vj)‖H∗
ε
→ 0 as j →∞ (2.3)

for some c > 0, we have

(i) ‖vj‖Hε is bounded as j →∞.

(ii) There exist a subsequence jk and v0 ∈ Hε such that

vjk
→ v0 strongly in Hε.

Proposition 2.2. Assume that f(ξ) satisfies (f0)–(f2) and either (f3) or (f5). Suppose

that a sequence (vε)ε∈(0,ε1] satisfies

vε ∈ Hε,

Jε(vε) ∈ [m1,m2] for all ε ∈ (0, ε1], (2.4)

(1 + ‖vε‖Hε)‖J ′ε(vε)‖H∗
ε
→ 0 as ε → 0 (2.5)
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for m2 > m1 > 0. Then (2.1) holds.

Since the proofs of Propositions 2.1 (i) and 2.2 have many similar points, we mainly
deal with Proposition 2.2. First we prove it under (f0)–(f2) and (f3). In what follows we
write χε(y) = χ(εy).

Proof of Proposition 2.2 under condition (f3). This is quite standard. Let (vε)
satisfy (2.4) and (2.5). From (2.4) we have

1
2
‖vε‖2Hε

−
∫

RN

(1− χ(εy))F (vε) + χ(εy)F (vε) dy ≤ m2. (2.6)

From (2.5) it follows that |J ′ε(vε)vε| ≤ ‖J ′ε(vε)‖H∗
ε
‖vε‖Hε ≤ 1 for small ε, i.e.,

∣∣∣∣‖vε‖2Hε
−

∫

RN

(1− χ(εy))f(vε)vε + χ(εy)f(vε)vε dy

∣∣∣∣ ≤ 1. (2.7)

Thus computing (2.6)− 1
µ (2.7) and using (f3), we get

(
1
2
− 1

µ
)‖vε‖2Hε

≤
∫

RN

(1− χ(εy))(F (vε)− 1
µ

f(vε)vε) dy + m2 +
1
µ

.

Recalling that ξf(ξ) ≥ 0 for all ξ, it leads to

(
1
2
− 1

µ
)‖vε‖2Hε

≤
∫

RN

(1− χ(εy))F (vε) dy + m2 +
1
µ

.

By Lemma 1.2 (ii), we have F (ξ) ≤ 1
2ν|ξ|2 for all ξ ∈ R. Thus

∫

RN

(1− χ(εy))F (vε) dy ≤ 1
2
ν‖vε‖22 ≤

ν

2V0
‖vε‖2Hε

.

Therefore

(
1
2
− 1

µ
)‖vε‖2Hε

≤ ν

2V0
‖vε‖2Hε

+ m2 +
1
µ

.

By our choice (1.10) of ν, we can see that ‖vε‖Hε is bounded as ε → 0.

For the proof of Proposition 2.2 under (f5), we use ideas from [J] and [JT1].

Proof of Proposition 2.2 under condition (f5). Following the argument in [J] and
[JT1], we argue indirectly and assume that lim supε→0 ‖vε‖Hε = ∞. We take a subse-
quence εj → 0 such that ‖vεj‖Hεj

→∞. For simplicity of notation, we write just ε instead
of εj .
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We set wε = vε

‖vε‖Hε
. Clearly ‖wε‖H1(RN ) ≤ ‖wε‖Hε

= 1 and since χε is uniformly
bounded in C1 there exists C1 > 0 independent of ε > 0 such that

‖χεwε‖H1(RN ) ≤ C1. (2.8)

Also, since ‖J ′ε(vε)‖Hε
∗ → 0 we have

−∆wε + V (εy)wε = χε
f(vε)

vε
wε + (1− χε)

f(vε)
vε

wε +
o(1)
‖vε‖Hε

. (2.9)

Multiplying (2.9) by wε
−(y) = max{−wε(y), 0} and integrating over RN , it follows that

‖wε
−‖2Hε

→ 0 as ε → 0. (2.10)

Now we observe that one of the following 2 cases must take place :

Case 1 : lim sup
ε→0

sup
z∈RN

∫

B1(z)

|χε(y)wε|2 dy > 0.

Case 2 : lim
ε→0

sup
z∈RN

∫

B1(z)

|χε(y)wε|2 dy = 0.

Here we use the notation :

B1(y) = {z ∈ RN ; |z − y| < 1} for y ∈ RN .

We will show neither Case 1 nor Case 2 takes place and this will provide the desired
contradiction.

Step 1 : Case 1 cannot take place under (f5) with a = ∞.

Arguing indirectly, we assume that Case 1 occurs. Then, taking a subsequence if necessary,
we can find a sequence (yε) ⊂ RN , d > 0 and x0 ∈ Λ such that

∫

B1(yε)

|χεwε|2 dy → d > 0, (2.11)

εyε → x0 ∈ Λ. (2.12)

In fact, since Case 1 occurs, the existence of (yε) with (2.11) is clear. Also, it must be
B1(yε) ∩ supp χε 6= ∅, that is,

εyε ∈ Nε(Λ) ≡ {z ∈ RN ; dist (z, Λ) < ε}.

Thus we may assume εyε → x0 ∈ Λ. Extracting a subsequence again, there holds

wε(y + yε) ⇀ w0(y) weakly in H1(RN ). (2.13)
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Then we have

(χεwε)(y + yε) = χ(εy + εyε)wε(y + yε) ⇀ χ(x0)w0(y) weakly in H1(RN ).

By (2.10) and (2.11), we can see χ(x0) 6= 0 and w0(y) ≥ 0 ( 6≡ 0). In particular, we can
find a set K ⊂ RN such that

meas K > 0 (2.14)

and
wε(y + yε) → w0(y) > 0 for y ∈ K. (2.15)

On the other hand, multiplying (2.9) by wε and integrating over RN , it follows that

1 =
∫

RN

χε
f(vε)

vε
wε

2 + (1− χε)
f(vε)

vε
wε

2 dy + o(1)

and thus
lim sup

ε→0

∫

RN

χε
f(vε)

vε
wε

2 dy ≤ 1. (2.16)

We can rewrite (2.16) in the following way.

lim sup
ε→0

∫

RN

χ(εy + εyε)
f(vε(y + yε))

vε(y + yε)
wε(y + yε)2 dy ≤ 1.

By (2.14) and (2.15), we have vε(y + yε) → ∞ as ε → 0 for y ∈ K. Therefore by Fatou’s
lemma and since limξ→∞

f(ξ)
ξ = a = ∞ we have

∫

RN

χ(εy + εyε)
f(vε(y + yε))

vε(y + yε)
wε(y + yε)2 dy

≥
∫

K

χ(εy + εyε)
f(vε(y + yε))

vε(y + yε)
wε(y + yε)2 dy →∞.

This is a contradiction to (2.16).

Step 2 : Case 1 cannot take place under (f5) with a < ∞.

As in Step 1, we extract a subsequence and we assume that (2.11), (2.12), (2.13) hold with
χ(x0) 6= 0 and w0(y) ≥ 0 (6≡ 0). We shall prove that w0(y) satisfies

−∆w0 + V (x0)w0 = (χ(x0)a + (1− χ(x0))ν)w0 in RN . (2.17)

Since the operator −∆ has no eigenvalues in H1(RN ), this gives us the desired contradic-
tion. To prove (2.17), it suffices to show that

∫

RN

∇wε(y + yε)∇ϕ(y) + V (εy + εyε)wεϕdy →
∫

RN

∇w0∇ϕ + V (x0)w0ϕdy,(2.18)
∫

RN

g(εy + εyε, vε(y + yε))
vε(y + yε)

wεϕdy → (χ(x0)a + (1− χ(x0))ν)
∫

RN

w0ϕdy (2.19)
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for any ϕ ∈ C∞0 (RN ). (2.18) is a direct consequence of (2.13). To prove (2.19) we take
R > 1 such that supp ϕ ⊂ BR(0). Then wε → w0 strongly in L2(BR(0)) and thus after
extracting a sequence there exists h(y) ∈ L2(BR(0)) such that |wε(y)| ≤ h(y) a.e. in BR(0)
(see [Br], Theorem IV 9). Next since a < ∞, we can find a C > 0 such that |g(x, ξ)/ξ| ≤ C

for all ξ > 0. Thus

∣∣∣∣
g(εy + εyε, vε(y + yε))

vε(y + yε)
wεϕ

∣∣∣∣ ≤ C‖ϕ‖∞|wε(y)| ≤ C‖ϕ‖∞h(y) ∈ L1(BR(0)). (2.20)

We have also

g(εy + εyε, vε(y + yε))
vε(y + yε)

wε → (χ(x0)a + (1− χ(x0))ν)w0(y) a.e. in BR(0). (2.21)

In fact, if w0(y) = 0, (2.21) clearly holds. If w0(y) 6= 0, we have vε(y +yε) →∞ and (2.21)
holds again. Combining (2.20) and (2.21), we get (2.19) by Lebesgue’s theorem.

Finally we show Case 2 cannot take place.

Step 3 : Case 2 cannot take place.

Again we argue indirectly and assume Case 2 takes place. First we claim that ‖χεwε‖s+1 →
0. In fact (χεwε) is a bounded sequence in H1(RN ) by (2.8). Thus the following lemma
implies ‖χεwε‖s+1 → 0.

Lemma 2.3. (c.f. [L]) Suppose (uj) ⊂ H1(RN ) satisfies for some constant C > 0

‖uj‖H1(RN ) ≤ C for all j

and

sup
z∈RN

∫

B1(z)

|uj |2 dy → 0.

Then ‖uj‖r → 0 for r ∈ (2, 2N
N−2 ) when N ≥ 3 and r ∈ (2,∞) when N = 1, 2.

Following [J], for L > 1 we compute

Jε(
L

‖vε‖Hε

vε) =
1
2
L2 −

∫

RN

χεF (Lwε) dy −
∫

RN

(1− χε)F (Lwε) dy.

By Lemma 1.2 (ii), we have
∫
RN (1− χε)F (Lwε) dy ≤ ∫

RN
νL2

2 |wε|2 dy ≤ 1
4L2. Thus

Jε(
L

‖vε‖Hε

vε) ≥ 1
4
L2 −

∫

RN

χεF (Lwε) dy. (2.22)
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On the other hand, by (1.2) and our previous claim we have
∫

RN

χεF (Lwε) dy ≤ δL2‖wε‖22 + CδL
s+1‖χεwε‖s+1‖wε‖s

s+1

≤ δL2

V 2
0

‖wε‖2Hε
+ o(1). (2.23)

Remarking that δ > 0 is arbitrary in (2.23), we obtain, combining (2.22) and (2.23),

lim inf
ε→0

Jε(
L

‖vε‖Hε

vε) ≥ 1
4
L2.

Since ‖vε‖Hε
→∞, L

‖vε‖Hε
∈ (0, 1) for sufficiently small ε > 0 and it follows that

max
t∈[0,1]

Jε(tvε) ≥ Jε(
L

‖vε‖Hε

vε) ≥ 1
4
L2.

We recall that Jε(vε) ≤ m2 independent of ε and we choose L > 0 so large that m2 < 1
4L2.

Thus there exists tε ∈ (0, 1) such that

Jε(tεvε) = max
t∈[0,1]

Jε(tvε)

and since L is arbitrary,
Jε(tεvε) →∞ as ε → 0. (2.24)

Now since J ′ε(tεvε)(tεvε) = 0 we can write

Jε(tεvε) = Jε(tεvε)− 1
2
J ′ε(tεvε)(tεvε) =

∫

RN

Ĝ(εy, tεvε) dy

≤ Dkν

∫

RN

Ĝ(εy, vε) dy = Dkν (Jε(vε)− 1
2
J ′ε(vε)vε)

≤ Dkν m2 + o(1). (2.25)

Here we use Corollary 1.3 (iv) and (2.5). Since (2.24) and (2.25) are incompatible, Case 2
cannot occur.

Step 4 : Conclusion

By Steps 1–3, both Cases 1 and 2 cannot take place. Thus ‖vε‖Hε must stay bounded as
ε → 0.

Proof of Proposition 2.1. The proof of (i) in Proposition 2.1 can be done essentially
in a similar way. However, since we fix ε > 0 in Proposition 2.1, we need to modify the
following points in Steps 1, 2.
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In Step 1 for a given sequence (vj) we find (yj) ⊂ RN such that

∫

B1(yj)

|χεwj |2 dy → d > 0.

Such (yj) satisfies εyj ∈ Nε(Λ) and we may assume εyj → x0 ∈ Nε(Λ), where x0 satisfies
χ(εy + x0) 6≡ 0 in B1(0).

In Step 2, instead of (2.17) we get

−∆w0 + V (εy + x0)w0 = (χ(εy + x0)a + (1− χ(εy + x0))ν)w0 in RN (2.26)

with w0 ∈ H1(RN ) and w0 ≥ 0 ( 6≡ 0). We remark that the maximum principle implies
w0(y) > 0 for all y ∈ RN . Setting w̃(x) = w0((x− x0)/ε), (2.26) gives

−ε2∆w̃ + V (x)w̃ = (χ(x)a + (1− χ(x))ν)w̃. (2.27)

We claim that this is impossible for sufficiently small ε > 0. To show this we use an
argument given to us by Stuart [Stu] and already used in [JT1]. We take ` > 0 small
such that χ(x) = 1 and V (x) < a in B`(0). Let λ1 > 0 be the first eigenvalue of −∆ in
B`(0) under Dirichlet boundary condition and let ϕ1(y) > 0 be a corresponding positive
eigenfunction. Then multiplying (2.27) by ϕ1(y), we obtain

∫

B`(0)

−ε2∆w̃ϕ1 + (V (x)− a)w̃ϕ1 dy = 0.

Since ∫

B`(0)

−∆w̃ϕ1 dy =
∫

B`(0)

−∆ϕ1w̃ dy +
∫

∂B`(0)

w̃
∂ϕ1

∂n
dS

≤
∫

B`(0)

λ1w̃ϕ1 dy,

where n is the outer unit normal on ∂B`(0). We finally get

∫

B`(0)

(V (x)− a + ε2λ1)w̃ϕ1 dy ≥ 0.

But this is impossible since V (x)− a + ε2λ1 < 0 in B`(0) for small ε > 0 and w̃ϕ1 > 0 in
B`(0).

To prove (ii) of Proposition 2.1 we fix ε ∈ (0, ε1] and (vj) satisfying (2.2)–(2.3). By (i)
(vj) is bounded in Hε. After extracting a subsequence if necessary, we may assume that
vj ⇀ v0 weakly in Hε. To show that this convergence is actually strong we follow

20



del Pino-Felmer [DF1] who observe that it suffices to show that for any given δ > 0 there
exists R > 0 such that

lim sup
j→∞

∫

|y|≥R

|∇vj |2 + V (εy)v2
j dy < δ. (2.28)

Let ηR ∈ C∞(RN ,R) be a cut-off function such that

ηR(y) = 0 for |y| ≤ R/2,

ηR(y) = 1 for |y| ≥ R,

ηR(y) ∈ [0, 1] for all y ∈ RN ,

|∇ηR(y)| ≤ C/R for all y ∈ RN

for a suitable constant C > 0.
Since J ′ε(vj)(ηRvj) = o(1), we have for sufficiently large R > 0

∫

RN

(|∇vj |2 + V (εy)v2
j )ηR + vj∇vj∇ηR dy =

∫

RN

f(vj)vjηR dy + o(1)

≤ ν

∫

RN

|vj |2ηR dy + o(1).

Therefore
1
2

∫

|y|≥R

|∇vj |2 + V (εy)v2
j dy ≤ C

R
‖vj‖2‖∇vj‖2 + o(1)

and (2.28) clearly follows.

From Propositions 2.1 and 2.2, we directly obtain

Corollary 2.4. There exists ε1 ∈ (0, ε0] such that for any ε ∈ (0, ε1] there exists a critical

point vε ∈ Hε of Jε(v) satisfying

Jε(vε) = bε,

where bε ∈ [m1,m2] is defined in (1.21)–(1.22). Moreover there exists a constant M > 0
independent of ε ∈ (0, ε1] such that

‖vε‖Hε ≤ M for all ε ∈ (0, ε1].

In the next section we will study the behavior of vε as ε → 0.
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3. Concentration-compactness type argument for Jε(v)

In this section we study the behavior as ε → 0 of the critical points (vε) obtained in
Corollary 2.4. More generally we study the behavior of functions (vε) satisfying

vε ∈ Hε, (3.1)

Jε(vε) → c ∈ R, (3.2)

(1 + ‖vε‖Hε
)‖J ′ε(vε)‖H∗

ε
→ 0, (3.3)

‖vε‖Hε
≤ m, (3.4)

where the constants c, m are independent of ε. We give a concentration-compactness type
result depending on a parameter. For a standard setting of concentration-compactness
principle, we refer to Lions [L] and Struwe [Str].

To state our result, we need some definitions. For x0 ∈ RN , let Φx0 : H1(RN ) → R
be given by

Φx0(v) =
1
2

∫

RN

|∇v|2 + V (x0)v2 dy −
∫

RN

G(x0, v) dy.

For x0 ∈ RN and u, v ∈ H1(RN ) we write

〈u, v〉Hε =
∫

RN

∇u∇v + V (εy)uv dy,

〈u, v〉x0 =
∫

RN

∇u∇v + V (x0)uv dy,

v 2
x0

=
∫

RN

|∇v|2 + V (x0)v2 dy.

We choose a function ψ(y) ∈ C∞0 (RN ,R) such that

ψ(y) = 1 for y ∈ Λ,

ψ(y) ∈ [0, 1] for all y ∈ RN .

We also define ψε(y) = ψ(εy). Finally we set

H(x, ξ) = −1
2
V (x)ξ2 + χ(x)F (ξ) + (1− χ(x))F (ξ)

and
Ω = {x ∈ RN ; sup

ξ>0
H(x, ξ) > 0}.

Remark 3.1. (i) Ω ⊂ Λ and 0 ∈ {x ∈ Λ′; V (x) = infx∈Λ V (x)} ⊂ Ω.
(ii) If (f3) or (f5) with a = ∞ holds, Ω = Λ.

Now we can state the main result of this section.
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Proposition 3.2. Assume that f(ξ) satisfies (f0)–(f2) and that (vε)ε∈(0,ε1] satisfies (3.1)–
(3.4). Then there exists a subsequence εj → 0, ` ∈ N∪{0}, sequences (yk

εj
) ⊂ RN , xk ∈ Ω,

ωk ∈ H1(RN ) \ {0} (k = 1, 2, · · · , `) such that

(i) |yk
εj
− yk′

εj
| → ∞ as j →∞ for k 6= k′. (CC.1)

(ii) εjy
k
εj
→ xk ∈ Ω as j →∞. (CC.2)

(iii) ωk 6≡ 0 and Φ′xk(ωk) = 0. (CC.3)

(iv)

∥∥∥∥∥vεj
− ψεj

(∑̀

k=1

ωk(y − yk
εj

)

)∥∥∥∥∥
Hεj

→ 0 as j →∞. (CC.4)

(v) Jεj (vεj ) →
∑̀

k=1

Φxk(ωk). (CC.5)

Remark 3.3. (i) When ` = 0 in the statement of Proposition 3.2, it means that

‖vεj‖Hεj
→ 0 and Jεj (vεj ) → 0.

(ii) A closely related result to Proposition 3.2 is obtained by Gui [Gu, Proposition 2.2].
We remark that in [Gu, Proposition 2.2] it is assumed, besides other conditions,

0 ≤ fξ(ξ) ≤ a1 + a2ξ
p−1

for some a1, a2 > 0 and p ∈ (1, N+2
N−2 ), so Proposition 3.2 may be regarded as a generaliza-

tion.

Before proving Proposition 3.2, we remark that the functional Φx0(v) corresponds to
the limit problem :

−∆v + V (x0)v = g(x0, v) in RN . (3.5)

A typical feature of the limit problem is its x-independence, that is, (3.5) is an au-
tonomous equation. The following lemma is important in the proof of Proposition 3.2.

Lemma 3.4. Assume that f(ξ) satisfies (f0)–(f2). Then

(i) Φx0(v) has non-zero critical points if and only if x0 ∈ Ω.

(ii) There exists a constant δ1 > 0 independent of x0 ∈ RN such that

v x0 ≥ δ1

for any non-zero critical point v(y) of Φx0(v).

Although the proof of Lemma 3.4 is not complicated, we postpone it to Section 4.
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Remark 3.5. Since we don’t assume any growth condition on V (x), in general ω 6∈ Hε

for a critical point ω(y) of Φx0(v) and ε > 0. This motivates the introduction of a cut-off
function ψε(y) in (iv) of Proposition 3.2. We remark that sup ψ(εy)V (εy) < ∞ and ψε

has the following properties :
(i) For any w ∈ H1(RN ), ψεw ∈ Hε and there is a constant C > 0 independent of ε such

that
‖ψεw‖Hε

≤ C‖w‖H1(RN ) for all w ∈ H1(RN ). (3.6)

(ii) For any w ∈ H1(RN ) and for any sequence (zε) ⊂ RN satisfying εzε → x0 for some
x0 ∈ Λ we have

‖ψε(y)w(y − zε)‖2Hε

=
∫

RN

|∇(ψε(y)w(y − zε))|2 + V (εy)ψε(y)2w(y − zε)2 dy

=
∫

RN

|∇(ψ(εy + εzε)w(y))|2 + V (εy + εzε)ψ(εy + εzε)2w(y)2 dy

→
∫

RN

|∇w|2 + V (x0)w2 dy

= w 2
x0

as ε → 0.

Proof of Proposition 3.2. The proof of Proposition 3.2 consists of several steps. For
simplicity of notation, we write ε instead of εj . We take subsequences repeatedly and we
also write just ε.

Step 1 : Extracting a subsequence if necessary, we can assume that vε ⇀ v0 weakly in

H1(RN ) with v0(y) a critical point of Φ0(v).

First we remark that ‖vε‖H1(RN ) ≤ m follows from (3.4) and (1.19). Thus (vε) is bounded
in H1(RN ) and we may assume that

vε ⇀ v0 ∈ H1(RN ) weakly in H1(RN ).

In a standard way we can see that v0(y) is a critical point of Φ0(v). Indeed for any
ϕ(y) ∈ C∞0 (RN ), we have J ′ε(vε)ϕ → 0, i.e.,

∫

RN

∇vε∇ϕ + V (εy)vεϕ− g(εy, vε)ϕdy → 0.

Thus we have
∫

RN

∇v0∇ϕ + V (0)v0ϕ− g(0, v0)ϕdy = 0 for all ϕ ∈ C∞0 (RN ).
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That is, Φ′0(v0)ϕ = 0 for all ϕ ∈ C∞0 (RN ). Since C∞0 (RN ) is dense in H1(RN ), we have
Φ′0(v0) = 0.

If v0(y) 6≡ 0, we set y1
ε = 0 and ω1 = v0.

Step 2 : Suppose there exist n ∈ N∪{0}, (yk
ε ) ⊂ RN , xk ∈ Ω, ωk ∈ H1(RN ) (k =

1, 2, · · · , n) such that (CC.1), (CC.2), (CC.3) of Proposition 3.2 hold for k = 1, 2, · · · , n
and

vε(y + yk
ε ) ⇀ ωk(y) weakly in H1(RN ) for k = 1, 2, · · · , n. (3.7)

Assume moreover that

sup
y∈RN

∫

B1(y)

∣∣∣∣∣vε − ψε

n∑

k=1

ωk(y − yk
ε )

∣∣∣∣∣

2

dy → 0. (3.8)

Then ∥∥∥∥∥vε − ψε

n∑

k=1

ωk(y − yk
ε )

∥∥∥∥∥
Hε

→ 0. (3.9)

We set ζε(y) = vε(y)− ψε(y)
∑n

k=1 ωk(y − yk
ε ). Using (3.6), we have

‖ζε‖H1(RN ) ≤ ‖ζε‖Hε ≤ ‖vε‖Hε + ‖ψε

n∑

k=1

ωk(y − yk
ε )‖Hε ≤ m + C

n∑

k=1

‖ωk‖H1(RN ).

Thus ζε is bounded in H1(RN ). It follows from (3.8) and Lemma 2.3 that ‖ζε‖s+1 → 0 as
ε → 0. Now we compute

‖ζε‖2Hε
= 〈vε − ψε

n∑

k=1

ωk(y − yk
ε ), ζε〉Hε

= 〈vε, ζε〉Hε −
n∑

k=1

〈ψεω
k(y − yk

ε ), ζε〉Hε . (3.10)

We claim that for all k = 1, · · ·, n

〈ψεω
k(y − yk

ε ), ζε〉Hε = 〈ωk(y − yk
ε ), ψεζε〉xk + o(1). (3.11)

In fact,

〈ψεω
k(y − yk

ε ), ζε〉Hε − 〈ωk(y − yk
ε ), ψεζε〉xk

=
∫

RN

∇(ψεω
k(y − yk

ε ))∇ζε −∇(ωk(y − yk
ε ))∇(ψεζε) dy
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+
∫

RN

(V (εy)− V (xk))ψεω
k(y − yk

ε )ζε(y) dy

=
∫

RN

ωk(y − yk
ε )∇ψε∇ζε −∇ψε∇ωk(y − yk

ε )ζε dy

+
∫

RN

(V (εy + εyk
ε )− V (xk))ψ(εy + εyk

ε )ωk(y)ζε(y + yk
ε ) dy

=(I) + (II).

Since ‖∇ψε‖∞ → 0 as ε → 0, we get (I) → 0 from the boundedness of ‖ζε‖H1(RN ). We
remark that

(V (εy + εyk
ε )− V (xk))ψ(εy + εyk

ε )

is bounded in L∞(RN ). By (3.7) and (CC.1), we have

ζε(y + yk
ε ) ⇀ 0 weakly in H1(RN ) and strongly in L2

loc(R
N ). (3.12)

Thus (II) → 0 and we get (3.11).
Combining (3.10) and (3.11), we have

‖ζε‖2Hε
= 〈vε, ζε〉Hε −

n∑

k=1

〈ωk(y − yk
ε ), ψεζε〉xk + o(1)

= J ′ε(vε)ζε +
∫

RN

g(εy, vε)ζε dy

−
n∑

k=1

(
Φ′xk(ωk(y − yk

ε ))(ψεζε) +
∫

RN

g(xk, ωk(y − yk
ε ))ψεζε dy

)
+ o(1)

=
∫

RN

g(εy, vε)ζε dy −
n∑

k=1

∫

RN

g(xk, ωk(y − yk
ε ))ψεζε dy + o(1)

= (III)−
n∑

k=1

(IV ) + o(1).

By Corollary 1.3 (iii),

|(III)| ≤ δ‖vε‖2‖ζε‖2 + Cδ‖vε‖s
s+1‖ζε‖s+1.

Since ‖ζε‖s+1 → 0 and ‖vε‖2, ‖ζε‖2 are bounded, we can see that (III) → 0. For (IV ),
we have

(IV ) =
∫

RN

g(xk, ωk(y))ψ(εy + εyk
ε )ζε(y + yk

ε ) dy.

Recalling (3.12), we get (IV ) → 0. Thus we have proved that ‖ζε‖Hε → 0. That is (3.9).
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Next we consider the case where the conclusion (3.9) does not hold. In this case we
can find a sequence zε satisfying (3.13) below.

Step 3 : Suppose there exist n ∈ N∪{0}, (yk
ε ) ⊂ RN , xk ∈ Ω, ωk ∈ H1(RN ) \ {0}

(k = 1, 2, · · · , n) such that (CC.1), (CC.2), (CC.3), (3.7) hold. Assume moreover that

there exists zε ∈ RN such that

∫

B1(zε)

∣∣∣∣∣vε − ψε

n∑

k=1

ωk(y − yk
ε )

∣∣∣∣∣

2

dy → c > 0 (3.13)

for some c > 0. Then there exists xk+1 ∈ Ω and ωk+1(y) ∈ H1(RN ) \ {0} such that

|zε − yk
ε | → ∞ for all k = 1, 2, · · · , n, (3.14)

εzε → xk+1 ∈ Ω, (3.15)

vε(y + zε) ⇀ ωk+1(y) 6≡ 0 weakly in H1(RN ), (3.16)

Φ′xk+1(ωk+1) = 0. (3.17)

It is standard to check that zε satisfies (3.14) and that there exists ωk+1 ∈ H1(RN ) \ {0}
satisfying (3.16). Let us prove (3.15). First we show that lim supε→0 |εzε| < ∞. We argue
indirectly and assume |εzε| → ∞. For any ϕ ∈ C∞0 (RN ) with ϕ ≥ 0, we have

J ′ε(vε)(ϕ(y − zε)vε) → 0.

That is,
∫

RN

∇vε(y + zε)∇(ϕ(y)vε(y + zε)) + V (εy + εzε)vε(y + zε)2ϕ(y) dy

−
∫

RN

g(εy + εzε, vε(y + zε))vε(y + zε)ϕ(y) dy → 0. (3.18)

We observe that g(εy + εzε, vε(y + zε)) = f(vε(y + zε)) on supp ϕ for small ε under the
assumption |εzε| → ∞. Also since

∫

RN

∇vε(y + zε)(∇ϕ)(y) vε(y + zε) dy →
∫

RN

∇ωk+1(∇ϕ) ωk+1 dy,

lim inf
ε→0

∫

RN

|∇vε(y + zε)|2ϕdy ≥
∫

RN

|∇ωk+1|2ϕdy,

we deduce from (3.18) that
∫

RN

|∇ωk+1|2ϕ +∇ωk+1(∇ϕ) ωk+1 + V0(ωk+1)2ϕ− f(ωk+1)ωk+1ϕdy ≤ 0. (3.19)
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We choose ϕ̃(y) ∈ C∞0 (RN ) satisfying ϕ̃(y) ≥ 0, ϕ̃(0) = 1 and set ϕ(y) = ϕ̃(y/R) in (3.19).
Taking a limit as R →∞, in (3.19) we get

∫

RN

|∇ωk+1|2 + V0(ωk+1)2 − f(ωk+1)ωk+1 dy ≤ 0.

By Lemma 1.2 (i)–(ii), this implies that ωk+1 ≡ 0, which contradicts with (3.16). Thus
lim supε→0 |εzε| < ∞ and we may assume that εzε → xk+1 ∈ RN . At this point we can
get (3.17) in a standard way and since ωk+1 is a non-trivial critical point of Φxk+1(v), we
deduce that xk+1 ∈ Ω by Lemma 3.4 (i).

Step 4 : Conclusion

We follow a recursive procedure. If the weak limit v0(y) of vε(y) provided by Step 1 is not
0, we set y1

ε = 0, x1 = 0, ω1(y) = v0(y). Then if ‖vε − ψεω
1‖Hε → 0 (or ‖vε‖Hε → 0 in

case v0 ≡ 0), we are done. Otherwise, by Step 2, we can see that (3.8) does not take place,
and that there exists a sequence (zε) satisfying the assumption (3.13) of Step 3. Applying
Step 3, we can find x2 and ω2(y) (or x1 and ω1(y) in case v0 ≡ 0) satisfying (3.13)–(3.17).
We set y2

ε = zε (or y1
ε = zε in case v0 ≡ 0). If ‖zε − ψε(ω1(y) + ω2(y − y2

ε))‖Hε → 0, we
are done. Otherwise, we use Steps 2, 3 and we continue this procedure. Now we need to
prove that it stops after a finite number of steps.

First we prove that under the assumptions (CC.1)–(CC.3) and (3.7)

lim
ε→0

∥∥∥∥∥vε − ψε

n∑

k=1

ωk(y − yk
ε )

∥∥∥∥∥

2

Hε

= lim
ε→0

‖vε‖2Hε
−

n∑

k=1

ωk 2
xk (3.20)

In fact,

‖vε − ψε

n∑

k=1

ωk(y − yk
ε )‖2Hε

= ‖vε‖2Hε
− 2

n∑

k=1

〈vε, ψεω
k(y − yk

ε )〉Hε

+
∑

k,k′
〈ψεω

k(y − yk
ε ), ψεω

k′(y − yk′
ε )〉Hε (3.21)

and we have

〈vε, ψεω
k(y − yk

ε )〉Hε

=
∫

RN

∇vε(y + yk
ε )∇(ψ(εy + εyk

ε )ωk(y)) + V (εy + εyk
ε )ψ(εy + εyk

ε )vε(y + yk
ε )ωk(y) dy

→
∫

RN

|∇ωk|2 + V (xk)(ωk)2 dy

= ωk 2
xk

. (3.22)
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In a similar way, we have

〈ψεω
k(y − yk

ε ), ψεω
k′(y − yk′

ε )〉Hε
→

{
0 if k 6= k′,

ωk 2
xk

if k = k′. (3.23)

Thus (3.20) follows from (3.21)–(3.23).
Now from (3.20) it follows that

n∑

k=1

ωk 2
xk ≤ lim

ε→0
‖vε‖2Hε

and using Lemma 3.4 (ii), (3.4), we deduce

δ1n ≤ lim
ε→0

‖vε‖2Hε
≤ m2.

Thus the procedure to find (yk
ε ), xk, ωk ends after a finite number of steps. Therefore we

can find ` ∈ N∪{0}, (yk
ε ), xk, ωk (k = 1, 2, · · · , `) such that (CC.1)–(CC.4) hold. (CC.5)

follows in a standard way from (CC.1)–(CC.4). This ends the proof of Proposition 3.2.
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4. The functionals Φx0(v)

In this section we study the limit functionals Φx0(v) for x0 ∈ RN . Since Φx0(v) is
autonomous, we can deal with Φx0(v) in a space of radially symmetric functions and we
have the following existence result. It is due to Berestycki-Lions [BL] for N ≥ 3 and
Berestycki-Gallouët-Kavian [BGK] for N = 2.

Proposition 4.1. ([BL], [BGK]). Assume that h(ξ) satisfies

(h0) h(ξ) ∈ C(R,R) is continuous and odd.

(h1) −∞ < lim infξ→0
h(ξ)

ξ ≤ lim supξ→0
h(ξ)

ξ < 0 for N ≥ 3,

limξ→0
h(ξ)

ξ ∈ (−∞, 0) for N = 2.

(h2) When N ≥ 3, lim
ξ→∞

h(ξ)

ξ
2N

N−2
= 0,

when N = 2, for any α > 0 there exists Cα > 0 such that

|h(ξ)| ≤ Cαeαξ2
for all ξ.

Then the problem

−∆u = h(u) in RN , u(x) ∈ H1(RN ) (4.1)

has a non-zero solution if and only if the following condition is satisfied.

(h3) There exists ξ0 > 0 such that H(ξ0) > 0, where H(ξ) =
∫ ξ

0
h(τ) dτ .

Moreover under (h0)–(h3), (4.1) has a least energy solution u(x) which satisfies u(x) > 0
and is radially symmetric in RN .

Here by a least energy solution we mean a solution ω(x) which satisfies Ĩ(ω) = m,
where

m = inf{Ĩ(u); u ∈ H1(RN ) \ {0} is a solution of (4.1)}, (4.2)

Ĩ(u) =
∫

RN

1
2
|∇u|2 −H(u) dy.

It is also shown that m > 0.

In our recent work [JT2], we have revisited (4.1) and enlighten a mountain pass
characterization of least energy solutions.

Proposition 4.2. ([JT2]). Assume that (h0)–(h3) hold. Then Ĩ(u) has a mountain pass

geometry and there holds that

b = m, (4.3)
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where m is defined in (4.2) and b is the mountain pass value for Ĩ(u);

b = inf
γ∈Γ

max
t∈[0,1]

Ĩ(γ(t)),

Γ = {γ(t) ∈ C([0, 1],H1(RN )); γ(0) = 0, Ĩ(γ(1)) < 0}.

Moreover for any least energy solution ω(x) of (4.1) there exists a path γ(t) ∈ Γ such that

Ĩ(γ(t)) ≤ m = Ĩ(ω) for all t ∈ [0, 1], (4.4)

ω ∈ γ([0, 1]). (4.5)

We remark that the relation (4.3) is usually obtained under the assumption of the
monotonicity of (0,∞) → R; ξ 7→ h(ξ)

ξ . Under this assumption, γ(t) = tLω gives a
path satisfying (4.4)–(4.5) for large L > 1. In the proof of Proposition 4.2, the dilation
ut(x) = u(x/t) (t > 0) plays an important role.

Remark 4.3. Both Propositions 4.1 and 4.2 are stated for odd nonlinearities h(ξ). Since
we just consider positive solutions, extending the nonlinearity f(ξ) to an odd function on

R, we can apply Propositions 4.1 and 4.2 to our setting (See [JT1] for more details).

Now we give a proof of Lemma 3.4.

Proof of Lemma 3.4. We apply Proposition 4.1 with H(ξ) = H(x0, ξ) = − 1
2V (x0)ξ2 +

G(x0, ξ). We can see that (h3) holds if and only if x0 ∈ Ω. Thus (i) of Lemma 3.4 follows.
Now assume that v(y) is a non-zero critical point of Φx0(v). Then we have Φ′x0

(v)v = 0,
i.e., ∫

RN

|∇v|2 + V (x0)v2 dy −
∫

RN

g(x0, v)v dy = 0.

By Corollary 1.3 (i), we have

‖v‖2H1(RN ) −
∫

RN

f(v)v dy ≤ 0

and, using (1.2), it follows that for any arbitrary δ > 0

‖v‖2H1(RN ) ≤ δ‖v‖22 + Cδ‖v‖s+1
s+1

≤ δ

V0
‖v‖2H1(RN ) + CδC

′
s+1‖v‖s+1

H1(RN )
.

Thus 1
2‖v‖H1(RN ) ≤ CδC

′
s+1‖v‖s+1

H1(RN )
and there exists δ1 > 0 such that ‖v‖H1(RN ) ≥ δ1

for any non-zero critical point v and x0 ∈ RN . Since v x0 ≥ ‖v‖H1(RN ), we get (ii).
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For x ∈ RN we set

m(x) =
{

least energy level of Φx(v) if x ∈ Ω,
∞ if x ∈ RN \Ω.

By Proposition 4.2, m(x) is equal to the mountain pass value for Φx(v) if x ∈ Ω. We have
the following

Proposition 4.4. m(x0) = infx∈RN m(x) if and only if x0 ∈ Λ and V (x0) = infx∈Λ V (x).
In particular, m(0) = infx∈RN m(x).

Proof. Suppose that x0 ∈ Λ satisfies V (x0) = infx∈Λ V (x). By our choice of Λ′ and χ, we
have x0 ∈ Λ′ and χ(x0) = 1. We also have x0 ∈ Ω by Remark 3.1. Using V (x) ≥ V (x0) in
Λ, G(x, ξ) ≤ F (ξ) for all (x, ξ), we have for any x ∈ Ω,

Φx(v) =
1
2
‖∇v‖22 +

1
2
V (x)‖v‖22 −

∫

RN

G(x, v) dy

≥ 1
2
‖∇v‖22 +

1
2
V (x0)‖v‖22 −

∫

RN

F (v) dy

= Φx0(v) for all v ∈ H1(RN ).

(We remark that this inequality is strict if V (x) > V (x0) and v 6≡ 0.) Thus m(x0) ≤ m(x)
for all x ∈ RN .

Next suppose that x′ ∈ Λ satisfies V (x′) > V (x0). We take a path γ ∈ Γ such that
(4.4)–(4.5) are satisfied for Ĩ(v) = Φx′(v). Then

m(x0) ≤ max
t∈[0,1]

Φx0(γ(t)) < max
t∈[0,1]

Φx′(γ(t)) = m(x′).

Therefore Proposition 4.4 holds.

We end this section establishing the continuity of m(x).

Proposition 4.5. The function m(x) : RN → (−∞,∞] is continuous in the following

sense :
m(xj) → m(x0) if xj → x0 ∈ Ω,

m(xj) →∞ if xj → x0 ∈ RN \Ω.

Proof. We make use of Propositions 4.1 and 4.2. First we deal with the case x0 ∈ Ω and
suppose (xj) ⊂ Ω satisfies xj → x0 ∈ Ω. The upper semi-continuity

lim sup
j→∞

m(xj) ≤ m(x0) (4.6)
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is a consequence of the mountain pass characterization of m(x). Indeed, for x0 ∈ Ω there
exists a path γ(t) ∈ C([0, 1],H1(RN )) such that

γ(0) = 0, (4.7)

Φx0(γ(1)) < 0, (4.8)

max
t∈[0,1]

Φx0(γ(t)) = m(x0).

Since xj → x0, (4.7) and (4.8) hold for Φxj (v) if j is sufficiently large and

m(xj) ≤ max
t∈[0,1]

Φxj (γ(t)) → m(x0) as j →∞.

To show the lower semi-continuity lim infj→∞m(xj) ≥ m(x0), it suffices to show that for
least energy solutions uj(y) of Φxj (v) one has

(i) ‖uj‖H1(RN ) is bounded as j →∞.
(ii) After extracting a subsequence, uj has a non-zero weak limit u0(y) and

lim inf
j→∞

Φxj (uj) ≥ Φx0(u0).

Indeed it is then easily seen that the weak limit u0(y) is a non-zero critical point of Φx0(v)
and thus we have

lim inf
j→∞

m(xj) = lim inf
j→∞

Φxj (uj) ≥ Φx0(u0) ≥ m(x0).

The proof of (i)–(ii) consists of several steps. First we remark that we may assume
uj(y) to be radially symmetric with respect to 0. We also recall that uj(x) satisfies the
Pohozaev identity :

N − 2
2

‖∇uj‖22 = N

∫

RN

H(xj , uj(y)) dy. (4.9)

Step 1 : There exist m0, m1 > 0 independent of j such that

m0 ≤ m(xj) ≤ m1 for all j ∈ N .

The existence of the uniform upper bound m1 follows from (4.6). For m0, we observe that

Φxj (v) ≥ 1
2
‖∇v‖22 +

1
2
V0‖v‖22 −

∫

RN

F (v) dy.
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Thus choosing m0 to be the mountain pass value of v 7→ 1
2‖∇v‖22 + 1

2V0‖v‖22−
∫
RN F (v) dy,

we get the conclusion of Step 1.

Step 2 : ‖∇uj‖22 ∈ [Nm0, Nm1].

Using the Pohozaev identity (4.9), we have

m(xj) =
1
2
‖∇uj‖22 −

∫

RN

H(xj , uj(y)) dy =
1
N
‖∇uj‖22.

Thus the conclusion of Step 2 follows from Step 1.

Step 3 : Boundedness of ‖uj‖2 for N ≥ 3.

By Step 2, we can see that
∫
RN H(xj , uj) dy = − 1

2V (xj)‖uj‖22 +
∫
RN G(xj , uj) dy is

bounded as j →∞. Thus there exists C > 0 such that
1
2
V (xj)‖uj‖22 ≤ C +

∫

RN

G(xj , uj) dy

≤ C +
∫

RN

F (uj) dy.

By (f2), for any δ > 0 we can find Cδ > 0 such that

|F (ξ)| ≤ δ|ξ|2 + Cδ|ξ|
2N

N−2 .

Thus
1
2
V (xj)‖uj‖22 ≤ C + δ‖uj‖22 + Cδ‖uj‖

2N
N−2
2N

N−2
.

By the Sobolev embedding ‖uj‖ 2N
N−2

≤ C‖∇uj‖2, ‖uj‖ 2N
N−2

is bounded and choosing δ > 0
small, we get the boundedness of ‖uj‖2.
Step 4 : Boundedness of ‖uj‖2 for N = 2.

When N = 2, the proof of the boundedness of ‖uj‖2 is more technical. We argue indirectly
and assume that ‖uj‖2 →∞. We set tj = 1

‖uj‖2 → 0 and ũj(y) = uj(y/tj). Then we have

‖∇ũj‖2 = ‖∇uj‖2 ∈ [2m0, 2m1], (4.10)

‖ũj‖2 = 1. (4.11)

We claim that ũj ⇀ 0 weakly in H1(R2). In fact, suppose that ũj ⇀ ũ0 after extracting
a subsequence. Since uj(y) is a critical point of Φxj (v), we have

−t2j∆ũj + V (xj)ũj = g(xj , ũj) in R2 . (4.12)

Thus, passing to the limit as j →∞, we obtain

V (x0)ũ0(y) = g(x0, ũ0(y)) in R2 .

Since ũ0 ∈ H1(R2) and 0 ∈ R is an isolated solution of V (x0)ξ = g(x0, ξ), this shows that
ũ0(y) ≡ 0.

Now we recall the following lemma.
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Lemma 4.6. ([BL]). Suppose N ≥ 2. Then there exists a constant CN > 0 such that for

any radially symmetric function u(y) ∈ H1(RN )

|u(x)| ≤ CN‖u‖H1(RN )|x|−
N−1

2 for all |x| ≥ 1.

Applying Lemma 4.6 to ũj(y), we get |ũj(y)| ≤ C ′|y|− 1
2 for |y| ≥ 1 and we can fix

R > 1 such that
∣∣∣∣
g(xj , ũj(y))

ũj(y)

∣∣∣∣ ≤
1
2
V0 for all j ∈ N and |y| ≥ R. (4.13)

Multiplying (4.12) by ũj and integrating over R2, we get

t2j‖∇ũj‖22 +
∫

|y|≥R

(
V (xj)− g(xj , ũj(y))

ũj(y)

)
ũ2

j (y) dy

≤ −
∫

|y|≤R

V (xj)ũ2
j (y)− g(xj , ũj(y))ũj(y) dy.

Since ũj ⇀ ũ0 ≡ 0 weakly in H1(R2), and thus strongly in Ls+1(|y| ≤ R), we can see∫
|y|≥R

(
V (xj)− g(xj ,ũj(y))

ũj(y)

)
ũ2

j (y) dy → 0. Using (4.13), we get ‖ũj‖L2(|y|≥R) → 0, that is,
‖ũj‖2 → 0. But this contradicts (4.11). Thus the proof of Step 4 is completed.

Step 5 : After extracting a subsequence, uj has a non-zero weak limit u0(y) 6≡ 0.

We remark that the boundedness of ‖uj‖H1(RN ) follows from Steps 2–4. Here we argue
indirectly as in Step 4. We assume that uj ⇀ 0 weakly in H1(RN ) and strongly in
Ls+1

loc (RN ). Using Lemma 4.6, we can find a R > 1 such that

∣∣∣∣
g(xj , uj(y))

uj(y)

∣∣∣∣ ≤
1
2
V0 for all j ∈ N and |y| ≥ R.

It follows from Φ′xj
(uj)uj = 0 that

‖∇uj‖22 +
∫

|y|≥R

(
V (xj)− g(xj , uj(y))

uj(y)

)
u2

j (y) dy

≤ −
∫

|y|≤R

V (xj)u2
j (y)− g(xj , uj(y))uj(y) dy.

That is,

‖∇uj‖22 ≤ −
∫

|y|≤R

V (xj)u2
j (y)− g(xj , uj(y))uj(y) dy

and uj → 0 in Ls+1
loc (RN ) implies ‖∇uj‖2 → 0. This is in contradiction with Step 2.

35



Step 6 : lim infj→∞ Φxj
(uj) ≥ Φx0(u0).

Since we are working in a space of radially symmetric functions, we can see from (f1)–(f2)
that ∫

RN

G(xj , uj) dy →
∫

RN

G(x0, u0) dy as j →∞.

(See Theorem A.I of [BL]). Thus we have the desired result from the lower semi-continuity
of the L2-norm.

Finally we deal with the case x0 6∈ Ω.

Step 7 : Suppose x0 6∈ Ω and xj → x0. Then m(xj) →∞.

In fact, if m(xj) 6→ ∞, we can find a subsequence — still denoted by xj — such that m(xj)
stays bounded as j → ∞. Then by the arguments of Steps 1–5, we can find a non-zero
critical point of Φx0(v). However it is a contradiction to Lemma 3.4 (i).
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5. End of the proof of Theorem 0.1

In this section we conclude the proof of Theorem 0.1. First we study the behavior of bε

as ε → 0.

Proposition 5.1. Let (bε)ε∈(0,ε1] be the mountain pass value of Jε(v) defined in (1.21)–
(1.22). Then

bε → m(0) = inf
x∈RN

m(x) as ε → 0. (5.1)

Proof. By Proposition 4.2 there exists a path γ ∈ C([0, 1], H1(RN )) such that

γ(0) = 0, Φ0(γ(1)) < 0,

Φ0(γ(t)) ≤ m(0) for all t ∈ [0, 1],

max
t∈[0,1]

Φ0(γ(t)) = m(0).

Let ϕ(y) ∈ C∞0 (RN ) be such that ϕ(0) = 1 and ϕ ≥ 0. Setting

γR(t)(y) = ϕ(y/R)γ(t)(y),

we have γR(t) ∈ C([0, 1], Hε), γR(0) = 0 and Φ0(γR(1)) < 0 for sufficiently large R > 1.
Then, in particular, γR(t) ∈ Γε. Also for any fixed R > 0,

Jε(γR(t)) → Φ0(γR(t)) as ε → 0 uniformly in t ∈ [0, 1].

Thus for sufficiently large R > 1

bε ≤ max
t∈[0,1]

Jε(γR(t)) → max
t∈[0,1]

Φ0(γR(t)) as ε → 0. (5.2)

Since
max

t∈[0,1]
Φ0(γR(t)) → m(0) as R →∞,

we deduce from (5.2) that
lim sup

ε→0
bε ≤ m(0). (5.3)

Now let vε ∈ Hε be a critical point of Jε(v) associated to bε. Applying Proposition 3.2, we
can find εj → 0, ` ∈ N∪{0}, (yk

εj
), xk, ωk (k = 1, 2, · · · , `) satisfying (CC.1)–(CC.5). If

we assume that ` = 0, then (CC.5) implies that bεj = Jεj (vεj ) → 0 in contradiction with
(1.23). Thus ` ≥ 1 and again from (CC.5) it follows that

lim
j→∞

bεj =
∑̀

k=1

Φxk(ωk) ≥
∑̀

k=1

m(xk) ≥ `m(0) ≥ m(0). (5.4)
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Thus combining (5.3) and (5.4), we get (5.1).

As a consequence of Proposition 5.1 we have :

Proposition 5.2. For any ε ∈ (0, ε1] let (vε) denote a critical point of Jε(v) corresponding

to bε. Then for any sequence εj → 0 there exist a subsequence — still denoted by εj —

and (yεj
), x1, ω1 such that

(i) εjyεj
→ x1. (5.5)

(ii) x1 ∈ Λ′ satisfies V (x1) = infx∈Λ V (x). (5.6)
(iii) ω1(y) is a least energy solution of Φ′x1(v) = 0. (5.7)
(iv)

∥∥vεj
− ψεj

ω1(y − yεj
)
∥∥

Hεj

→ 0. (5.8)

(v) Jεj (vεj ) → m(x1) = m(0). (5.9)

Proof. Arguing as in the proof of Proposition 5.1 it follows that ` = 1 in Proposition 3.2.
Hence we have (5.5)–(5.9).

Now we are ready to give the proof of Theorem 0.1.

Proof of Theorem 0.1. We divide the proof of Theorem 0.1 into several steps. In what
follows, vε(y) ∈ Hε denotes a critical point corresponding to bε. We shall prove that this
is a desired solution when ε > 0 is small enough. For this it suffices to show that for any
sequence εj → 0 there exists a subsequence — still denoted by εj — such that for large
j, vεj takes a unique local maximum at x̄εj ∈ Λ/εj with V (εj x̄εj ) → infx∈Λ V (x) and
decreases sufficiently fast away from x̄εj .

Let εj → 0 be an arbitrary fixed sequence. Applying Proposition 5.2 we can assume
that there exists (yεj ), x1, ω1 such that (5.5)–(5.9) hold. Moreover, by the maximum
principle, vε(y) ≥ 0 for all y ∈ RN .

Step 1 : If a sequence (zεj ) ⊂ RN satisfies

lim inf
j→∞

∫

B1(zεj
)

|vεj
|2 dy > 0,

then lim supj→∞ |zεj − yεj | < ∞. In particular we have limj→∞ |εjzεj − x1| = 0. Con-

versely if (zεj ) satisfies |zεj − yεj | → ∞, we have
∫

B1(zεj
)
|vεj |2 dy → 0.

This clearly follows from (5.5), (5.8).

Step 2 : supz∈(Λ\Λ′)/εj
|vεj (z)| → 0 as j →∞. (5.10)

It follows from Step 1 that

sup
z∈(Λ\Λ′)/εj

∫

B1(z)

|vεj |2 dy → 0 as j →∞.
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It also follows from the boundedness of (vεj
) in H1(RN ) that

‖vεj
‖Ls+1(B1(z)) → 0 uniformly in z ∈ (Λ \ Λ′)/εj . (5.11)

We remark that V (εjy), χ(εjy) stay bounded uniformly in (Λ \ Λ′)/εj as j → ∞. Thus
since vεj

(y) is a solution of

−∆v + V (εjy)v = g(εjy, v) in B1(z).

By standard regularity arguments we have vεj
(y) ∈ C(B1(z)), and (5.11) implies

‖vεj‖L∞(B1(z)) → 0 as j →∞

uniformly in z ∈ (Λ \ Λ′)/εj .

Step 3 : For the constant rν > 0 given in Section 1 (a), there holds

vεj (y) ≤ rν in RN \(Λ′/εj). (5.12)

By Step 2, supz∈(Λ\Λ′)/εj
|vεj (y)| ≤ rν

2 for small εj . Since (vεj (y)− rν)+ |
R

N \(Λ′/εj)
∈ Hε

it follows from J ′ε(vεj )
(

(vεj (y)− rν)+ |
R

N \(Λ′/εj)

)
= 0 that

∫

RN \(Λ′/εj)

|∇(vεj − rν)+|2 + V (εjy)vεj (vεj − rν)+ − f(vεj )(vεj − rν)+ dy = 0.

By Lemma 1.2 (ii),

∫

RN \(Λ′/εj)

|∇(vεj − rν)+|2 + (V0 − ν)vεj (vεj − rν)+ dy ≤ 0.

Thus (vεj − rν)+ ≡ 0 in RN \(Λ′/εj). That is, (5.12) holds.

By Step 3 we see that vεj (y) is a solution of the rescaled original problem :

−∆v + V (εjy)v = f(v) in RN

for sufficiently small εj > 0. Since f(ξ) ∈ C1(RN ,R), we have vεj (y) ∈ C2(RN ) from
a standard regularity argument. From the boundedness of ‖vεj‖Hε we can see also that
‖vεj‖C2(K/εj) is bounded on any compact set K ⊂ RN as j →∞. We remark that V (εjy)
and χ(εjy) stay bounded uniformly in K/εj as j →∞.
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Step 4 : Suppose that vεj
(y) takes a local maximum at zεj

. Then (zεj
) satisfies

lim sup
j→∞

|zεj
− yεj

| < ∞ and εjzεj
→ x1.

By the maximum principle, we see that vεj
(zεj

) ≥ rν . Since vεj
(y) is bounded in C2

loc, we
can also get lim infj→∞

∫
B1(zεj

)
|vεj |2 dy > 0. We conclude by Step 1.

Step 5 : vεj has only one local maximum for εj small.

Assume that vεj (y) takes a local maximum at y = zεj
. By the maximum principle,

vεj
(zεj

) ≥ rν . Since vεj
is bounded in H1(RN ) and C2

loc(R
N ), after extracting a subse-

quence, we may assume vεj (y + zεj ) → ω(y) weakly in H1(RN ) and strongly in C2
loc with

ω(y) satisfying
−∆ω + V (x1)ω = f(ω) in RN

and having a local maximum at y = 0. Thus by the result of [GNN], ω(y) is radially
symmetric with respect to 0 and strictly decreasing with respect to r = |y|. Thus if vεj (y)
takes two local maxima at y = zεj and y = z′εj

, then we necessarily have |zεj − z′εj
| → ∞.

However Step 4 implies lim sup |zεj − z′εj
| ≤ lim sup |zεj − yεj | + lim sup |z′εj

− yεj | < ∞.
This contradiction shows that vεj (y) takes only one local maximum.

Step 6 : There exists `0 > 0 such that for small εj > 0

|vεj (y)| < rν for all |y − x̄εj | ≥ `0,

where x̄εj is the unique local maximum of vεj (y).

Indeed, if zεj satisfies vεj (zεj ) ≥ rν , then we have lim infj→∞
∫

B1(zεj
)
|vεj |2 dy > 0 and

Steps 1,4 implies that lim sup |zεj − x̄εj | ≤ lim sup |zεj − yεj | + lim sup |yεj − x̄εj | < ∞.
Thus there is no sequence (zεj ) satisfying |zεj − x̄εj | → ∞ and vεj (zεj ) ≥ rν . Step 6
follows.

Step 7 : Conclusion.

Consider the unique solution η(y) ∈ H1(|y| ≥ `0) of the following problem :

−∆η +
V0

2
η = 0 in |y| ≥ `0,

η(y) = rν on |y| = `0.

It is easily seen that η(y) has an exponential decay and since
f(vεj

(y))

vεj
(y) ≤ V0

2 when |y| ≥ `0,
we have, by the maximum principle that vεj (y + x̄εj ) ≤ η(y) for |y| ≥ `0. Thus vεj (y) also
has an exponential decay.
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Now setting uεj
(x) = vεj

(x/εj) we can easily see that uεj
(x) has the desired properties.

This concludes the proof of Theorem 0.1.
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[Br] H. Brezis, Analyse fonctionnelle, Masson, (1983).

[DF1] M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in
unbounded domains, Calc. Var. PDE 4 (1996), 121–137.

[DF2] M. del Pino and P. Felmer, Multi-peak bound states of nonlinear Schrödinger equa-
tions, Ann. IHP, Analyse Nonlineaire, 15 (1998), 127–149.

[DF3] M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations :
a variational reduction method, Math. Ann. 324 (2002), no. 1, 1–32.

[DFT] M. del Pino, P. Felmer and K. Tanaka, An elementary construction of complex patterns
in nonlinear Schrödinger equations, Nonlinearity 15 (2002), no. 5, 1653–1671.

[FW] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger
equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397–408.

[GNN] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear
equations in RN , Math. Anal. and Applications, Part A, Advances in Math. Suppl.

Studies 7A (ed. L. Nachbin), Academic Press, 369–402 (1981).

[Gr] M. Grossi, Some results on a class of nonlinear Schrödinger equations. Math. Zeit.

235 (2000), 687–705.

[Gu] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via
variational method. Comm. Partial Differential Equations 21 (1996), 787–820.

[J] L. Jeanjean, On the existence of bounded Palais-Smale sequences and applications
to a Landesman-Lazer-type problem set on RN , Proc. Roy. Soc. Edinburgh 129A

(1999), 787–809.

[JT1] L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic
problem on RN autonomous at infinity, ESAIM Control Optim. Calc. Var. 7 (2002),
597–614.

[JT2] L. Jeanjean and K. Tanaka, A remark on least energy solutions in RN , Proc. Amer.

Math. Soc. 131 (2003), 2399–2408.

42



[KW] X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear
Schrödinger equations, Advances Diff. Eq. 5 (2000), 899–928.

[YYL] YanYan Li, On a singularly perturbed elliptic equation. Adv. Differential Equations

2 (1997), 955–980.
[L] P.-L. Lions, The concentration-compactness principle in the calculus of variations.

The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984),
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